fixed fourier convolution and div/curl calculation for even/odd grid according to Johnston 2011 (MIT, FFTW)

This commit is contained in:
Martin Diehl 2015-09-11 13:05:46 +00:00
parent 5f9fae1b75
commit 8716752bf8
2 changed files with 114 additions and 105 deletions

View File

@ -13,6 +13,8 @@ module DAMASK_spectral_utilities
pInt
use math, only: &
math_I3
use numerics, only: &
spectral_filter
implicit none
private
@ -49,7 +51,8 @@ module DAMASK_spectral_utilities
real(C_DOUBLE), public, dimension(:,:,:), pointer :: scalarField_real !< scalar field real representation for fftw
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:), pointer :: scalarField_fourier !< scalar field fourier representation for fftw
real(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method
real(pReal), private, dimension(:,:,:,:), allocatable :: xi !< wave vector field for divergence and for gamma operator
real(pReal), private, dimension(:,:,:,:), allocatable :: xi1st !< wave vector field for first derivatives
real(pReal), private, dimension(:,:,:,:), allocatable :: xi2nd !< wave vector field for second derivatives
real(pReal), private, dimension(3,3,3,3) :: C_ref !< mechanic reference stiffness
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence (Basic, Basic PETSc)
@ -117,6 +120,14 @@ module DAMASK_spectral_utilities
character(len=64) :: label = ''
end type phaseFieldDataBin
enum, bind(c)
enumerator :: FILTER_NONE_ID, &
FILTER_GRADIENT_ID, &
FILTER_COSINE_ID
end enum
integer(kind(FILTER_NONE_ID)) :: &
spectral_filter_ID
public :: &
utilities_init, &
utilities_updateGamma, &
@ -201,9 +212,9 @@ subroutine utilities_init()
integer(pInt) :: i, j, k
integer(pInt), dimension(3) :: k_s
type(C_PTR) :: &
tensorField, & !< field cotaining data for FFTW in real and fourier space (in place)
vectorField, & !< field cotaining data for FFTW in real space when debugging FFTW (no in place)
scalarField !< field cotaining data for FFTW in real space when debugging FFTW (no in place)
tensorField, & !< field containing data for FFTW in real and fourier space (in place)
vectorField, & !< field containing data for FFTW in real space when debugging FFTW (no in place)
scalarField !< field containing data for FFTW in real space when debugging FFTW (no in place)
integer(C_INTPTR_T) :: gridFFTW(3), alloc_local, local_K, local_K_offset
integer(C_INTPTR_T), parameter :: &
scalarSize = 1_C_INTPTR_T, &
@ -264,7 +275,8 @@ subroutine utilities_init()
gridFFTW = int(grid,C_INTPTR_T)
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
MPI_COMM_WORLD, local_K, local_K_offset)
allocate (xi(3,grid1Red,grid(2),grid3),source = 0.0_pReal) ! frequencies, only half the size for first dimension
allocate (xi1st(3,grid1Red,grid(2),grid3),source = 0.0_pReal) ! frequencies, only half the size for first dimension
allocate (xi2nd(3,grid1Red,grid(2),grid3),source = 0.0_pReal) ! frequencies, only half the size for first dimension
tensorField = fftw_alloc_complex(tensorSize*alloc_local)
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
@ -341,7 +353,12 @@ subroutine utilities_init()
if(j > grid(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - grid(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
do i = 1_pInt, grid1Red
k_s(1) = i - 1_pInt ! symmetry, junst running from 0,1,...,N/2,N/2+1
xi(1:3,i,j,k-grid3Offset) = real(k_s, pReal)/scaledGeomSize ! if divergence_correction is set, frequencies are calculated on unit length
xi2nd(1:3,i,j,k-grid3Offset) = real(k_s, pReal)/scaledGeomSize ! if divergence_correction is set, frequencies are calculated on unit length
where(mod(grid,2)==0 .and. [i,j,k] == grid/2+1) ! for even grids, set the Nyquist Freq component to 0.0
xi1st(1:3,i,j,k-grid3Offset) = 0.0_pReal
elsewhere
xi1st(1:3,i,j,k-grid3Offset) = xi2nd(1:3,i,j,k-grid3Offset)
endwhere
enddo; enddo; enddo
if(memory_efficient) then ! allocate just single fourth order tensor
@ -350,6 +367,17 @@ subroutine utilities_init()
allocate (gamma_hat(3,3,3,3,grid1Red,grid(2),grid3), source = 0.0_pReal)
endif
select case (spectral_filter)
case ('none') ! default, no weighting
spectral_filter_ID = FILTER_NONE_ID
case ('cosine') ! cosine curve with 1 for avg and zero for highest freq
spectral_filter_ID = FILTER_COSINE_ID
case ('gradient') ! gradient, might need grid scaling as for cosine filter
spectral_filter_ID = FILTER_GRADIENT_ID
case default
call IO_error(892_pInt,ext_msg=trim(spectral_filter))
end select
end subroutine utilities_init
@ -397,7 +425,7 @@ subroutine utilities_updateGamma(C,saveReference)
do k = grid3Offset+1_pInt, grid3Offset+grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red
if (any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k-grid3Offset)*xi(m, i,j,k-grid3Offset)
xiDyad(l,m) = xi1st(l, i,j,k-grid3Offset)*xi1st(m, i,j,k-grid3Offset)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,1:3,m,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
@ -410,8 +438,8 @@ subroutine utilities_updateGamma(C,saveReference)
end subroutine utilities_updateGamma
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed
!> @details Does an unweighted filtered FFT transform from real to complex.
!> @brief forward FFT of data in field_real to field_fourier
!> @details Does an unweighted filtered FFT transform from real to complex
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTtensorForward()
use mesh, only: &
@ -422,13 +450,13 @@ subroutine utilities_FFTtensorForward()
integer(pInt) :: i, j, k
!--------------------------------------------------------------------------------------------------
! doing the FFT
! doing the tensor FFT
call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier)
!--------------------------------------------------------------------------------------------------
! applying filter
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
tensorField_fourier(1:3,1:3,i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* &
tensorField_fourier(1:3,1:3,i,j,k) = utilities_getFilter(xi2nd(1:3,i,j,k))* &
tensorField_fourier(1:3,1:3,i,j,k)
enddo; enddo; enddo
@ -442,14 +470,14 @@ end subroutine utilities_FFTtensorForward
subroutine utilities_FFTtensorBackward()
implicit none
call fftw_mpi_execute_dft_c2r(planTensorBack,tensorField_fourier,tensorField_real) ! back transform of fluct deformation gradient
call fftw_mpi_execute_dft_c2r(planTensorBack,tensorField_fourier,tensorField_real)
tensorField_real = tensorField_real * wgt ! normalize the result by number of elements
end subroutine utilities_FFTtensorBackward
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in scalarField_real to scalarField_fourier
!> @details Does an unweighted filtered FFT transform from real to complex.
!> @details Does an unweighted filtered FFT transform from real to complex
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarForward()
use mesh, only: &
@ -466,7 +494,7 @@ subroutine utilities_FFTscalarForward()
!--------------------------------------------------------------------------------------------------
! applying filter
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
scalarField_fourier(i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* &
scalarField_fourier(i,j,k) = utilities_getFilter(xi2nd(1:3,i,j,k))* &
scalarField_fourier(i,j,k)
enddo; enddo; enddo
@ -480,7 +508,6 @@ subroutine utilities_FFTscalarBackward()
implicit none
call fftw_mpi_execute_dft_c2r(planScalarBack,scalarField_fourier,scalarField_real)
scalarField_real = scalarField_real * wgt ! normalize the result by number of elements
end subroutine utilities_FFTscalarBackward
@ -497,12 +524,14 @@ subroutine utilities_FFTvectorForward()
implicit none
integer(pInt) :: i, j, k
!--------------------------------------------------------------------------------------------------
! doing the vector FFT
call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier)
!--------------------------------------------------------------------------------------------------
! applying filter
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
vectorField_fourier(1:3,i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* &
vectorField_fourier(1:3,i,j,k) = utilities_getFilter(xi2nd(1:3,i,j,k))* &
vectorField_fourier(1:3,i,j,k)
enddo; enddo; enddo
@ -516,7 +545,6 @@ subroutine utilities_FFTvectorBackward()
implicit none
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
vectorField_real = vectorField_real * wgt ! normalize the result by number of elements
end subroutine utilities_FFTvectorBackward
@ -546,11 +574,10 @@ subroutine utilities_inverseLaplace()
endif
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red
k_s = xi(1:3,i,j,k)*scaledGeomSize
if (any(k_s /= 0_pInt)) tensorField_fourier(1:3,1:3,i,j,k-grid3Offset) = &
k_s = xi2nd(1:3,i,j,k)*scaledGeomSize
if (any(int(k_s,pInt) /= 0_pInt)) tensorField_fourier(1:3,1:3,i,j,k-grid3Offset) = &
tensorField_fourier(1:3,1:3,i,j,k-grid3Offset)/ &
cmplx(-sum((2.0_pReal*PI*k_s/geomSize)* &
(2.0_pReal*PI*k_s/geomSize)),0.0_pReal,pReal)
cmplx(-sum((2.0_pReal*PI*k_s/geomSize)**2.0_pReal),0.0_pReal,pReal)
enddo; enddo; enddo
if (grid3Offset == 0_pInt) &
@ -594,7 +621,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red
if(any([i,j,k+grid3Offset] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
xiDyad(l,m) = xi1st(l, i,j,k)*xi1st(m, i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,1:3,m,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
@ -643,7 +670,7 @@ subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT)
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation
do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red
k_s = xi(1:3,i,j,k)*scaledGeomSize
k_s = xi2nd(1:3,i,j,k)*scaledGeomSize
GreenOp_hat = 1.0_pReal/ &
(mobility_ref + deltaT*sum((2.0_pReal*PI*k_s/geomSize)* &
math_mul33x3(D_ref,(2.0_pReal*PI*k_s/geomSize)))) !< GreenOp_hat = iK^{T} * D_ref * iK, K is frequency
@ -682,19 +709,19 @@ real(pReal) function utilities_divergenceRMS()
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(math_mul33x3_complex(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
xi1st(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(math_mul33x3_complex(tensorField_fourier(1:3,1:3,i,j,k),&
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
xi1st(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
enddo
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
+ sum( real(math_mul33x3_complex(tensorField_fourier(1:3,1:3,1 ,j,k), &
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) &
xi1st(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) &
+ sum(aimag(math_mul33x3_complex(tensorField_fourier(1:3,1:3,1 ,j,k), &
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) &
xi1st(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) &
+ sum( real(math_mul33x3_complex(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
xi(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal) &
xi1st(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal) &
+ sum(aimag(math_mul33x3_complex(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
xi(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal)
xi1st(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal)
enddo; enddo
if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
@ -732,33 +759,33 @@ real(pReal) function utilities_curlRMS()
do k = 1_pInt, grid3; do j = 1_pInt, grid(2);
do i = 2_pInt, grid1Red - 1_pInt
do l = 1_pInt, 3_pInt
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi(2,i,j,k)&
-tensorField_fourier(l,2,i,j,k)*xi(3,i,j,k))*TWOPIIMG
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi(3,i,j,k)&
-tensorField_fourier(l,3,i,j,k)*xi(1,i,j,k))*TWOPIIMG
curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi(1,i,j,k)&
-tensorField_fourier(l,1,i,j,k)*xi(2,i,j,k))*TWOPIIMG
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)&
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k))*TWOPIIMG
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)&
-tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k))*TWOPIIMG
curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)&
-tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k))*TWOPIIMG
enddo
utilities_curlRMS = utilities_curlRMS + &
2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! Has somewhere a conj. complex counterpart. Therefore count it twice.
enddo
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi(2,1,j,k)&
-tensorField_fourier(l,2,1,j,k)*xi(3,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi(3,1,j,k)&
-tensorField_fourier(l,3,1,j,k)*xi(1,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi(1,1,j,k)&
-tensorField_fourier(l,1,1,j,k)*xi(2,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)&
-tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)&
-tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)&
-tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k))*TWOPIIMG
enddo
utilities_curlRMS = utilities_curlRMS + &
sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi(2,grid1Red,j,k)&
-tensorField_fourier(l,2,grid1Red,j,k)*xi(3,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi(3,grid1Red,j,k)&
-tensorField_fourier(l,3,grid1Red,j,k)*xi(1,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi(1,grid1Red,j,k)&
-tensorField_fourier(l,1,grid1Red,j,k)*xi(2,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)&
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)&
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)&
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k))*TWOPIIMG
enddo
utilities_curlRMS = utilities_curlRMS + &
sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
@ -890,7 +917,7 @@ subroutine utilities_fourierScalarGradient()
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)* &
cmplx(0.0_pReal,2.0_pReal*PI*xi(1:3,i,j,k)* &
cmplx(0.0_pReal,2.0_pReal*PI*xi1st(1:3,i,j,k)* &
scaledGeomSize/geomSize,pReal)
enddo; enddo; enddo
end subroutine utilities_fourierScalarGradient
@ -916,11 +943,12 @@ subroutine utilities_fourierVectorDivergence()
scalarField_fourier(i,j,k) = &
scalarField_fourier(i,j,k) + &
vectorField_fourier(m,i,j,k)* &
cmplx(0.0_pReal,2.0_pReal*PI*xi(m,i,j,k)*scaledGeomSize(m)/geomSize(m),pReal)
cmplx(0.0_pReal,2.0_pReal*PI*xi1st(m,i,j,k)*scaledGeomSize(m)/geomSize(m),pReal)
enddo
enddo; enddo; enddo
end subroutine utilities_fourierVectorDivergence
!--------------------------------------------------------------------------------------------------
!> @brief calculates constitutive response
!--------------------------------------------------------------------------------------------------
@ -1127,8 +1155,6 @@ end function utilities_forwardField
!> @brief calculates filter for fourier convolution depending on type given in numerics.config
!--------------------------------------------------------------------------------------------------
complex(pReal) pure function utilities_getFilter(k)
use numerics, only: &
spectral_filter
use math, only: &
PI
use mesh, only: &
@ -1137,50 +1163,19 @@ complex(pReal) pure function utilities_getFilter(k)
implicit none
real(pReal),intent(in), dimension(3) :: k !< indices of frequency
select case (spectral_filter_ID)
case (FILTER_NONE_ID) ! default, no weighting
utilities_getFilter = (1.0_pReal,0.0_pReal)
select case (spectral_filter)
case ('none') ! default, no weighting
case ('cosine') ! cosine curve with 1 for avg and zero for highest freq
case (FILTER_COSINE_ID) ! cosine curve with 1 for avg and zero for highest freq
utilities_getFilter = cmplx(product(1.0_pReal + cos(PI*k*scaledGeomSize/grid))/8.0_pReal,&
0.0_pReal)
case ('gradient') ! gradient, might need grid scaling as for cosine filter
utilities_getFilter = cmplx(1.0_pReal/(1.0_pReal + (k(1)*k(1) + k(2)*k(2) + k(3)*k(3))),&
0.0_pReal)
case (FILTER_GRADIENT_ID) ! gradient, might need grid scaling as for cosine filter
utilities_getFilter = cmplx(1.0_pReal/(1.0_pReal + sum(k**2)),0.0_pReal)
case default
utilities_getFilter = (0.0_pReal,0.0_pReal)
end select
if (grid(1) /= 1_pInt .and. k(1) == real(grid1Red - 1_pInt, pReal)/scaledGeomSize(1)) &
utilities_getFilter = (0.0_pReal,0.0_pReal) ! do not delete the whole slice in case of 2D calculation
if (grid(2) /= 1_pInt .and. k(2) == real(grid(2)/2_pInt, pReal)/scaledGeomSize(2)) &
utilities_getFilter = (0.0_pReal,0.0_pReal) ! do not delete the whole slice in case of 2D calculation
if (grid(2) /= 1_pInt .and. &
k(2) == real(grid(2)/2_pInt + mod(grid(2),2_pInt), pReal)/scaledGeomSize(2)) &
utilities_getFilter = (0.0_pReal,0.0_pReal) ! do not delete the whole slice in case of 2D calculation
if (grid(3) /= 1_pInt .and. k(3) == real(grid(3)/2_pInt, pReal)/scaledGeomSize(3)) &
utilities_getFilter = (0.0_pReal,0.0_pReal) ! do not delete the whole slice in case of 2D calculation
if (grid(3) /= 1_pInt .and. &
k(3) == real(grid(3)/2_pInt + mod(grid(3),2_pInt), pReal)/scaledGeomSize(3)) &
utilities_getFilter = (0.0_pReal,0.0_pReal) ! do not delete the whole slice in case of 2D calculation
end function utilities_getFilter
!--------------------------------------------------------------------------------------------------
!> @brief cleans up
!--------------------------------------------------------------------------------------------------
subroutine utilities_destroy()
use math
implicit none
call fftw_destroy_plan(planTensorForth)
call fftw_destroy_plan(planTensorBack)
call fftw_destroy_plan(planVectorForth)
call fftw_destroy_plan(planVectorBack)
call fftw_destroy_plan(planScalarForth)
call fftw_destroy_plan(planScalarBack)
end subroutine utilities_destroy
end function
!--------------------------------------------------------------------------------------------------
@ -1226,11 +1221,11 @@ subroutine utilities_updateIPcoords(F)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt,3_pInt
vectorField_fourier(m,i,j,k) = sum(tensorField_fourier(m,1:3,i,j,k)*&
cmplx(0.0_pReal,xi(1:3,i,j,k)*scaledGeomSize*integrator,pReal))
cmplx(0.0_pReal,xi2nd(1:3,i,j,k)*scaledGeomSize*integrator,pReal))
enddo
if (any(abs(xi(1:3,i,j,k)) > tiny(0.0_pReal))) &
if (any(abs(xi2nd(1:3,i,j,k)) > tiny(0.0_pReal))) &
vectorField_fourier(1:3,i,j,k) = &
vectorField_fourier(1:3,i,j,k)/cmplx(-sum(xi(1:3,i,j,k)*scaledGeomSize*xi(1:3,i,j,k)* &
vectorField_fourier(1:3,i,j,k)/cmplx(-sum(xi2nd(1:3,i,j,k)*scaledGeomSize*xi2nd(1:3,i,j,k)* &
scaledGeomSize),0.0_pReal,pReal)
enddo; enddo; enddo
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
@ -1251,4 +1246,20 @@ subroutine utilities_updateIPcoords(F)
end subroutine utilities_updateIPcoords
!--------------------------------------------------------------------------------------------------
!> @brief cleans up
!--------------------------------------------------------------------------------------------------
subroutine utilities_destroy()
implicit none
call fftw_destroy_plan(planTensorForth)
call fftw_destroy_plan(planTensorBack)
call fftw_destroy_plan(planVectorForth)
call fftw_destroy_plan(planVectorBack)
call fftw_destroy_plan(planScalarForth)
call fftw_destroy_plan(planScalarBack)
end subroutine utilities_destroy
end module DAMASK_spectral_utilities

View File

@ -23,10 +23,8 @@ module debug
debug_MAXGENERAL = debug_LEVELEXTENSIVE ! must be set to the last bitcode used by (potentially) all debug types
integer(pInt), parameter, public :: &
debug_SPECTRALRESTART = debug_MAXGENERAL*2_pInt**1_pInt, &
debug_SPECTRALFFTW = debug_MAXGENERAL*2_pInt**2_pInt, &
debug_SPECTRALDIVERGENCE = debug_MAXGENERAL*2_pInt**3_pInt, &
debug_SPECTRALROTATION = debug_MAXGENERAL*2_pInt**4_pInt, &
debug_SPECTRALPETSC = debug_MAXGENERAL*2_pInt**5_pInt
debug_SPECTRALROTATION = debug_MAXGENERAL*2_pInt**2_pInt, &
debug_SPECTRALPETSC = debug_MAXGENERAL*2_pInt**3_pInt
integer(pInt), parameter, public :: &
debug_DEBUG = 1_pInt, &