hide imported modules in autocompletion
This commit is contained in:
parent
18dfc9e54d
commit
8626f6c047
|
@ -3,8 +3,8 @@
|
||||||
from scipy import spatial as _spatial
|
from scipy import spatial as _spatial
|
||||||
import numpy as _np
|
import numpy as _np
|
||||||
|
|
||||||
from . import util
|
from . import util as _util
|
||||||
from . import grid_filters
|
from . import grid_filters as _grid_filters
|
||||||
|
|
||||||
|
|
||||||
def from_random(size,N_seeds,cells=None,rng_seed=None):
|
def from_random(size,N_seeds,cells=None,rng_seed=None):
|
||||||
|
@ -34,7 +34,7 @@ def from_random(size,N_seeds,cells=None,rng_seed=None):
|
||||||
if cells is None:
|
if cells is None:
|
||||||
coords = rng.random((N_seeds,3)) * size
|
coords = rng.random((N_seeds,3)) * size
|
||||||
else:
|
else:
|
||||||
grid_coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
|
grid_coords = _grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
|
||||||
coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \
|
coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \
|
||||||
+ _np.broadcast_to(size/cells,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving cells
|
+ _np.broadcast_to(size/cells,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving cells
|
||||||
|
|
||||||
|
@ -73,7 +73,7 @@ def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=
|
||||||
|
|
||||||
s = 1
|
s = 1
|
||||||
i = 0
|
i = 0
|
||||||
progress = util._ProgressBar(N_seeds+1,'',50)
|
progress = _util._ProgressBar(N_seeds+1,'',50)
|
||||||
while s < N_seeds:
|
while s < N_seeds:
|
||||||
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
|
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
|
||||||
tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \
|
tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \
|
||||||
|
@ -120,7 +120,7 @@ def from_grid(grid,selection=None,invert=False,average=False,periodic=True):
|
||||||
material = grid.material.reshape((-1,1),order='F')
|
material = grid.material.reshape((-1,1),order='F')
|
||||||
mask = _np.full(grid.cells.prod(),True,dtype=bool) if selection is None else \
|
mask = _np.full(grid.cells.prod(),True,dtype=bool) if selection is None else \
|
||||||
_np.isin(material,selection,invert=invert).flatten()
|
_np.isin(material,selection,invert=invert).flatten()
|
||||||
coords = grid_filters.coordinates0_point(grid.cells,grid.size).reshape(-1,3,order='F')
|
coords = _grid_filters.coordinates0_point(grid.cells,grid.size).reshape(-1,3,order='F')
|
||||||
|
|
||||||
if not average:
|
if not average:
|
||||||
return (coords[mask],material[mask])
|
return (coords[mask],material[mask])
|
||||||
|
|
Loading…
Reference in New Issue