homogenization_RGC.f90: adding comments to improve clarity

This commit is contained in:
Denny Tjahjanto 2009-08-12 14:13:20 +00:00
parent 2aae7b7574
commit 86211bf0ce
1 changed files with 128 additions and 155 deletions

View File

@ -147,7 +147,7 @@ function homogenization_RGC_stateInit(myInstance)
integer(pInt), intent(in) :: myInstance
real(pReal), dimension(homogenization_RGC_sizeState(myInstance)) :: homogenization_RGC_stateInit
!* Open a debugging file
!* Open a debugging file << not used at the moment >>
! open(1978,file='homogenization_RGC_debugging.out')
homogenization_RGC_stateInit = 0.0_pReal
@ -188,7 +188,6 @@ subroutine homogenization_RGC_partitionDeformation(&
integer(pInt), parameter :: nFace = 6
homID = homogenization_typeInstance(mesh_element(3,el))
F = 0.0_pReal
!* Debugging the overall deformation gradient
! if (ip == 1 .and. el == 1) then
@ -197,7 +196,8 @@ subroutine homogenization_RGC_partitionDeformation(&
! write(1978,'(x,3(e10.4,x))')(avgF(i,j), j = 1,3)
! enddo
! endif
!*
!* Compute the deformation gradient of individual grains due to relaxations
do iGrain = 1,homogenization_Ngrains(mesh_element(3,el))
call homogenization_RGC_grain1to3(iGrain3,iGrain,homID)
do iFace = 1,nFace
@ -208,18 +208,11 @@ subroutine homogenization_RGC_partitionDeformation(&
! write(1978,'(x,a32,x,i3)')'Relaxation vector of interface: ',iFace
! write(1978,'(x,3(e10.4,x))')(aVect(j), j = 1,3)
! endif
!*
call homogenization_RGC_interfaceNormal(nVect,intFace)
!* Debugging the grain relaxation vectors
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a32,x,i3)')'Interface normal of interface: ',iFace
! write(1978,'(x,3(e10.4,x))')(nVect(j), j = 1,3)
! endif
!*
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! Compute the deformation relaxation
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! effective relaxations
enddo
F(:,:,iGrain) = F(:,:,iGrain) + avgF(:,:) ! Compute the relaxed deformation
F(:,:,iGrain) = F(:,:,iGrain) + avgF(:,:) ! relaxed deformation gradient
!* Debugging the grain deformation gradients
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a32,x,i3)')'Deformation gradient of grain: ',iGrain
@ -227,7 +220,6 @@ subroutine homogenization_RGC_partitionDeformation(&
! write(1978,'(x,3(e10.4,x))')(F(i,j,iGrain), j = 1,3)
! enddo
! endif
!*
enddo
return
@ -263,8 +255,7 @@ function homogenization_RGC_updateState(&
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P,F,F0
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF
real(pReal), dimension (3,3), intent(in) :: avgF
integer(pInt), intent(in) :: ip,el
!
integer(pInt), intent(in) :: ip,el
logical, dimension(2) :: homogenization_RGC_updateState
integer(pInt), dimension (4) :: intFaceN,intFaceP,faceID
integer(pInt), dimension (3) :: nGDim,iGr3N,iGr3P,stresLoc
@ -281,11 +272,13 @@ function homogenization_RGC_updateState(&
real(pReal), dimension(:,:), allocatable :: tract,jmatrix,jnverse,smatrix,pmatrix
real(pReal), dimension(:), allocatable :: resid,relax,p_relax,p_resid
!* Get the dimension of the cluster (grains and interfaces)
homID = homogenization_typeInstance(mesh_element(3,el))
nGDim = homogenization_RGC_Ngrains(:,homID)
nIntFaceTot = (nGDim(1)-1)*nGDim(2)*nGDim(3) + nGDim(1)*(nGDim(2)-1)*nGDim(3) &
+ nGDim(1)*nGDim(2)*(nGDim(3)-1)
!* Allocate the size of the arrays/matrices depending on the size of the cluster
allocate(resid(3*nIntFaceTot)); resid = 0.0_pReal
allocate(tract(nIntFaceTot,3)); tract = 0.0_pReal
allocate(relax(3*nIntFaceTot)); relax = state%p(1:3*nIntFaceTot)
@ -293,21 +286,17 @@ function homogenization_RGC_updateState(&
!* Stress-like penalty related to mismatch or incompatibility at interfaces
call homogenization_RGC_stressPenalty(R,NN,F,ip,el,homID)
!* Compute the residual stress at all (interior) interfaces
!* Compute the residual stress from the balance of traction at all (interior) interfaces
do iNum = 1,nIntFaceTot
call homogenization_RGC_interface1to4(faceID,iNum,homID)
!* Debugging the interface
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a20,x,i3)')'Interface ID: ',iNum
! write(1978,'(x,4(i4,x))')(faceID(j), j = 1,4)
! endif
!*
iGr3N = faceID(2:4) ! get the grain (-|N)
!* Identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4)
call homogenization_RGC_grain3to1(iGrN,iGr3N,homID)
call homogenization_RGC_getInterface(intFaceN,2*faceID(1),iGr3N)
call homogenization_RGC_interfaceNormal(normN,intFaceN) ! get the interface normal
!* Identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! get the grain (+|P)
iGr3P(faceID(1)) = iGr3N(faceID(1))+1
call homogenization_RGC_grain3to1(iGrP,iGr3P,homID)
call homogenization_RGC_getInterface(intFaceP,2*faceID(1)-1,iGr3P)
call homogenization_RGC_interfaceNormal(normP,intFaceP) ! get the interface normal
@ -318,12 +307,11 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,3(e10.4,x),x,3(e10.4,x))')(P(i,j,iGrN(iNum)), j = 1,3),(P(i,j,iGrP(iNum)), j = 1,3)
! enddo
! endif
!*
do i = 1,3 ! compute the traction at interface
do i = 1,3 ! compute the traction balance at the interface
do j = 1,3
tract(iNum,i) = tract(iNum,i) + (P(i,j,iGrP) + R(i,j,iGrP))*normP(j) &
+ (P(i,j,iGrN) + R(i,j,iGrN))*normN(j)
resid(i+3*(iNum-1)) = tract(iNum,i) ! copy traction into 1D residual array
resid(i+3*(iNum-1)) = tract(iNum,i) ! map into 1D residual array
enddo
enddo
!* Debugging the residual stress
@ -331,14 +319,14 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,a30,x,i3)')'Traction difference: ',iNum
! write(1978,'(x,3(e10.4,x))')(tract(iNum,j), j = 1,3)
! endif
!*
enddo
!* Convergence check for residual stress
!* Convergence check for stress residual
stresMax = maxval(P)
stresLoc = maxloc(P)
residMax = maxval(tract)
residLoc = maxloc(tract)
!* Temporary debugging statement << not used at the moment >>
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a)')' '
! write(1978,'(x,a)')'Residual check ...'
@ -346,16 +334,20 @@ function homogenization_RGC_updateState(&
! '@ grain',stresLoc(3),'in component',stresLoc(1),stresLoc(2)
! write(1978,'(x,a15,x,e10.4,x,a7,i3,x,a12,i2)')'Max residual: ',residMax, &
! '@ iface',residLoc(1),'in direction',residLoc(2)
! endif
endif
homogenization_RGC_updateState = .false.
if (residMax < relTol_RGC*stresMax .or. residMax < absTol_RGC) then ! convergence reached (done and happy)
!* If convergence reached => done and happy
if (residMax < relTol_RGC*stresMax .or. residMax < absTol_RGC) then
homogenization_RGC_updateState = .true.
! if (ip == 1 .and. el == 1) then
!* Temporary debugging statement << not used at the moment >>
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a55)')'... done and happy'
! endif
!* Updating the state for postResult: (bulk) constitutive work, penalty energy, and overall mismatch
!* Compute/update the state for postResult, i.e., ...
!* ... the (bulk) constitutive work,
constitutiveWork = state%p(3*nIntFaceTot+1)
state%p(3*nIntFaceTot+1) = constitutiveWork
!* ... the penalty energy, and
penaltyEnergy = state%p(3*nIntFaceTot+2)
do iGrain = 1,homogenization_Ngrains(mesh_element(3,el))
do i = 1,3
@ -365,68 +357,57 @@ function homogenization_RGC_updateState(&
enddo
enddo
enddo
state%p(3*nIntFaceTot+1) = constitutiveWork ! the overall constitutive work
state%p(3*nIntFaceTot+2) = penaltyEnergy ! the overall penalty energy
state%p(3*nIntFaceTot+3) = sum(NN) ! the overall magnitude of mismatch
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a25,x,e10.4)')'constitutivework: ',state%p(3*nIntFaceTot+1)
! write(1978,'(x,a25,x,e10.4)')'penaltyenergy: ',state%p(3*nIntFaceTot+2)
! write(1978,'(x,a25,x,e10.4)')'magnitudemismatch: ',state%p(3*nIntFaceTot+3)
! endif
!*
state%p(3*nIntFaceTot+2) = penaltyEnergy
!* ... the overall mismatch
state%p(3*nIntFaceTot+3) = sum(NN)
deallocate(tract,resid,relax)
return
elseif (residMax > relMax_RGC*stresMax .or. residMax > absMax_RGC) then ! residual blows-up (done but unhappy)
return
!* If residual blows-up => done but unhappy
elseif (residMax > relMax_RGC*stresMax .or. residMax > absMax_RGC) then
homogenization_RGC_updateState(1) = .true.
!* Temporary debugging statement << not used at the moment >>
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a55)')'... done but not happy'
! endif
deallocate(tract,resid,relax)
return
!* Otherwise, proceed with computing the state update
else
!* Temporary debugging statement << not used at the moment >>
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a55)')'... not done'
! endif
endif
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a55)')'... not done'
! endif
!* Construct the Jacobian matrix of stress from the grains tangent
!* Construct the Jacobian matrix of the constitutive stress tangent from dPdF
allocate(smatrix(3*nIntFaceTot,3*nIntFaceTot)); smatrix = 0.0_pReal
!* Debugging the grains tangent
! if (ip == 1 .and. el == 1) then
! do i1 = 1,nGDim(1)*nGDim(2)*nGDim(3)
! write(1978,'(x,a20,x,i3)')'Tangent of grain: ',i1
! do i = 1,3
! do k = 1,3
! write(1978,'(x,9(e10.4,x))')((dPdF(i,j,k,l,i1), j = 1,3), l = 1,3)
! enddo
! enddo
! enddo
! endif
!*
do iNum = 1,nIntFaceTot
call homogenization_RGC_interface1to4(faceID,iNum,homID)
iGr3N = faceID(2:4) ! get the grain (-|N)
!* Identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4)
call homogenization_RGC_grain3to1(iGrN,iGr3N,homID)
call homogenization_RGC_getInterface(intFaceN,2*faceID(1),iGr3N)
call homogenization_RGC_interfaceNormal(normN,intFaceN) ! get the interface normal
do iFace = 1,nFace
call homogenization_RGC_getInterface(intFaceN,iFace,iGr3N)
call homogenization_RGC_interfaceNormal(mornN,intFaceN) ! get another interface normal
call homogenization_RGC_interfaceNormal(mornN,intFaceN) ! get influencing interfaces normal
call homogenization_RGC_interface4to1(iMun,intFaceN,homID)
if (iMun .gt. 0) then ! collect the tangent
if (iMun .gt. 0) then ! get the tangent
forall(i=1:3,j=1:3,k=1:3,l=1:3) &
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) + dPdF(i,k,j,l,iGrN)*normN(k)*mornN(l)
endif
enddo
!* Identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! get the grain (+|P)
iGr3P(faceID(1)) = iGr3N(faceID(1))+1
call homogenization_RGC_grain3to1(iGrP,iGr3P,homID)
call homogenization_RGC_getInterface(intFaceP,2*faceID(1)-1,iGr3P)
call homogenization_RGC_interfaceNormal(normP,intFaceP) ! get the interface normal
do iFace = 1,nFace
call homogenization_RGC_getInterface(intFaceP,iFace,iGr3P)
call homogenization_RGC_interfaceNormal(mornP,intFaceP) ! get another interface normal
call homogenization_RGC_interfaceNormal(mornP,intFaceP) ! get influencing interfaces normal
call homogenization_RGC_interface4to1(iMun,intFaceP,homID)
if (iMun .gt. 0) then ! collect the tangent
if (iMun .gt. 0) then ! get the tangent
forall(i=1:3,j=1:3,k=1:3,l=1:3) &
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) + dPdF(i,k,j,l,iGrP)*normP(k)*mornP(l)
endif
@ -439,15 +420,14 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,400(e10.4,x))')(smatrix(i,j), j = 1,3*nIntFaceTot)
! enddo
! endif
!*
!* Compute the Jacobian matrix of the stress-like penalty using perturbation technique
!* Compute the Jacobian of the stress-like penalty (penalty tangent) using perturbation technique
allocate(pmatrix(3*nIntFaceTot,3*nIntFaceTot)); pmatrix = 0.0_pReal
allocate(p_relax(3*nIntFaceTot)); p_relax = 0.0_pReal
allocate(p_resid(3*nIntFaceTot)); p_resid = 0.0_pReal
do ipert = 1,3*nIntFaceTot
p_relax = relax
p_relax(ipert) = relax(ipert) + pPert_RGC
p_relax(ipert) = relax(ipert) + pPert_RGC ! perturb the relaxation vector
state%p(1:3*nIntFaceTot) = p_relax
!* Debugging the perturbed state
! if (ip == 1 .and. el == 1) then
@ -456,22 +436,24 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,2(e10.4,x))')relax(i),pelax(i)
! enddo
! endif
!*
call homogenization_RGC_partitionDeformation(pF,F0,avgF,state,ip,el)
call homogenization_RGC_stressPenalty(pR,pNN,pF,ip,el,homID)
p_resid = 0.0_pReal
do iNum = 1,nIntFaceTot
call homogenization_RGC_interface1to4(faceID,iNum,homID)
iGr3N = faceID(2:4) ! get the grain (-|N)
!* Identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4)
call homogenization_RGC_grain3to1(iGrN,iGr3N,homID)
call homogenization_RGC_getInterface(intFaceN,2*faceID(1),iGr3N)
call homogenization_RGC_interfaceNormal(normN,intFaceN) ! get the interface normal
call homogenization_RGC_interfaceNormal(normN,intFaceN) ! get the corresponding normal
!* Identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! get the grain (+|P)
iGr3P(faceID(1)) = iGr3N(faceID(1))+1
call homogenization_RGC_grain3to1(iGrP,iGr3P,homID)
call homogenization_RGC_getInterface(intFaceP,2*faceID(1)-1,iGr3P)
call homogenization_RGC_interfaceNormal(normP,intFaceP) ! get the interface normal
do i = 1,3 ! compute the traction at interface
call homogenization_RGC_interfaceNormal(normP,intFaceP) ! get the corresponding normal
!* Compute the perturbed traction at interface
do i = 1,3
do j = 1,3
p_resid(i+3*(iNum-1)) = p_resid(i+3*(iNum-1)) + (pR(i,j,iGrP) - R(i,j,iGrP))*normP(j) &
+ (pR(i,j,iGrN) - R(i,j,iGrN))*normN(j)
@ -487,9 +469,8 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,400(e10.4,x))')(pmatrix(i,j), j = 1,3*nIntFaceTot)
! enddo
! endif
!*
!* Calculate the update for the state variable
!* The overall Jacobian matrix (due to constitutive and penalty tangents)
allocate(jmatrix(3*nIntFaceTot,3*nIntFaceTot)); jmatrix = smatrix + pmatrix
allocate(jnverse(3*nIntFaceTot,3*nIntFaceTot)); jnverse = 0.0_pReal
call math_invert(3*nIntFaceTot,jmatrix,jnverse,ival,error)
@ -500,7 +481,8 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,400(e10.4,x))')(jnverse(i,j), j = 1,3*nIntFaceTot)
! enddo
! endif
!*
!* Calculate the state update (i.e., new relaxation vectors)
forall(i=1:3*nIntFaceTot,j=1:3*nIntFaceTot) relax(i) = relax(i) - jnverse(i,j)*resid(j)
state%p(1:3*nIntFaceTot) = relax
!* Debugging the return state
@ -510,7 +492,6 @@ function homogenization_RGC_updateState(&
! write(1978,'(x,2(e10.4,x))')state%p(i)
! enddo
! endif
!*
deallocate(tract,resid,jmatrix,jnverse,relax,pmatrix,smatrix,p_relax,p_resid)
return
@ -545,7 +526,7 @@ subroutine homogenization_RGC_averageStressAndItsTangent(&
logical homogenization_RGC_stateUpdate
integer(pInt) homID, i, Ngrains
! homID = homogenization_typeInstance(mesh_element(3,el))
! homID = homogenization_typeInstance(mesh_element(3,el)) ! <<not required at the moment>>
Ngrains = homogenization_Ngrains(mesh_element(3,el))
avgP = sum(P,3)/dble(Ngrains)
dAvgPdAvgF = sum(dPdF,5)/dble(Ngrains)
@ -574,7 +555,7 @@ function homogenization_RGC_averageTemperature(&
real(pReal) homogenization_RGC_averageTemperature
integer(pInt) homID, i, Ngrains
! homID = homogenization_typeInstance(mesh_element(3,el))
! homID = homogenization_typeInstance(mesh_element(3,el)) ! <<not required at the moment>>
Ngrains = homogenization_Ngrains(mesh_element(3,el))
homogenization_RGC_averageTemperature = sum(Temperature(1:Ngrains))/dble(Ngrains)
@ -653,15 +634,14 @@ subroutine homogenization_RGC_stressPenalty(&
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: rPen
real(pReal), dimension (homogenization_maxNgrains), intent(out) :: nMis
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: fDef
integer(pInt), intent(in) :: ip,el
!
integer(pInt), intent(in) :: ip,el
integer(pInt), dimension (4) :: intFace
integer(pInt), dimension (3) :: iGrain3,iGNghb3,nGDim
real(pReal), dimension (3,3) :: gDef,nDef
real(pReal), dimension (3) :: nVect
integer(pInt) homID,iGrain,iGNghb,iFace,i,j,k,l
real(pReal) muGrain,muGNghb,nDefNorm
!
!
integer(pInt), parameter :: nFace = 6
real(pReal), parameter :: nDefToler = 1.0e-10
@ -669,49 +649,40 @@ subroutine homogenization_RGC_stressPenalty(&
rPen = 0.0_pReal
nMis = 0.0_pReal
!* Compute the mismatch tensor at six interfaces of each grain
do iGrain = 1,homogenization_Ngrains(mesh_element(3,el))
call homogenization_RGC_equivalentShearMod(muGrain,constitutive_homogenizedC(iGrain,ip,el))
call homogenization_RGC_grain1to3(iGrain3,iGrain,homID)
!* Debugging the center grain
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a20,x,i3)')'Center grain: ',iGrain
! write(1978,'(x,a10,x,3(i3,x))')'at pos: ',(iGrain3(i), i = 1,3)
! endif
!*
!* Compute the mismatch tensor at all six interfaces
do iFace = 1,nFace
call homogenization_RGC_getInterface(intFace,iFace,iGrain3)
call homogenization_RGC_interfaceNormal(nVect,intFace) ! get the interface normal
iGNghb3 = iGrain3 !
iGNghb3 = iGrain3 ! identify the grain neighbor
iGNghb3(abs(intFace(1))) = iGNghb3(abs(intFace(1))) + int(dble(intFace(1))/dble(abs(intFace(1))))
if (iGNghb3(1) < 1) iGNghb3(1) = nGDim(1) ! grain periodicity
!* The grain periodicity along e1
if (iGNghb3(1) < 1) iGNghb3(1) = nGDim(1)
if (iGNghb3(1) > nGDim(1)) iGNghb3(1) = 1
!* The grain periodicity along e2
if (iGNghb3(2) < 1) iGNghb3(2) = nGDim(2)
if (iGNghb3(2) > nGDim(2)) iGNghb3(2) = 1
!* The grain periodicity along e3
if (iGNghb3(3) < 1) iGNghb3(3) = nGDim(3)
if (iGNghb3(3) > nGDim(3)) iGNghb3(3) = 1
call homogenization_RGC_grain3to1(iGNghb,iGNghb3,homID) ! get the neighbor
!* Debugging the neigbor grains
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a10,i2,x,a20,x,i3)')'To face',intFace(1),'neighbor grain: ',iGNghb
! write(1978,'(x,a10,x,3(i3,x))')'at pos: ',(iGNghb3(i), i = 1,3)
! endif
!*
call homogenization_RGC_grain3to1(iGNghb,iGNghb3,homID) ! get the grain neighbor
call homogenization_RGC_equivalentShearMod(muGNghb,constitutive_homogenizedC(iGNghb,ip,el))
gDef = 0.5_pReal*(fDef(:,:,iGNghb) - fDef(:,:,iGrain)) ! difference with the neighbor
gDef = 0.5_pReal*(fDef(:,:,iGNghb) - fDef(:,:,iGrain)) ! difference in F with the neighbor
nDefNorm = 0.0_pReal
nDef = 0.0_pReal
do i = 1,3
do j = 1,3
do k = 1,3
do l = 1,3
nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_civita(j,k,l) ! interface mismatch tensor
nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_civita(j,k,l) ! compute the interface mismatch tensor
enddo
enddo
nDefNorm = nDefNorm + nDef(i,j)*nDef(i,j)
enddo
enddo
nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! zero mismatch approximation if too small
nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! zero mismatch approximation if too small
!* Debugging the mismatch tensor
! if (ip == 1 .and. el == 1) then
! write(1978,'(x,a20,i2,x,a20,x,i3)')'Mismatch to face: ',intFace(1),'neighbor grain: ',iGNghb
@ -720,7 +691,6 @@ subroutine homogenization_RGC_stressPenalty(&
! enddo
! write(1978,'(x,a20,e10.4))')'with magnitude: ',nDefNorm
! endif
!*
!* Compute the stress-like penalty from all six interfaces
do i = 1,3
do j = 1,3
@ -734,7 +704,8 @@ subroutine homogenization_RGC_stressPenalty(&
enddo
enddo
enddo
nMis(iGrain) = nMis(iGrain) + nDefNorm ! total amount of mismatch of grain
!* Total amount of mismatch experienced by the grain (at all six interfaces)
nMis(iGrain) = nMis(iGrain) + nDefNorm
enddo
!* Debugging the stress-like penalty
! if (ip == 1 .and. el == 1) then
@ -743,7 +714,6 @@ subroutine homogenization_RGC_stressPenalty(&
! write(1978,'(x,3(e10.4,x))')(rPen(i,j,iGrain), j = 1,3)
! enddo
! endif
!*
enddo
return
@ -751,8 +721,7 @@ subroutine homogenization_RGC_stressPenalty(&
endsubroutine
!********************************************************************
! subroutine to compute the equivalent shear modulus from anisotropic
! elasticity tensor
! subroutine to compute the equivalent shear modulus from the elasticity tensor
!********************************************************************
subroutine homogenization_RGC_equivalentShearMod(&
shearMod, & ! equivalent (isotropic) shear modulus
@ -767,10 +736,10 @@ subroutine homogenization_RGC_equivalentShearMod(&
!* Definition of variables
real(pReal), dimension (6,6), intent(in) :: elasTens
real(pReal), intent(out) :: shearMod
!
real(pReal), intent(out) :: shearMod
real(pReal) cEquiv_11,cEquiv_12,cEquiv_44
!* Compute the equivalent shear modulus using Turterltaub and Suiker, JMPS (2005)
cEquiv_11 = (elasTens(1,1) + elasTens(2,2) + elasTens(3,3))/3.0_pReal
cEquiv_12 = (elasTens(1,2) + elasTens(2,3) + elasTens(3,1) + &
elasTens(1,3) + elasTens(2,1) + elasTens(3,2))/6.0_pReal
@ -782,12 +751,12 @@ subroutine homogenization_RGC_equivalentShearMod(&
endsubroutine
!********************************************************************
! subroutine to collect relaxation vectors of a grain
! subroutine to collect relaxation vectors of an interface
!********************************************************************
subroutine homogenization_RGC_relaxationVector(&
aVect, & ! relaxation vector
aVect, & ! relaxation vector of the interface
!
intFace, & ! set of interface ID in 4D array
intFace, & ! set of interface ID in 4D array (normal and position)
state, & ! set of global relaxation vectors
homID & ! homogenization ID
)
@ -800,29 +769,27 @@ subroutine homogenization_RGC_relaxationVector(&
!* Definition of variables
real(pReal), dimension (3), intent(out) :: aVect
integer(pInt), dimension (4), intent(in) :: intFace
type(p_vec), intent(in) :: state
!
type(p_vec), intent(in) :: state
integer(pInt), dimension (3) :: nGDim
integer(pInt) iNum,homID
nGDim = homogenization_RGC_Ngrains(:,homID)
!* Calculate the interface normals of grains
!* Collect the interface relaxation vector from the global state array
aVect = 0.0_pReal
call homogenization_RGC_interface4to1(iNum,intFace,homID)
if (iNum .gt. 0_pInt) aVect = state%p((3*iNum-2):(3*iNum))
nGDim = homogenization_RGC_Ngrains(:,homID)
call homogenization_RGC_interface4to1(iNum,intFace,homID) ! Get the position in global state array
if (iNum .gt. 0_pInt) aVect = state%p((3*iNum-2):(3*iNum)) ! Collect the corresponding entries
return
endsubroutine
!********************************************************************
! subroutine to collect interface normals of a grain
! subroutine to identify the normal of an interface
!********************************************************************
subroutine homogenization_RGC_interfaceNormal(&
nVect, & ! interface normal
!
intFace & ! interface ID in 4D array
intFace & ! interface ID in 4D array (normal and position)
)
use prec, only: pReal,pInt,p_vec
@ -832,10 +799,9 @@ subroutine homogenization_RGC_interfaceNormal(&
!* Definition of variables
real(pReal), dimension (3), intent(out) :: nVect
integer(pInt), dimension (4), intent(in) :: intFace
!
integer(pInt) nPos
!* Calculate the interface normals of grains
!* Get the normal of the interface, identified from the value of intFace(1)
nVect = 0.0_pReal
nPos = abs(intFace(1))
nVect(nPos) = intFace(1)/abs(intFace(1))
@ -845,10 +811,10 @@ subroutine homogenization_RGC_interfaceNormal(&
endsubroutine
!********************************************************************
! subroutine to collect relaxation vectors and their normals
! subroutine to collect six faces of a grain in 4D (normal and position)
!********************************************************************
subroutine homogenization_RGC_getInterface(&
intFace, & ! set of interface in 4D array
intFace, & ! interface ID in 4D (normal and position)
!
iFace, & ! number of faces of grain
iGrain3 & ! grain ID in 3D array
@ -860,11 +826,13 @@ subroutine homogenization_RGC_getInterface(&
integer(pInt), dimension (4), intent(out) :: intFace
integer(pInt), dimension (3), intent(in) :: iGrain3
integer(pInt), intent(in) :: iFace
!
integer(pInt) iDir
!* Direction of interface normal
iDir = (int(dble(iFace-1)/2.0_pReal)+1)*(-1_pInt)**iFace
intFace(1) = iDir
!* Identify the interface position by the direction of its normal
intFace(2:4) = iGrain3(:)
if (iDir .eq. -1_pInt) intFace(2) = intFace(2)-1
if (iDir .eq. -2_pInt) intFace(3) = intFace(3)-1
@ -875,10 +843,10 @@ subroutine homogenization_RGC_getInterface(&
endsubroutine
!********************************************************************
! subroutine to map grain ID from in 1D array to in 3D array
! subroutine to map grain ID from in 1D (array) to in 3D (position)
!********************************************************************
subroutine homogenization_RGC_grain1to3(&
grain3, & ! grain ID in 3D array
grain3, & ! grain ID in 3D array (pos.x,pos.y,pos.z)
!
grain1, & ! grain ID in 1D array
homID & ! homogenization ID
@ -890,10 +858,10 @@ subroutine homogenization_RGC_grain1to3(&
!* Definition of variables
integer(pInt), dimension (3), intent(out) :: grain3
integer(pInt), intent(in) :: grain1,homID
!
integer(pInt), intent(in) :: grain1,homID
integer(pInt), dimension (3) :: nGDim
!* Get the grain position
nGDim = homogenization_RGC_Ngrains(:,homID)
grain3(3) = int(dble(grain1-1)/dble(nGDim(1))/dble(nGDim(2)))+1
grain3(2) = mod(int(dble(grain1-1)/dble(nGDim(1))),nGDim(2))+1
@ -904,12 +872,12 @@ subroutine homogenization_RGC_grain1to3(&
endsubroutine
!********************************************************************
! subroutine to map grain ID from in 3D array to in 1D array
! subroutine to map grain ID from in 3D (position) to in 1D (array)
!********************************************************************
subroutine homogenization_RGC_grain3to1(&
grain1, & ! grain ID in 1D array
grain1, & ! grain ID in 1D array
!
grain3, & ! grain ID in 3D array
grain3, & ! grain ID in 3D array (pos.x,pos.y,pos.z)
homID & ! homogenization ID
)
@ -919,11 +887,11 @@ subroutine homogenization_RGC_grain3to1(&
!* Definition of variables
integer(pInt), dimension (3), intent(in) :: grain3
integer(pInt), intent(out) :: grain1
!
integer(pInt), intent(out) :: grain1
integer(pInt), dimension (3) :: nGDim
integer(pInt) homID
!* Get the grain ID
nGDim = homogenization_RGC_Ngrains(:,homID)
grain1 = grain3(1) + nGDim(1)*(grain3(2)-1) + nGDim(1)*nGDim(2)*(grain3(3)-1)
@ -932,12 +900,12 @@ subroutine homogenization_RGC_grain3to1(&
endsubroutine
!********************************************************************
! subroutine to map interface ID from 4D array into 1D array
! subroutine to map interface ID from 4D (normal and position) into 1D (array)
!********************************************************************
subroutine homogenization_RGC_interface4to1(&
iFace1D, & ! set of interface ID in 1D array
iFace1D, & ! interface ID in 1D array
!
iFace4D, & ! set of interface ID in 4D array
iFace4D, & ! interface ID in 4D array (n.dir,pos.x,pos.y,pos.z)
homID & ! homogenization ID
)
@ -947,22 +915,25 @@ subroutine homogenization_RGC_interface4to1(&
!* Definition of variables
integer(pInt), dimension (4), intent(in) :: iFace4D
integer(pInt), intent(out) :: iFace1D
!
integer(pInt), intent(out) :: iFace1D
integer(pInt), dimension (3) :: nGDim,nIntFace
integer(pInt) homID
nGDim = homogenization_RGC_Ngrains(:,homID)
nIntFace(1) = (nGDim(1)-1)*nGDim(2)*nGDim(3)
nIntFace(2) = nGDim(1)*(nGDim(2)-1)*nGDim(3)
nIntFace(3) = nGDim(1)*nGDim(2)*(nGDim(3)-1)
!* Get the number of interfaces, which ...
nIntFace(1) = (nGDim(1)-1)*nGDim(2)*nGDim(3) ! ... normal //e1
nIntFace(2) = nGDim(1)*(nGDim(2)-1)*nGDim(3) ! ... normal //e2
nIntFace(3) = nGDim(1)*nGDim(2)*(nGDim(3)-1) ! ... normal //e3
!* For interface with normal //e1
if (abs(iFace4D(1)) == 1_pInt) then
iFace1D = iFace4D(3) + nGDim(2)*(iFace4D(4)-1) + nGDim(2)*nGDim(3)*(iFace4D(2)-1)
if ((iFace4D(2) == 0_pInt) .or. (iFace4D(2) == nGDim(1))) iFace1D = 0_pInt
!* For interface with normal //e2
elseif (abs(iFace4D(1)) == 2_pInt) then
iFace1D = iFace4D(4) + nGDim(3)*(iFace4D(2)-1) + nGDim(3)*nGDim(1)*(iFace4D(3)-1) + nIntFace(1)
if ((iFace4D(3) == 0_pInt) .or. (iFace4D(3) == nGDim(2))) iFace1D = 0_pInt
!* For interface with normal //e3
elseif (abs(iFace4D(1)) == 3_pInt) then
iFace1D = iFace4D(2) + nGDim(1)*(iFace4D(3)-1) + nGDim(1)*nGDim(2)*(iFace4D(4)-1) + nIntFace(1) + nIntFace(2)
if ((iFace4D(4) == 0_pInt) .or. (iFace4D(4) == nGDim(3))) iFace1D = 0_pInt
@ -973,12 +944,12 @@ subroutine homogenization_RGC_interface4to1(&
endsubroutine
!********************************************************************
! subroutine to map interface ID from 4D array into 1D array
! subroutine to map interface ID from 1D (array) into 4D (normal and position)
!********************************************************************
subroutine homogenization_RGC_interface1to4(&
iFace4D, & ! set of interface ID in 4D array
iFace4D, & ! interface ID in 4D array (n.dir,pos.x,pos.y,pos.z)
!
iFace1D, & ! set of interface ID in 1D array
iFace1D, & ! interface ID in 1D array
homID & ! homogenization ID
)
@ -988,26 +959,29 @@ subroutine homogenization_RGC_interface1to4(&
!* Definition of variables
integer(pInt), dimension (4), intent(out) :: iFace4D
integer(pInt), intent(in) :: iFace1D
!
integer(pInt), intent(in) :: iFace1D
integer(pInt), dimension (3) :: nGDim,nIntFace
integer(pInt) homID
nGDim = homogenization_RGC_Ngrains(:,homID)
nIntFace(1) = (nGDim(1)-1)*nGDim(2)*nGDim(3)
nIntFace(2) = nGDim(1)*(nGDim(2)-1)*nGDim(3)
nIntFace(3) = nGDim(1)*nGDim(2)*(nGDim(3)-1)
!* Get the number of interfaces, which ...
nIntFace(1) = (nGDim(1)-1)*nGDim(2)*nGDim(3) ! ... normal //e1
nIntFace(2) = nGDim(1)*(nGDim(2)-1)*nGDim(3) ! ... normal //e2
nIntFace(3) = nGDim(1)*nGDim(2)*(nGDim(3)-1) ! ... normal //e3
!* For interface ID between 1 and nIntFace(1)
if (iFace1D > 0 .and. iFace1D <= nIntFace(1)) then
iFace4D(1) = 1
iFace4D(3) = mod((iFace1D-1),nGDim(2))+1
iFace4D(4) = mod(int(dble(iFace1D-1)/dble(nGDim(2))),nGDim(3))+1
iFace4D(2) = int(dble(iFace1D-1)/dble(nGDim(2))/dble(nGDim(3)))+1
!* For interface ID between nIntFace(1) and nIntFace(1) + nIntFace(2)
elseif (iFace1D > nIntFace(1) .and. iFace1D <= (nIntFace(2) + nIntFace(1))) then
iFace4D(1) = 2
iFace4D(4) = mod((iFace1D-nIntFace(1)-1),nGDim(3))+1
iFace4D(2) = mod(int(dble(iFace1D-nIntFace(1)-1)/dble(nGDim(3))),nGDim(1))+1
iFace4D(3) = int(dble(iFace1D-nIntFace(1)-1)/dble(nGDim(3))/dble(nGDim(1)))+1
!* For interface ID between nIntFace(1) + nIntFace(2) and nIntFace(1) + nIntFace(2) + nIntFace(3)
elseif (iFace1D > nIntFace(2) + nIntFace(1) .and. iFace1D <= (nIntFace(3) + nIntFace(2) + nIntFace(1))) then
iFace4D(1) = 3
iFace4D(2) = mod((iFace1D-nIntFace(2)-nIntFace(1)-1),nGDim(1))+1
@ -1019,5 +993,4 @@ subroutine homogenization_RGC_interface1to4(&
endsubroutine
END MODULE