Corrected the calculation of sigma_cl

This commit is contained in:
Vitesh Shah 2019-08-01 15:29:32 +02:00
parent d40e4a3800
commit 860ef2f256
1 changed files with 4 additions and 4 deletions

View File

@ -757,7 +757,7 @@ subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
v_cl, & !< climb velocity
Gamma, & !< stacking fault energy
tau, &
sigma_cl, & ! ToDo: MD: good name? It is not a resolved stress but a different projection
sigma_cl, &
b_d
real(pReal), dimension(param(instance)%sum_N_sl) :: &
dot_rho_dip_formation, &
@ -805,9 +805,9 @@ subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
if (dEq0(rho_dip_distance-rho_dip_distance_min(i))) then
dot_rho_dip_climb(i) = 0.0_pReal
else
sigma_cl = norm2(matmul(Mp,prm%n0_sl(1:3,i))) ! ToDo: MD: correct?
if (prm%SFE_0K == 0.0_pReal) then ! ToDo: MD: I'm not really sure if this is correct. Maybe Gamma(0K) = 0
! sigma_cl = norm2(matmul(Mp,prm%n0_sl(1:3,i))) ! ToDo: MD: correct?
sigma_cl = DOT_PRODUCT(prm%n0_sl(1:3,i),matmul(Mp,prm%n0_sl(1:3,i)))
if (prm%SFE_0K == 0.0_pReal) then
b_d = 24.0_pReal*PI*(1.0_pReal - prm%nu)/(2.0_pReal + prm%nu)* Gamma/(prm%mu*prm%b_sl(i))
else
b_d = 1.0_pReal