Merge branch 'rename-lattice-to-crystal' into 'development'

consistent naming with Python module

See merge request damask/DAMASK!777
This commit is contained in:
Sharan Roongta 2023-07-16 09:20:28 +00:00
commit 85ba5414c0
18 changed files with 227 additions and 227 deletions

View File

@ -1,7 +1,7 @@
# special flags for some files # special flags for some files
if(CMAKE_Fortran_COMPILER_ID STREQUAL "GNU") if(CMAKE_Fortran_COMPILER_ID STREQUAL "GNU")
# long lines for interaction matrix # long lines for interaction matrix
set_source_files_properties("lattice.f90" PROPERTIES COMPILE_FLAGS "-ffree-line-length-240") set_source_files_properties("crystal.f90" PROPERTIES COMPILE_FLAGS "-ffree-line-length-240")
set_source_files_properties("parallelization.f90" PROPERTIES COMPILE_FLAGS "-ffree-line-length-none") set_source_files_properties("parallelization.f90" PROPERTIES COMPILE_FLAGS "-ffree-line-length-none")
endif() endif()

View File

@ -476,7 +476,7 @@ subroutine IO_error(error_ID,ext_msg,label1,ID1,label2,ID2)
case (131) case (131)
msg = 'hex lattice structure with invalid c/a ratio' msg = 'hex lattice structure with invalid c/a ratio'
case (132) case (132)
msg = 'trans_lattice_structure not possible' msg = 'invalid parameters for transformation'
case (134) case (134)
msg = 'negative lattice parameter' msg = 'negative lattice parameter'
case (135) case (135)

View File

@ -155,7 +155,7 @@ end module DAMASK_interface
#include "../rotations.f90" #include "../rotations.f90"
#include "../polynomials.f90" #include "../polynomials.f90"
#include "../tables.f90" #include "../tables.f90"
#include "../lattice.f90" #include "../crystal.f90"
#include "element.f90" #include "element.f90"
#include "../geometry_plastic_nonlocal.f90" #include "../geometry_plastic_nonlocal.f90"
#include "../discretization.f90" #include "../discretization.f90"

View File

@ -16,7 +16,7 @@ module materialpoint_Marc
use rotations use rotations
use polynomials use polynomials
use tables use tables
use lattice use crystal
use material use material
use phase use phase
use homogenization use homogenization
@ -75,7 +75,7 @@ subroutine materialpoint_initAll()
call rotations_init() call rotations_init()
call polynomials_init() call polynomials_init()
call tables_init() call tables_init()
call lattice_init() call crystal_init()
call discretization_Marc_init() call discretization_Marc_init()
call material_init(.false.) call material_init(.false.)
call phase_init() call phase_init()

View File

@ -3,10 +3,10 @@
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief contains lattice definitions including Schmid matrices for slip, twin, trans, !> @brief Contains crystal definitions including Schmid matrices for slip, twin, trans,
! and cleavage as well as interaction among the various systems ! and cleavage as well as interaction among the various systems.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module lattice module crystal
use prec use prec
use misc use misc
use IO use IO
@ -80,7 +80,7 @@ module lattice
],pREAL),shape(CF_SYSTEMTWIN)) !< cF twin systems ],pREAL),shape(CF_SYSTEMTWIN)) !< cF twin systems
integer, dimension(2,CF_NTWIN), parameter, public :: & integer, dimension(2,CF_NTWIN), parameter, public :: &
lattice_CF_TWINNUCLEATIONSLIPPAIR = reshape( [& crystal_CF_TWINNUCLEATIONSLIPPAIR = reshape( [&
2,3, & 2,3, &
1,3, & 1,3, &
1,2, & 1,2, &
@ -93,7 +93,7 @@ module lattice
11,12, & 11,12, &
10,12, & 10,12, &
10,11 & 10,11 &
],shape(lattice_CF_TWINNUCLEATIONSLIPPAIR)) ],shape(crystal_CF_TWINNUCLEATIONSLIPPAIR))
real(pREAL), dimension(3+3,CF_NCLEAVAGE), parameter :: & real(pREAL), dimension(3+3,CF_NCLEAVAGE), parameter :: &
CF_SYSTEMCLEAVAGE = reshape(real([& CF_SYSTEMCLEAVAGE = reshape(real([&
@ -367,60 +367,60 @@ module lattice
],pREAL),shape(TI_SYSTEMSLIP)) !< tI slip systems for c/a = 0.5456 (Sn), sorted by Bieler 2009 (https://doi.org/10.1007/s11664-009-0909-x) ],pREAL),shape(TI_SYSTEMSLIP)) !< tI slip systems for c/a = 0.5456 (Sn), sorted by Bieler 2009 (https://doi.org/10.1007/s11664-009-0909-x)
interface lattice_forestProjection_edge interface crystal_forestProjection_edge
module procedure slipProjection_transverse module procedure slipProjection_transverse
end interface lattice_forestProjection_edge end interface crystal_forestProjection_edge
interface lattice_forestProjection_screw interface crystal_forestProjection_screw
module procedure slipProjection_direction module procedure slipProjection_direction
end interface lattice_forestProjection_screw end interface crystal_forestProjection_screw
public :: & public :: &
lattice_init, & crystal_init, &
lattice_isotropic_nu, & crystal_isotropic_nu, &
lattice_isotropic_mu, & crystal_isotropic_mu, &
lattice_symmetrize_33, & crystal_symmetrize_33, &
lattice_symmetrize_C66, & crystal_symmetrize_C66, &
lattice_SchmidMatrix_slip, & crystal_SchmidMatrix_slip, &
lattice_SchmidMatrix_twin, & crystal_SchmidMatrix_twin, &
lattice_SchmidMatrix_trans, & crystal_SchmidMatrix_trans, &
lattice_SchmidMatrix_cleavage, & crystal_SchmidMatrix_cleavage, &
lattice_nonSchmidMatrix, & crystal_nonSchmidMatrix, &
lattice_interaction_SlipBySlip, & crystal_interaction_SlipBySlip, &
lattice_interaction_TwinByTwin, & crystal_interaction_TwinByTwin, &
lattice_interaction_TransByTrans, & crystal_interaction_TransByTrans, &
lattice_interaction_SlipByTwin, & crystal_interaction_SlipByTwin, &
lattice_interaction_SlipByTrans, & crystal_interaction_SlipByTrans, &
lattice_interaction_TwinBySlip, & crystal_interaction_TwinBySlip, &
lattice_characteristicShear_Twin, & crystal_characteristicShear_Twin, &
lattice_C66_twin, & crystal_C66_twin, &
lattice_C66_trans, & crystal_C66_trans, &
lattice_forestProjection_edge, & crystal_forestProjection_edge, &
lattice_forestProjection_screw, & crystal_forestProjection_screw, &
lattice_slip_normal, & crystal_slip_normal, &
lattice_slip_direction, & crystal_slip_direction, &
lattice_slip_transverse, & crystal_slip_transverse, &
lattice_labels_slip, & crystal_labels_slip, &
lattice_labels_twin crystal_labels_twin
contains contains
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Run self test. !> @brief Run self test.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine lattice_init() subroutine crystal_init()
print'(/,1x,a)', '<<<+- lattice init -+>>>'; flush(IO_STDOUT) print'(/,1x,a)', '<<<+- crystal init -+>>>'; flush(IO_STDOUT)
call selfTest() call selfTest()
end subroutine lattice_init end subroutine crystal_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Characteristic shear for twinning !> @brief Characteristic shear for twinning
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(characteristicShear) function crystal_characteristicShear_Twin(Ntwin,lattice,CoverA) result(characteristicShear)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -470,7 +470,7 @@ function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(character
characteristicShear(a) = 0.5_pREAL*sqrt(2.0_pREAL) characteristicShear(a) = 0.5_pREAL*sqrt(2.0_pREAL)
case('hP') case('hP')
if (cOverA < 1.0_pREAL .or. cOverA > 2.0_pREAL) & if (cOverA < 1.0_pREAL .or. cOverA > 2.0_pREAL) &
call IO_error(131,ext_msg='lattice_characteristicShear_Twin') call IO_error(131,ext_msg='crystal_characteristicShear_Twin')
p = sum(HP_NTWINSYSTEM(1:f-1))+s p = sum(HP_NTWINSYSTEM(1:f-1))+s
select case(HP_SHEARTWIN(p)) ! from Christian & Mahajan 1995 p.29 select case(HP_SHEARTWIN(p)) ! from Christian & Mahajan 1995 p.29
case (1) ! <-10.1>{10.2} case (1) ! <-10.1>{10.2}
@ -483,24 +483,24 @@ function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(character
characteristicShear(a) = 2.0_pREAL*(cOverA**2-2.0_pREAL)/3.0_pREAL/cOverA characteristicShear(a) = 2.0_pREAL*(cOverA**2-2.0_pREAL)/3.0_pREAL/cOverA
end select end select
case default case default
call IO_error(137,ext_msg='lattice_characteristicShear_Twin: '//trim(lattice)) call IO_error(137,ext_msg='crystal_characteristicShear_Twin: '//trim(lattice))
end select end select
end do mySystems end do mySystems
end do myFamilies end do myFamilies
end function lattice_characteristicShear_Twin end function crystal_characteristicShear_Twin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Rotated elasticity matrices for twinning in 6x6-matrix notation !> @brief Rotated elasticity matrices for twinning in 6x6-matrix notation
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_C66_twin(Ntwin,C66,lattice,CoverA) function crystal_C66_twin(Ntwin,C66,lattice,CoverA)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pREAL), dimension(6,6), intent(in) :: C66 !< unrotated parent stiffness matrix real(pREAL), dimension(6,6), intent(in) :: C66 !< unrotated parent stiffness matrix
real(pREAL), intent(in) :: cOverA !< c/a ratio real(pREAL), intent(in) :: cOverA !< c/a ratio
real(pREAL), dimension(6,6,sum(Ntwin)) :: lattice_C66_twin real(pREAL), dimension(6,6,sum(Ntwin)) :: crystal_C66_twin
real(pREAL), dimension(3,3,sum(Ntwin)):: coordinateSystem real(pREAL), dimension(3,3,sum(Ntwin)):: coordinateSystem
type(tRotation) :: R type(tRotation) :: R
@ -518,28 +518,28 @@ function lattice_C66_twin(Ntwin,C66,lattice,CoverA)
coordinateSystem = buildCoordinateSystem(Ntwin,HP_NSLIPSYSTEM,HP_SYSTEMTWIN,& coordinateSystem = buildCoordinateSystem(Ntwin,HP_NSLIPSYSTEM,HP_SYSTEMTWIN,&
lattice,cOverA) lattice,cOverA)
case default case default
call IO_error(137,ext_msg='lattice_C66_twin: '//trim(lattice)) call IO_error(137,ext_msg='crystal_C66_twin: '//trim(lattice))
end select end select
do i = 1, sum(Ntwin) do i = 1, sum(Ntwin)
call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg? call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg?
lattice_C66_twin(1:6,1:6,i) = R%rotStiffness(C66) crystal_C66_twin(1:6,1:6,i) = R%rotStiffness(C66)
end do end do
end function lattice_C66_twin end function crystal_C66_twin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Rotated elasticity matrices for transformation in 6x6-matrix notation !> @brief Rotated elasticity matrices for transformation in 6x6-matrix notation
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_C66_trans(Ntrans,C_parent66,lattice_target, & function crystal_C66_trans(Ntrans,C_parent66,crystal_target, &
cOverA_trans,a_cF,a_cI) cOverA_trans,a_cF,a_cI)
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
character(len=*), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: crystal_target !< Bravais lattice (Pearson symbol)
real(pREAL), dimension(6,6), intent(in) :: C_parent66 real(pREAL), dimension(6,6), intent(in) :: C_parent66
real(pREAL), optional, intent(in) :: cOverA_trans, a_cF, a_cI real(pREAL), optional, intent(in) :: cOverA_trans, a_cF, a_cI
real(pREAL), dimension(6,6,sum(Ntrans)) :: lattice_C66_trans real(pREAL), dimension(6,6,sum(Ntrans)) :: crystal_C66_trans
real(pREAL), dimension(6,6) :: C_bar66, C_target_unrotated66 real(pREAL), dimension(6,6) :: C_bar66, C_target_unrotated66
real(pREAL), dimension(3,3,sum(Ntrans)) :: Q,S real(pREAL), dimension(3,3,sum(Ntrans)) :: Q,S
@ -548,11 +548,11 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! elasticity matrix of the target phase in cube orientation ! elasticity matrix of the target phase in cube orientation
if (lattice_target == 'hP' .and. present(cOverA_trans)) then if (crystal_target == 'hP' .and. present(cOverA_trans)) then
! https://doi.org/10.1063/1.1663858 eq. (16), eq. (18), eq. (19) ! https://doi.org/10.1063/1.1663858 eq. (16), eq. (18), eq. (19)
! https://doi.org/10.1016/j.actamat.2016.07.032 eq. (47), eq. (48) ! https://doi.org/10.1016/j.actamat.2016.07.032 eq. (47), eq. (48)
if (cOverA_trans < 1.0_pREAL .or. cOverA_trans > 2.0_pREAL) & if (cOverA_trans < 1.0_pREAL .or. cOverA_trans > 2.0_pREAL) &
call IO_error(131,ext_msg='lattice_C66_trans: '//trim(lattice_target)) call IO_error(131,ext_msg='crystal_C66_trans: '//trim(crystal_target))
C_bar66(1,1) = (C_parent66(1,1) + C_parent66(1,2) + 2.0_pREAL*C_parent66(4,4))/2.0_pREAL C_bar66(1,1) = (C_parent66(1,1) + C_parent66(1,2) + 2.0_pREAL*C_parent66(4,4))/2.0_pREAL
C_bar66(1,2) = (C_parent66(1,1) + 5.0_pREAL*C_parent66(1,2) - 2.0_pREAL*C_parent66(4,4))/6.0_pREAL C_bar66(1,2) = (C_parent66(1,1) + 5.0_pREAL*C_parent66(1,2) - 2.0_pREAL*C_parent66(4,4))/6.0_pREAL
C_bar66(3,3) = (C_parent66(1,1) + 2.0_pREAL*C_parent66(1,2) + 4.0_pREAL*C_parent66(4,4))/3.0_pREAL C_bar66(3,3) = (C_parent66(1,1) + 2.0_pREAL*C_parent66(1,2) + 4.0_pREAL*C_parent66(4,4))/3.0_pREAL
@ -566,13 +566,13 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
C_target_unrotated66(1,3) = C_bar66(1,3) C_target_unrotated66(1,3) = C_bar66(1,3)
C_target_unrotated66(3,3) = C_bar66(3,3) C_target_unrotated66(3,3) = C_bar66(3,3)
C_target_unrotated66(4,4) = C_bar66(4,4) - C_bar66(1,4)**2/(0.5_pREAL*(C_bar66(1,1) - C_bar66(1,2))) C_target_unrotated66(4,4) = C_bar66(4,4) - C_bar66(1,4)**2/(0.5_pREAL*(C_bar66(1,1) - C_bar66(1,2)))
C_target_unrotated66 = lattice_symmetrize_C66(C_target_unrotated66,'hP') C_target_unrotated66 = crystal_symmetrize_C66(C_target_unrotated66,'hP')
elseif (lattice_target == 'cI' .and. present(a_cF) .and. present(a_cI)) then elseif (crystal_target == 'cI' .and. present(a_cF) .and. present(a_cI)) then
if (a_cI <= 0.0_pREAL .or. a_cF <= 0.0_pREAL) & if (a_cI <= 0.0_pREAL .or. a_cF <= 0.0_pREAL) &
call IO_error(134,ext_msg='lattice_C66_trans: '//trim(lattice_target)) call IO_error(134,ext_msg='crystal_C66_trans: '//trim(crystal_target))
C_target_unrotated66 = C_parent66 C_target_unrotated66 = C_parent66
else else
call IO_error(137,ext_msg='lattice_C66_trans : '//trim(lattice_target)) call IO_error(137,ext_msg='crystal_C66_trans : '//trim(crystal_target))
end if end if
do i = 1,6 do i = 1,6
@ -584,10 +584,10 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
do i = 1,sum(Ntrans) do i = 1,sum(Ntrans)
call R%fromMatrix(Q(1:3,1:3,i)) call R%fromMatrix(Q(1:3,1:3,i))
lattice_C66_trans(1:6,1:6,i) = R%rotStiffness(C_target_unrotated66) crystal_C66_trans(1:6,1:6,i) = R%rotStiffness(C_target_unrotated66)
end do end do
end function lattice_C66_trans end function crystal_C66_trans
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -595,7 +595,7 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
! https://doi.org/10.1016/j.actamat.2012.03.053, eq. (17) ! https://doi.org/10.1016/j.actamat.2012.03.053, eq. (17)
! https://doi.org/10.1016/j.actamat.2008.07.037, table 1 ! https://doi.org/10.1016/j.actamat.2008.07.037, table 1
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSchmidMatrix) function crystal_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSchmidMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
real(pREAL), dimension(:), intent(in) :: nonSchmidCoefficients !< non-Schmid coefficients for projections real(pREAL), dimension(:), intent(in) :: nonSchmidCoefficients !< non-Schmid coefficients for projections
@ -608,11 +608,11 @@ function lattice_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSc
integer :: i integer :: i
if (abs(sense) /= 1) error stop 'Sense in lattice_nonSchmidMatrix' if (abs(sense) /= 1) error stop 'Sense in crystal_nonSchmidMatrix'
coordinateSystem = buildCoordinateSystem(Nslip,CI_NSLIPSYSTEM,CI_SYSTEMSLIP,'cI',0.0_pREAL) coordinateSystem = buildCoordinateSystem(Nslip,CI_NSLIPSYSTEM,CI_SYSTEMSLIP,'cI',0.0_pREAL)
coordinateSystem(1:3,1,1:sum(Nslip)) = coordinateSystem(1:3,1,1:sum(Nslip))*real(sense,pREAL) ! convert unidirectional coordinate system coordinateSystem(1:3,1,1:sum(Nslip)) = coordinateSystem(1:3,1,1:sum(Nslip))*real(sense,pREAL) ! convert unidirectional coordinate system
nonSchmidMatrix = lattice_SchmidMatrix_slip(Nslip,'cI',0.0_pREAL) ! Schmid contribution nonSchmidMatrix = crystal_SchmidMatrix_slip(Nslip,'cI',0.0_pREAL) ! Schmid contribution
do i = 1,sum(Nslip) do i = 1,sum(Nslip)
direction = coordinateSystem(1:3,1,i) direction = coordinateSystem(1:3,1,i)
@ -635,7 +635,7 @@ function lattice_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSc
+ nonSchmidCoefficients(6) * math_outer(direction, direction) + nonSchmidCoefficients(6) * math_outer(direction, direction)
end do end do
end function lattice_nonSchmidMatrix end function crystal_nonSchmidMatrix
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -644,7 +644,7 @@ end function lattice_nonSchmidMatrix
!> @details https://doi.org/10.1016/j.actamat.2016.12.040 (cF: Tab S4-1, cI: Tab S5-1) !> @details https://doi.org/10.1016/j.actamat.2016.12.040 (cF: Tab S4-1, cI: Tab S5-1)
!> @details https://doi.org/10.1016/j.ijplas.2014.06.010 (hP: Tab 3b) !> @details https://doi.org/10.1016/j.ijplas.2014.06.010 (hP: Tab 3b)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(interactionMatrix) function crystal_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
real(pREAL), dimension(:), intent(in) :: interactionValues !< values for slip-slip interaction real(pREAL), dimension(:), intent(in) :: interactionValues !< values for slip-slip interaction
@ -950,19 +950,19 @@ function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(
interactionTypes = TI_INTERACTIONSLIPSLIP interactionTypes = TI_INTERACTIONSLIPSLIP
NslipMax = TI_NSLIPSYSTEM NslipMax = TI_NSLIPSYSTEM
case default case default
call IO_error(137,ext_msg='lattice_interaction_SlipBySlip: '//trim(lattice)) call IO_error(137,ext_msg='crystal_interaction_SlipBySlip: '//trim(lattice))
end select end select
interactionMatrix = buildInteraction(Nslip,Nslip,NslipMax,NslipMax,interactionValues,interactionTypes) interactionMatrix = buildInteraction(Nslip,Nslip,NslipMax,NslipMax,interactionValues,interactionTypes)
end function lattice_interaction_SlipBySlip end function crystal_interaction_SlipBySlip
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Twin-twin interaction matrix !> @brief Twin-twin interaction matrix
!> details only active twin systems are considered !> details only active twin systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(interactionMatrix) function crystal_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
real(pREAL), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction real(pREAL), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
@ -1049,19 +1049,19 @@ function lattice_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(
interactionTypes = HP_INTERACTIONTWINTWIN interactionTypes = HP_INTERACTIONTWINTWIN
NtwinMax = HP_NTWINSYSTEM NtwinMax = HP_NTWINSYSTEM
case default case default
call IO_error(137,ext_msg='lattice_interaction_TwinByTwin: '//trim(lattice)) call IO_error(137,ext_msg='crystal_interaction_TwinByTwin: '//trim(lattice))
end select end select
interactionMatrix = buildInteraction(Ntwin,Ntwin,NtwinMax,NtwinMax,interactionValues,interactionTypes) interactionMatrix = buildInteraction(Ntwin,Ntwin,NtwinMax,NtwinMax,interactionValues,interactionTypes)
end function lattice_interaction_TwinByTwin end function crystal_interaction_TwinByTwin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Trans-trans interaction matrix !> @brief Trans-trans interaction matrix
!> details only active trans systems are considered !> details only active trans systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_interaction_TransByTrans(Ntrans,interactionValues,lattice) result(interactionMatrix) function crystal_interaction_TransByTrans(Ntrans,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Ntrans !< number of active trans systems per family integer, dimension(:), intent(in) :: Ntrans !< number of active trans systems per family
real(pREAL), dimension(:), intent(in) :: interactionValues !< values for trans-trans interaction real(pREAL), dimension(:), intent(in) :: interactionValues !< values for trans-trans interaction
@ -1091,19 +1091,19 @@ function lattice_interaction_TransByTrans(Ntrans,interactionValues,lattice) resu
interactionTypes = CF_INTERACTIONTRANSTRANS interactionTypes = CF_INTERACTIONTRANSTRANS
NtransMax = CF_NTRANSSYSTEM NtransMax = CF_NTRANSSYSTEM
else else
call IO_error(137,ext_msg='lattice_interaction_TransByTrans: '//trim(lattice)) call IO_error(137,ext_msg='crystal_interaction_TransByTrans: '//trim(lattice))
end if end if
interactionMatrix = buildInteraction(Ntrans,Ntrans,NtransMax,NtransMax,interactionValues,interactionTypes) interactionMatrix = buildInteraction(Ntrans,Ntrans,NtransMax,NtransMax,interactionValues,interactionTypes)
end function lattice_interaction_TransByTrans end function crystal_interaction_TransByTrans
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Slip-twin interaction matrix !> @brief Slip-twin interaction matrix
!> details only active slip and twin systems are considered !> details only active slip and twin systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) result(interactionMatrix) function crystal_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
Ntwin !< number of active twin systems per family Ntwin !< number of active twin systems per family
@ -1251,19 +1251,19 @@ function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) r
NslipMax = HP_NSLIPSYSTEM NslipMax = HP_NSLIPSYSTEM
NtwinMax = HP_NTWINSYSTEM NtwinMax = HP_NTWINSYSTEM
case default case default
call IO_error(137,ext_msg='lattice_interaction_SlipByTwin: '//trim(lattice)) call IO_error(137,ext_msg='crystal_interaction_SlipByTwin: '//trim(lattice))
end select end select
interactionMatrix = buildInteraction(Nslip,Ntwin,NslipMax,NtwinMax,interactionValues,interactionTypes) interactionMatrix = buildInteraction(Nslip,Ntwin,NslipMax,NtwinMax,interactionValues,interactionTypes)
end function lattice_interaction_SlipByTwin end function crystal_interaction_SlipByTwin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Slip-trans interaction matrix !> @brief Slip-trans interaction matrix
!> details only active slip and trans systems are considered !> details only active slip and trans systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice) result(interactionMatrix) function crystal_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
Ntrans !< number of active trans systems per family Ntrans !< number of active trans systems per family
@ -1304,19 +1304,19 @@ function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice)
NslipMax = CF_NSLIPSYSTEM NslipMax = CF_NSLIPSYSTEM
NtransMax = CF_NTRANSSYSTEM NtransMax = CF_NTRANSSYSTEM
case default case default
call IO_error(137,ext_msg='lattice_interaction_SlipByTrans: '//trim(lattice)) call IO_error(137,ext_msg='crystal_interaction_SlipByTrans: '//trim(lattice))
end select end select
interactionMatrix = buildInteraction(Nslip,Ntrans,NslipMax,NtransMax,interactionValues,interactionTypes) interactionMatrix = buildInteraction(Nslip,Ntrans,NslipMax,NtransMax,interactionValues,interactionTypes)
end function lattice_interaction_SlipByTrans end function crystal_interaction_SlipByTrans
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Twin-slip interaction matrix !> @brief Twin-slip interaction matrix
!> details only active twin and slip systems are considered !> details only active twin and slip systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) result(interactionMatrix) function crystal_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Ntwin, & !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntwin, & !< number of active twin systems per family
Nslip !< number of active slip systems per family Nslip !< number of active slip systems per family
@ -1380,19 +1380,19 @@ function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) r
NtwinMax = HP_NTWINSYSTEM NtwinMax = HP_NTWINSYSTEM
NslipMax = HP_NSLIPSYSTEM NslipMax = HP_NSLIPSYSTEM
case default case default
call IO_error(137,ext_msg='lattice_interaction_TwinBySlip: '//trim(lattice)) call IO_error(137,ext_msg='crystal_interaction_TwinBySlip: '//trim(lattice))
end select end select
interactionMatrix = buildInteraction(Ntwin,Nslip,NtwinMax,NslipMax,interactionValues,interactionTypes) interactionMatrix = buildInteraction(Ntwin,Nslip,NtwinMax,NslipMax,interactionValues,interactionTypes)
end function lattice_interaction_TwinBySlip end function crystal_interaction_TwinBySlip
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for slip !> @brief Schmid matrix for slip
!> details only active slip systems are considered !> details only active slip systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix) function crystal_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1419,7 +1419,7 @@ function lattice_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
slipSystems = TI_SYSTEMSLIP slipSystems = TI_SYSTEMSLIP
case default case default
allocate(NslipMax(0)) allocate(NslipMax(0))
call IO_error(137,ext_msg='lattice_SchmidMatrix_slip: '//trim(lattice)) call IO_error(137,ext_msg='crystal_SchmidMatrix_slip: '//trim(lattice))
end select end select
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) & if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
@ -1435,14 +1435,14 @@ function lattice_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
error stop 'dilatational Schmid matrix for slip' error stop 'dilatational Schmid matrix for slip'
end do end do
end function lattice_SchmidMatrix_slip end function crystal_SchmidMatrix_slip
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for twinning !> @brief Schmid matrix for twinning
!> details only active twin systems are considered !> details only active twin systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix) function crystal_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1466,7 +1466,7 @@ function lattice_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
twinSystems = HP_SYSTEMTWIN twinSystems = HP_SYSTEMTWIN
case default case default
allocate(NtwinMax(0)) allocate(NtwinMax(0))
call IO_error(137,ext_msg='lattice_SchmidMatrix_twin: '//trim(lattice)) call IO_error(137,ext_msg='crystal_SchmidMatrix_twin: '//trim(lattice))
end select end select
if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) & if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) &
@ -1482,43 +1482,43 @@ function lattice_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
error stop 'dilatational Schmid matrix for twin' error stop 'dilatational Schmid matrix for twin'
end do end do
end function lattice_SchmidMatrix_twin end function crystal_SchmidMatrix_twin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for transformation !> @brief Schmid matrix for transformation
!> details only active twin systems are considered !> details only active twin systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_trans(Ntrans,lattice_target,cOverA,a_cF,a_cI) result(SchmidMatrix) function crystal_SchmidMatrix_trans(Ntrans,crystal_target,cOverA,a_cF,a_cI) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
character(len=*), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: crystal_target !< Bravais lattice (Pearson symbol)
real(pREAL), optional, intent(in) :: cOverA, a_cI, a_cF real(pREAL), optional, intent(in) :: cOverA, a_cI, a_cF
real(pREAL), dimension(3,3,sum(Ntrans)) :: SchmidMatrix real(pREAL), dimension(3,3,sum(Ntrans)) :: SchmidMatrix
real(pREAL), dimension(3,3,sum(Ntrans)) :: devNull real(pREAL), dimension(3,3,sum(Ntrans)) :: devNull
if (lattice_target == 'hP' .and. present(cOverA)) then if (crystal_target == 'hP' .and. present(cOverA)) then
if (cOverA < 1.0_pREAL .or. cOverA > 2.0_pREAL) & if (cOverA < 1.0_pREAL .or. cOverA > 2.0_pREAL) &
call IO_error(131,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target)) call IO_error(131,ext_msg='crystal_SchmidMatrix_trans: '//trim(crystal_target))
call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,cOverA=cOverA) call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,cOverA=cOverA)
else if (lattice_target == 'cI' .and. present(a_cF) .and. present(a_cI)) then else if (crystal_target == 'cI' .and. present(a_cF) .and. present(a_cI)) then
if (a_cI <= 0.0_pREAL .or. a_cF <= 0.0_pREAL) & if (a_cI <= 0.0_pREAL .or. a_cF <= 0.0_pREAL) &
call IO_error(134,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target)) call IO_error(134,ext_msg='crystal_SchmidMatrix_trans: '//trim(crystal_target))
call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,a_cF=a_cF,a_cI=a_cI) call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,a_cF=a_cF,a_cI=a_cI)
else else
call IO_error(131,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target)) call IO_error(131,ext_msg='crystal_SchmidMatrix_trans: '//trim(crystal_target))
end if end if
end function lattice_SchmidMatrix_trans end function crystal_SchmidMatrix_trans
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for cleavage !> @brief Schmid matrix for cleavage
!> details only active cleavage systems are considered !> details only active cleavage systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix) function crystal_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1539,7 +1539,7 @@ function lattice_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMa
cleavageSystems = CI_SYSTEMCLEAVAGE cleavageSystems = CI_SYSTEMCLEAVAGE
case default case default
allocate(NcleavageMax(0)) allocate(NcleavageMax(0))
call IO_error(137,ext_msg='lattice_SchmidMatrix_cleavage: '//trim(lattice)) call IO_error(137,ext_msg='crystal_SchmidMatrix_cleavage: '//trim(lattice))
end select end select
if (any(NcleavageMax(1:size(Ncleavage)) - Ncleavage < 0)) & if (any(NcleavageMax(1:size(Ncleavage)) - Ncleavage < 0)) &
@ -1555,13 +1555,13 @@ function lattice_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMa
SchmidMatrix(1:3,1:3,3,i) = math_outer(coordinateSystem(1:3,2,i),coordinateSystem(1:3,2,i)) SchmidMatrix(1:3,1:3,3,i) = math_outer(coordinateSystem(1:3,2,i),coordinateSystem(1:3,2,i))
end do end do
end function lattice_SchmidMatrix_cleavage end function crystal_SchmidMatrix_cleavage
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Slip direction of slip systems (|| b) !> @brief Slip direction of slip systems (|| b)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_slip_direction(Nslip,lattice,cOverA) result(d) function crystal_slip_direction(Nslip,lattice,cOverA) result(d)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1573,13 +1573,13 @@ function lattice_slip_direction(Nslip,lattice,cOverA) result(d)
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA) coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
d = coordinateSystem(1:3,1,1:sum(Nslip)) d = coordinateSystem(1:3,1,1:sum(Nslip))
end function lattice_slip_direction end function crystal_slip_direction
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Normal direction of slip systems (|| n) !> @brief Normal direction of slip systems (|| n)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_slip_normal(Nslip,lattice,cOverA) result(n) function crystal_slip_normal(Nslip,lattice,cOverA) result(n)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1591,13 +1591,13 @@ function lattice_slip_normal(Nslip,lattice,cOverA) result(n)
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA) coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
n = coordinateSystem(1:3,2,1:sum(Nslip)) n = coordinateSystem(1:3,2,1:sum(Nslip))
end function lattice_slip_normal end function crystal_slip_normal
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Transverse direction of slip systems (|| t = b x n) !> @brief Transverse direction of slip systems (|| t = b x n)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_slip_transverse(Nslip,lattice,cOverA) result(t) function crystal_slip_transverse(Nslip,lattice,cOverA) result(t)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1609,14 +1609,14 @@ function lattice_slip_transverse(Nslip,lattice,cOverA) result(t)
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA) coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
t = coordinateSystem(1:3,3,1:sum(Nslip)) t = coordinateSystem(1:3,3,1:sum(Nslip))
end function lattice_slip_transverse end function crystal_slip_transverse
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Labels of slip systems !> @brief Labels of slip systems
!> details only active slip systems are considered !> details only active slip systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_labels_slip(Nslip,lattice) result(labels) function crystal_labels_slip(Nslip,lattice) result(labels)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1640,7 +1640,7 @@ function lattice_labels_slip(Nslip,lattice) result(labels)
NslipMax = TI_NSLIPSYSTEM NslipMax = TI_NSLIPSYSTEM
slipSystems = TI_SYSTEMSLIP slipSystems = TI_SYSTEMSLIP
case default case default
call IO_error(137,ext_msg='lattice_labels_slip: '//trim(lattice)) call IO_error(137,ext_msg='crystal_labels_slip: '//trim(lattice))
end select end select
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) & if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
@ -1650,13 +1650,13 @@ function lattice_labels_slip(Nslip,lattice) result(labels)
labels = getLabels(Nslip,NslipMax,slipSystems) labels = getLabels(Nslip,NslipMax,slipSystems)
end function lattice_labels_slip end function crystal_labels_slip
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Return 3x3 tensor with symmetry according to given Bravais lattice !> @brief Return 3x3 tensor with symmetry according to given Bravais lattice
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function lattice_symmetrize_33(T,lattice) result(T_sym) pure function crystal_symmetrize_33(T,lattice) result(T_sym)
real(pREAL), dimension(3,3) :: T_sym real(pREAL), dimension(3,3) :: T_sym
@ -1677,14 +1677,14 @@ pure function lattice_symmetrize_33(T,lattice) result(T_sym)
T_sym(3,3) = T(3,3) T_sym(3,3) = T(3,3)
end select end select
end function lattice_symmetrize_33 end function crystal_symmetrize_33
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Return stiffness matrix in 6x6 notation with symmetry according to given Bravais lattice !> @brief Return stiffness matrix in 6x6 notation with symmetry according to given Bravais lattice
!> @details J. A. Rayne and B. S. Chandrasekhar Phys. Rev. 120, 1658 Erratum Phys. Rev. 122, 1962 !> @details J. A. Rayne and B. S. Chandrasekhar Phys. Rev. 120, 1658 Erratum Phys. Rev. 122, 1962
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function lattice_symmetrize_C66(C66,lattice) result(C66_sym) pure function crystal_symmetrize_C66(C66,lattice) result(C66_sym)
real(pREAL), dimension(6,6) :: C66_sym real(pREAL), dimension(6,6) :: C66_sym
@ -1723,14 +1723,14 @@ pure function lattice_symmetrize_C66(C66,lattice) result(C66_sym)
end do end do
end do end do
end function lattice_symmetrize_C66 end function crystal_symmetrize_C66
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Labels for twin systems !> @brief Labels for twin systems
!> details only active twin systems are considered !> details only active twin systems are considered
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function lattice_labels_twin(Ntwin,lattice) result(labels) function crystal_labels_twin(Ntwin,lattice) result(labels)
integer, dimension(:), intent(in) :: Ntwin !< number of active slip systems per family integer, dimension(:), intent(in) :: Ntwin !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
@ -1751,7 +1751,7 @@ function lattice_labels_twin(Ntwin,lattice) result(labels)
NtwinMax = HP_NTWINSYSTEM NtwinMax = HP_NTWINSYSTEM
twinSystems = HP_SYSTEMTWIN twinSystems = HP_SYSTEMTWIN
case default case default
call IO_error(137,ext_msg='lattice_labels_twin: '//trim(lattice)) call IO_error(137,ext_msg='crystal_labels_twin: '//trim(lattice))
end select end select
if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) & if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) &
@ -1761,7 +1761,7 @@ function lattice_labels_twin(Ntwin,lattice) result(labels)
labels = getLabels(Ntwin,NtwinMax,twinSystems) labels = getLabels(Ntwin,NtwinMax,twinSystems)
end function lattice_labels_twin end function crystal_labels_twin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -1778,8 +1778,8 @@ function slipProjection_transverse(Nslip,lattice,cOverA) result(projection)
real(pREAL), dimension(3,sum(Nslip)) :: n, t real(pREAL), dimension(3,sum(Nslip)) :: n, t
integer :: i, j integer :: i, j
n = lattice_slip_normal (Nslip,lattice,cOverA) n = crystal_slip_normal (Nslip,lattice,cOverA)
t = lattice_slip_transverse(Nslip,lattice,cOverA) t = crystal_slip_transverse(Nslip,lattice,cOverA)
do i=1, sum(Nslip); do j=1, sum(Nslip) do i=1, sum(Nslip); do j=1, sum(Nslip)
projection(i,j) = abs(math_inner(n(:,i),t(:,j))) projection(i,j) = abs(math_inner(n(:,i),t(:,j)))
@ -1802,8 +1802,8 @@ function slipProjection_direction(Nslip,lattice,cOverA) result(projection)
real(pREAL), dimension(3,sum(Nslip)) :: n, d real(pREAL), dimension(3,sum(Nslip)) :: n, d
integer :: i, j integer :: i, j
n = lattice_slip_normal (Nslip,lattice,cOverA) n = crystal_slip_normal (Nslip,lattice,cOverA)
d = lattice_slip_direction(Nslip,lattice,cOverA) d = crystal_slip_direction(Nslip,lattice,cOverA)
do i=1, sum(Nslip); do j=1, sum(Nslip) do i=1, sum(Nslip); do j=1, sum(Nslip)
projection(i,j) = abs(math_inner(n(:,i),d(:,j))) projection(i,j) = abs(math_inner(n(:,i),d(:,j)))
@ -2150,7 +2150,7 @@ end function getlabels
!> @brief Equivalent Poisson's ratio (ν) !> @brief Equivalent Poisson's ratio (ν)
!> @details https://doi.org/10.1143/JPSJ.20.635 !> @details https://doi.org/10.1143/JPSJ.20.635
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function lattice_isotropic_nu(C,assumption,lattice) result(nu) pure function crystal_isotropic_nu(C,assumption,lattice) result(nu)
real(pREAL), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation) real(pREAL), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=*), intent(in) :: assumption !< Assumption (isostrain = 'Voigt', isostress = 'Reuss') character(len=*), intent(in) :: assumption !< Assumption (isostrain = 'Voigt', isostress = 'Reuss')
@ -2172,10 +2172,10 @@ pure function lattice_isotropic_nu(C,assumption,lattice) result(nu)
error stop 'invalid assumption' error stop 'invalid assumption'
end if end if
mu = lattice_isotropic_mu(C,assumption,lattice) mu = crystal_isotropic_mu(C,assumption,lattice)
nu = (1.5_pREAL*K-mu)/(3.0_pREAL*K+mu) nu = (1.5_pREAL*K-mu)/(3.0_pREAL*K+mu)
end function lattice_isotropic_nu end function crystal_isotropic_nu
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -2183,7 +2183,7 @@ end function lattice_isotropic_nu
!> @details https://doi.org/10.1143/JPSJ.20.635 !> @details https://doi.org/10.1143/JPSJ.20.635
!> @details Nonlinear Mechanics of Crystals 10.1007/978-94-007-0350-6, pp 563 !> @details Nonlinear Mechanics of Crystals 10.1007/978-94-007-0350-6, pp 563
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function lattice_isotropic_mu(C,assumption,lattice) result(mu) pure function crystal_isotropic_mu(C,assumption,lattice) result(mu)
real(pREAL), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation) real(pREAL), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=*), intent(in) :: assumption !< Assumption (isostrain = 'Voigt', isostress = 'Reuss') character(len=*), intent(in) :: assumption !< Assumption (isostrain = 'Voigt', isostress = 'Reuss')
@ -2220,11 +2220,11 @@ pure function lattice_isotropic_mu(C,assumption,lattice) result(mu)
error stop 'invalid assumption' error stop 'invalid assumption'
end if end if
end function lattice_isotropic_mu end function crystal_isotropic_mu
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Check correctness of some lattice functions. !> @brief Check correctness of some crystal functions.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine selfTest subroutine selfTest
@ -2246,10 +2246,10 @@ subroutine selfTest
do i = 1, 10 do i = 1, 10
call random_number(C) call random_number(C)
C_cF = lattice_symmetrize_C66(C,'cI') C_cF = crystal_symmetrize_C66(C,'cI')
C_cI = lattice_symmetrize_C66(C,'cF') C_cI = crystal_symmetrize_C66(C,'cF')
C_hP = lattice_symmetrize_C66(C,'hP') C_hP = crystal_symmetrize_C66(C,'hP')
C_tI = lattice_symmetrize_C66(C,'tI') C_tI = crystal_symmetrize_C66(C,'tI')
if (any(dNeq(C_cI,transpose(C_cF)))) error stop 'SymmetryC66/cI-cF' if (any(dNeq(C_cI,transpose(C_cF)))) error stop 'SymmetryC66/cI-cF'
if (any(dNeq(C_cF,transpose(C_cI)))) error stop 'SymmetryC66/cF-cI' if (any(dNeq(C_cF,transpose(C_cI)))) error stop 'SymmetryC66/cF-cI'
@ -2269,10 +2269,10 @@ subroutine selfTest
if (any(dNeq(C(4,4),[C_tI(4,4),C_tI(5,5)]))) error stop 'SymmetryC_44-55/tI' if (any(dNeq(C(4,4),[C_tI(4,4),C_tI(5,5)]))) error stop 'SymmetryC_44-55/tI'
call random_number(T) call random_number(T)
T_cF = lattice_symmetrize_33(T,'cI') T_cF = crystal_symmetrize_33(T,'cI')
T_cI = lattice_symmetrize_33(T,'cF') T_cI = crystal_symmetrize_33(T,'cF')
T_hP = lattice_symmetrize_33(T,'hP') T_hP = crystal_symmetrize_33(T,'hP')
T_tI = lattice_symmetrize_33(T,'tI') T_tI = crystal_symmetrize_33(T,'tI')
if (any(dNeq0(T_cF) .and. math_I3<1.0_pREAL)) error stop 'Symmetry33/c' if (any(dNeq0(T_cF) .and. math_I3<1.0_pREAL)) error stop 'Symmetry33/c'
if (any(dNeq0(T_hP) .and. math_I3<1.0_pREAL)) error stop 'Symmetry33/hP' if (any(dNeq0(T_hP) .and. math_I3<1.0_pREAL)) error stop 'Symmetry33/hP'
@ -2291,48 +2291,48 @@ subroutine selfTest
C(4,4) = 0.5_pREAL * (C(1,1) - C(1,2)) C(4,4) = 0.5_pREAL * (C(1,1) - C(1,2))
C(6,6) = C(4,4) C(6,6) = C(4,4)
C_cI = lattice_symmetrize_C66(C,'cI') C_cI = crystal_symmetrize_C66(C,'cI')
if (dNeq(C_cI(4,4),lattice_isotropic_mu(C_cI,'isostrain','cI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostrain/cI' if (dNeq(C_cI(4,4),crystal_isotropic_mu(C_cI,'isostrain','cI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostrain/cI'
if (dNeq(C_cI(4,4),lattice_isotropic_mu(C_cI,'isostress','cI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostress/cI' if (dNeq(C_cI(4,4),crystal_isotropic_mu(C_cI,'isostress','cI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostress/cI'
lambda = C_cI(1,2) lambda = C_cI(1,2)
if (dNeq(lambda*0.5_pREAL/(lambda+lattice_isotropic_mu(C_cI,'isostrain','cI')), & if (dNeq(lambda*0.5_pREAL/(lambda+crystal_isotropic_mu(C_cI,'isostrain','cI')), &
lattice_isotropic_nu(C_cI,'isostrain','cI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostrain/cI' crystal_isotropic_nu(C_cI,'isostrain','cI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostrain/cI'
if (dNeq(lambda*0.5_pREAL/(lambda+lattice_isotropic_mu(C_cI,'isostress','cI')), & if (dNeq(lambda*0.5_pREAL/(lambda+crystal_isotropic_mu(C_cI,'isostress','cI')), &
lattice_isotropic_nu(C_cI,'isostress','cI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostress/cI' crystal_isotropic_nu(C_cI,'isostress','cI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostress/cI'
C_hP = lattice_symmetrize_C66(C,'hP') C_hP = crystal_symmetrize_C66(C,'hP')
if (dNeq(C(4,4),lattice_isotropic_mu(C_hP,'isostrain','hP'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostrain/hP' if (dNeq(C(4,4),crystal_isotropic_mu(C_hP,'isostrain','hP'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostrain/hP'
if (dNeq(C(4,4),lattice_isotropic_mu(C_hP,'isostress','hP'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostress/hP' if (dNeq(C(4,4),crystal_isotropic_mu(C_hP,'isostress','hP'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostress/hP'
lambda = C_hP(1,2) lambda = C_hP(1,2)
if (dNeq(lambda*0.5_pREAL/(lambda+lattice_isotropic_mu(C_hP,'isostrain','hP')), & if (dNeq(lambda*0.5_pREAL/(lambda+crystal_isotropic_mu(C_hP,'isostrain','hP')), &
lattice_isotropic_nu(C_hP,'isostrain','hP'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostrain/hP' crystal_isotropic_nu(C_hP,'isostrain','hP'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostrain/hP'
if (dNeq(lambda*0.5_pREAL/(lambda+lattice_isotropic_mu(C_hP,'isostress','hP')), & if (dNeq(lambda*0.5_pREAL/(lambda+crystal_isotropic_mu(C_hP,'isostress','hP')), &
lattice_isotropic_nu(C_hP,'isostress','hP'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostress/hP' crystal_isotropic_nu(C_hP,'isostress','hP'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostress/hP'
C_tI = lattice_symmetrize_C66(C,'tI') C_tI = crystal_symmetrize_C66(C,'tI')
if (dNeq(C(6,6),lattice_isotropic_mu(C_tI,'isostrain','tI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostrain/tI' if (dNeq(C(6,6),crystal_isotropic_mu(C_tI,'isostrain','tI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostrain/tI'
if (dNeq(C(6,6),lattice_isotropic_mu(C_tI,'isostress','tI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostress/tI' if (dNeq(C(6,6),crystal_isotropic_mu(C_tI,'isostress','tI'),1.0e-12_pREAL)) error stop 'isotropic_mu/isostress/tI'
lambda = C_tI(1,2) lambda = C_tI(1,2)
if (dNeq(lambda*0.5_pREAL/(lambda+lattice_isotropic_mu(C_tI,'isostrain','tI')), & if (dNeq(lambda*0.5_pREAL/(lambda+crystal_isotropic_mu(C_tI,'isostrain','tI')), &
lattice_isotropic_nu(C_tI,'isostrain','tI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostrain/tI' crystal_isotropic_nu(C_tI,'isostrain','tI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostrain/tI'
if (dNeq(lambda*0.5_pREAL/(lambda+lattice_isotropic_mu(C_tI,'isostress','tI')), & if (dNeq(lambda*0.5_pREAL/(lambda+crystal_isotropic_mu(C_tI,'isostress','tI')), &
lattice_isotropic_nu(C_tI,'isostress','tI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostress/tI' crystal_isotropic_nu(C_tI,'isostress','tI'),1.0e-12_pREAL)) error stop 'isotropic_nu/isostress/tI'
call random_number(C) call random_number(C)
C = lattice_symmetrize_C66(C+math_eye(6),'cI') C = crystal_symmetrize_C66(C+math_eye(6),'cI')
if (dNeq(lattice_isotropic_mu(C,'isostrain','cI'), lattice_isotropic_mu(C,'isostrain','hP'), 1.0e-12_pREAL)) & if (dNeq(crystal_isotropic_mu(C,'isostrain','cI'), crystal_isotropic_mu(C,'isostrain','hP'), 1.0e-12_pREAL)) &
error stop 'isotropic_mu/isostrain/cI-hP' error stop 'isotropic_mu/isostrain/cI-hP'
if (dNeq(lattice_isotropic_nu(C,'isostrain','cF'), lattice_isotropic_nu(C,'isostrain','cI'), 1.0e-12_pREAL)) & if (dNeq(crystal_isotropic_nu(C,'isostrain','cF'), crystal_isotropic_nu(C,'isostrain','cI'), 1.0e-12_pREAL)) &
error stop 'isotropic_nu/isostrain/cF-tI' error stop 'isotropic_nu/isostrain/cF-tI'
if (dNeq(lattice_isotropic_mu(C,'isostress','cI'), lattice_isotropic_mu(C,'isostress'), 1.0e-12_pREAL)) & if (dNeq(crystal_isotropic_mu(C,'isostress','cI'), crystal_isotropic_mu(C,'isostress'), 1.0e-12_pREAL)) &
error stop 'isotropic_mu/isostress/cI-hP' error stop 'isotropic_mu/isostress/cI-hP'
if (dNeq(lattice_isotropic_nu(C,'isostress','cF'), lattice_isotropic_nu(C,'isostress'), 1.0e-12_pREAL)) & if (dNeq(crystal_isotropic_nu(C,'isostress','cF'), crystal_isotropic_nu(C,'isostress'), 1.0e-12_pREAL)) &
error stop 'isotropic_nu/isostress/cF-tI' error stop 'isotropic_nu/isostress/cF-tI'
end subroutine selfTest end subroutine selfTest
end module lattice end module crystal

View File

@ -16,7 +16,7 @@ module homogenization
use HDF5 use HDF5
use HDF5_utilities use HDF5_utilities
use result use result
use lattice use crystal
implicit none(type,external) implicit none(type,external)
private private

View File

@ -8,7 +8,7 @@
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
submodule(homogenization:mechanical) RGC submodule(homogenization:mechanical) RGC
use rotations use rotations
use lattice use crystal
type :: tParameters type :: tParameters
integer, dimension(:), allocatable :: & integer, dimension(:), allocatable :: &
@ -654,7 +654,7 @@ module function RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
C = phase_homogenizedC66(material_ID_phase(co,ce),material_entry_phase(co,ce)) ! damage not included! C = phase_homogenizedC66(material_ID_phase(co,ce),material_entry_phase(co,ce)) ! damage not included!
equivalentMu = lattice_isotropic_mu(C,'isostrain') equivalentMu = crystal_isotropic_mu(C,'isostrain')
end function equivalentMu end function equivalentMu

View File

@ -20,7 +20,7 @@ module materialpoint
use rotations use rotations
use polynomials use polynomials
use tables use tables
use lattice use crystal
use material use material
use phase use phase
use homogenization use homogenization
@ -64,7 +64,7 @@ subroutine materialpoint_initAll()
call rotations_init() call rotations_init()
call polynomials_init() call polynomials_init()
call tables_init() call tables_init()
call lattice_init() call crystal_init()
#if defined(MESH) #if defined(MESH)
call discretization_mesh_init(restart=CLI_restartInc>0) call discretization_mesh_init(restart=CLI_restartInc>0)
#elif defined(GRID) #elif defined(GRID)

View File

@ -14,7 +14,7 @@ module phase
use config use config
use material use material
use result use result
use lattice use crystal
use discretization use discretization
use parallelization use parallelization
use HDF5 use HDF5
@ -336,7 +336,7 @@ module phase
config, & config, &
material, & material, &
result, & result, &
lattice, & crystal, &
discretization, & discretization, &
HDF5_utilities HDF5_utilities
#endif #endif

View File

@ -77,7 +77,7 @@ module function anisobrittle_init() result(mySources)
prm%s_crit = src%get_as1dReal('s_crit',requiredSize=size(N_cl)) prm%s_crit = src%get_as1dReal('s_crit',requiredSize=size(N_cl))
prm%g_crit = src%get_as1dReal('g_crit',requiredSize=size(N_cl)) prm%g_crit = src%get_as1dReal('g_crit',requiredSize=size(N_cl))
prm%cleavage_systems = lattice_SchmidMatrix_cleavage(N_cl,phase_lattice(ph),phase_cOverA(ph)) prm%cleavage_systems = crystal_SchmidMatrix_cleavage(N_cl,phase_lattice(ph),phase_cOverA(ph))
! expand: family => system ! expand: family => system
prm%s_crit = math_expand(prm%s_crit,N_cl) prm%s_crit = math_expand(prm%s_crit,N_cl)

View File

@ -92,7 +92,7 @@ module subroutine thermalexpansion_LiAndItsTangent(Li, dLi_dTstar, ph,me)
Alpha = 0.0_pREAL Alpha = 0.0_pREAL
Alpha(1,1) = prm%Alpha_11%at(T) Alpha(1,1) = prm%Alpha_11%at(T)
if (any(phase_lattice(ph) == ['hP','tI'])) Alpha(3,3) = prm%Alpha_33%at(T) if (any(phase_lattice(ph) == ['hP','tI'])) Alpha(3,3) = prm%Alpha_33%at(T)
Alpha = lattice_symmetrize_33(Alpha,phase_lattice(ph)) Alpha = crystal_symmetrize_33(Alpha,phase_lattice(ph))
Li = dot_T * Alpha Li = dot_T * Alpha
end associate end associate

View File

@ -97,7 +97,7 @@ pure module function elastic_C66(ph,en) result(C66)
if (phase_lattice(ph) == 'tI') C66(6,6) = prm%C_66%at(T) if (phase_lattice(ph) == 'tI') C66(6,6) = prm%C_66%at(T)
C66 = lattice_symmetrize_C66(C66,phase_lattice(ph)) C66 = crystal_symmetrize_C66(C66,phase_lattice(ph))
end associate end associate
@ -119,7 +119,7 @@ pure module function elastic_mu(ph,en,isotropic_bound) result(mu)
associate(prm => param(ph)) associate(prm => param(ph))
mu = lattice_isotropic_mu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph)) mu = crystal_isotropic_mu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph))
end associate end associate
@ -141,7 +141,7 @@ pure module function elastic_nu(ph,en,isotropic_bound) result(nu)
associate(prm => param(ph)) associate(prm => param(ph))
nu = lattice_isotropic_nu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph)) nu = crystal_isotropic_nu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph))
end associate end associate

View File

@ -149,13 +149,13 @@ module function plastic_dislotungsten_init() result(myPlasticity)
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray) N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
prm%sum_N_sl = sum(abs(N_sl)) prm%sum_N_sl = sum(abs(N_sl))
slipActive: if (prm%sum_N_sl > 0) then slipActive: if (prm%sum_N_sl > 0) then
prm%systems_sl = lattice_labels_slip(N_sl,phase_lattice(ph)) prm%systems_sl = crystal_labels_slip(N_sl,phase_lattice(ph))
prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
if (phase_lattice(ph) == 'cI') then if (phase_lattice(ph) == 'cI') then
a = pl%get_as1dReal('a_nonSchmid',defaultVal = emptyRealArray) a = pl%get_as1dReal('a_nonSchmid',defaultVal = emptyRealArray)
prm%P_nS_pos = lattice_nonSchmidMatrix(N_sl,a,+1) prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
prm%P_nS_neg = lattice_nonSchmidMatrix(N_sl,a,-1) prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
else else
prm%P_nS_pos = prm%P_sl prm%P_nS_pos = prm%P_sl
prm%P_nS_neg = prm%P_sl prm%P_nS_neg = prm%P_sl
@ -184,13 +184,13 @@ module function plastic_dislotungsten_init() result(myPlasticity)
prm%d_caron = prm%b_sl * pl%get_asReal('D_a') prm%d_caron = prm%b_sl * pl%get_asReal('D_a')
prm%f_at = prm%b_sl**3*pl%get_asReal('f_at') prm%f_at = prm%b_sl**3*pl%get_asReal('f_at')
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'), & prm%h_sl_sl = crystal_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'), &
phase_lattice(ph)) phase_lattice(ph))
prm%forestProjection = spread( f_edge,1,prm%sum_N_sl) & prm%forestProjection = spread( f_edge,1,prm%sum_N_sl) &
* lattice_forestProjection_edge (N_sl,phase_lattice(ph),phase_cOverA(ph)) & * crystal_forestProjection_edge (N_sl,phase_lattice(ph),phase_cOverA(ph)) &
+ spread(1.0_pREAL-f_edge,1,prm%sum_N_sl) & + spread(1.0_pREAL-f_edge,1,prm%sum_N_sl) &
* lattice_forestProjection_screw(N_sl,phase_lattice(ph),phase_cOverA(ph)) * crystal_forestProjection_screw(N_sl,phase_lattice(ph),phase_cOverA(ph))
! sanity checks ! sanity checks
if ( prm%D_0 < 0.0_pREAL) extmsg = trim(extmsg)//' D_0' if ( prm%D_0 < 0.0_pREAL) extmsg = trim(extmsg)//' D_0'

View File

@ -73,7 +73,7 @@ submodule(phase:plastic) dislotwin
integer, allocatable, dimension(:,:) :: & integer, allocatable, dimension(:,:) :: &
fcc_twinNucleationSlipPair ! ToDo: Better name? Is also used for trans fcc_twinNucleationSlipPair ! ToDo: Better name? Is also used for trans
character(len=:), allocatable :: & character(len=:), allocatable :: &
lattice_tr, & crystal_tr, &
isotropic_bound isotropic_bound
character(len=pSTRLEN), allocatable, dimension(:) :: & character(len=pSTRLEN), allocatable, dimension(:) :: &
output output
@ -202,9 +202,9 @@ module function plastic_dislotwin_init() result(myPlasticity)
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray) N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
prm%sum_N_sl = sum(abs(N_sl)) prm%sum_N_sl = sum(abs(N_sl))
slipActive: if (prm%sum_N_sl > 0) then slipActive: if (prm%sum_N_sl > 0) then
prm%systems_sl = lattice_labels_slip(N_sl,phase_lattice(ph)) prm%systems_sl = crystal_labels_slip(N_sl,phase_lattice(ph))
prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%n0_sl = lattice_slip_normal(N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%n0_sl = crystal_slip_normal(N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%extendedDislocations = pl%get_asBool('extend_dislocations',defaultVal=.false.) prm%extendedDislocations = pl%get_asBool('extend_dislocations',defaultVal=.false.)
prm%omitDipoles = pl%get_asBool('omit_dipoles', defaultVal=.false.) prm%omitDipoles = pl%get_asBool('omit_dipoles', defaultVal=.false.)
@ -226,15 +226,15 @@ module function plastic_dislotwin_init() result(myPlasticity)
defaultVal=[(0.0_pREAL,i=1,size(N_sl))]),N_sl) defaultVal=[(0.0_pREAL,i=1,size(N_sl))]),N_sl)
prm%d_caron = prm%b_sl * pl%get_asReal('D_a') prm%d_caron = prm%b_sl * pl%get_asReal('D_a')
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'),phase_lattice(ph)) prm%h_sl_sl = crystal_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'),phase_lattice(ph))
prm%forestProjection = spread( f_edge,1,prm%sum_N_sl) & prm%forestProjection = spread( f_edge,1,prm%sum_N_sl) &
* lattice_forestProjection_edge (N_sl,phase_lattice(ph),phase_cOverA(ph)) & * crystal_forestProjection_edge (N_sl,phase_lattice(ph),phase_cOverA(ph)) &
+ spread(1.0_pREAL-f_edge,1,prm%sum_N_sl) & + spread(1.0_pREAL-f_edge,1,prm%sum_N_sl) &
* lattice_forestProjection_screw(N_sl,phase_lattice(ph),phase_cOverA(ph)) * crystal_forestProjection_screw(N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%fccTwinTransNucleation = phase_lattice(ph) == 'cF' .and. N_sl(1) == 12 prm%fccTwinTransNucleation = phase_lattice(ph) == 'cF' .and. N_sl(1) == 12
if (prm%fccTwinTransNucleation) prm%fcc_twinNucleationSlipPair = lattice_CF_TWINNUCLEATIONSLIPPAIR if (prm%fccTwinTransNucleation) prm%fcc_twinNucleationSlipPair = crystal_CF_TWINNUCLEATIONSLIPPAIR
! multiplication factor according to crystal structure (nearest neighbors bcc vs fcc/hex) ! multiplication factor according to crystal structure (nearest neighbors bcc vs fcc/hex)
! details: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981 ! details: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
@ -274,9 +274,9 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%N_tw = pl%get_as1dInt('N_tw', defaultVal=emptyIntArray) prm%N_tw = pl%get_as1dInt('N_tw', defaultVal=emptyIntArray)
prm%sum_N_tw = sum(abs(prm%N_tw)) prm%sum_N_tw = sum(abs(prm%N_tw))
twinActive: if (prm%sum_N_tw > 0) then twinActive: if (prm%sum_N_tw > 0) then
prm%systems_tw = lattice_labels_twin(prm%N_tw,phase_lattice(ph)) prm%systems_tw = crystal_labels_twin(prm%N_tw,phase_lattice(ph))
prm%P_tw = lattice_SchmidMatrix_twin(prm%N_tw,phase_lattice(ph),phase_cOverA(ph)) prm%P_tw = crystal_SchmidMatrix_twin(prm%N_tw,phase_lattice(ph),phase_cOverA(ph))
prm%gamma_char_tw = lattice_characteristicShear_Twin(prm%N_tw,phase_lattice(ph),phase_cOverA(ph)) prm%gamma_char_tw = crystal_characteristicShear_Twin(prm%N_tw,phase_lattice(ph),phase_cOverA(ph))
prm%L_tw = pl%get_asReal('L_tw') prm%L_tw = pl%get_asReal('L_tw')
prm%i_tw = pl%get_asReal('i_tw') prm%i_tw = pl%get_asReal('i_tw')
@ -285,7 +285,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%t_tw = math_expand(pl%get_as1dReal('t_tw', requiredSize=size(prm%N_tw)),prm%N_tw) prm%t_tw = math_expand(pl%get_as1dReal('t_tw', requiredSize=size(prm%N_tw)),prm%N_tw)
prm%r = math_expand(pl%get_as1dReal('p_tw', requiredSize=size(prm%N_tw)),prm%N_tw) prm%r = math_expand(pl%get_as1dReal('p_tw', requiredSize=size(prm%N_tw)),prm%N_tw)
prm%h_tw_tw = lattice_interaction_TwinByTwin(prm%N_tw,pl%get_as1dReal('h_tw-tw'), & prm%h_tw_tw = crystal_interaction_TwinByTwin(prm%N_tw,pl%get_as1dReal('h_tw-tw'), &
phase_lattice(ph)) phase_lattice(ph))
! sanity checks ! sanity checks
@ -309,7 +309,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%N_tr = pl%get_as1dInt('N_tr', defaultVal=emptyIntArray) prm%N_tr = pl%get_as1dInt('N_tr', defaultVal=emptyIntArray)
prm%sum_N_tr = sum(abs(prm%N_tr)) prm%sum_N_tr = sum(abs(prm%N_tr))
transActive: if (prm%sum_N_tr > 0) then transActive: if (prm%sum_N_tr > 0) then
prm%P_tr = lattice_SchmidMatrix_trans(prm%N_tr,'hP',prm%cOverA_hP) prm%P_tr = crystal_SchmidMatrix_trans(prm%N_tr,'hP',prm%cOverA_hP)
prm%Delta_G = polynomial(pl,'Delta_G','T') prm%Delta_G = polynomial(pl,'Delta_G','T')
prm%i_tr = pl%get_asReal('i_tr') prm%i_tr = pl%get_asReal('i_tr')
@ -324,7 +324,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
a_cF = prm%b_tr(1)*sqrt(6.0_pREAL) ! b_tr is Shockley partial a_cF = prm%b_tr(1)*sqrt(6.0_pREAL) ! b_tr is Shockley partial
prm%h = 5.0_pREAL * a_cF/sqrt(3.0_pREAL) prm%h = 5.0_pREAL * a_cF/sqrt(3.0_pREAL)
prm%rho = 4.0_pREAL/(sqrt(3.0_pREAL)*a_cF**2)/N_A prm%rho = 4.0_pREAL/(sqrt(3.0_pREAL)*a_cF**2)/N_A
prm%h_tr_tr = lattice_interaction_TransByTrans(prm%N_tr,pl%get_as1dReal('h_tr-tr'),& prm%h_tr_tr = crystal_interaction_TransByTrans(prm%N_tr,pl%get_as1dReal('h_tr-tr'),&
phase_lattice(ph)) phase_lattice(ph))
@ -372,13 +372,13 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%Gamma_sf = polynomial(pl,'Gamma_sf','T') prm%Gamma_sf = polynomial(pl,'Gamma_sf','T')
slipAndTwinActive: if (prm%sum_N_sl * prm%sum_N_tw > 0) then slipAndTwinActive: if (prm%sum_N_sl * prm%sum_N_tw > 0) then
prm%h_sl_tw = lattice_interaction_SlipByTwin(N_sl,prm%N_tw,pl%get_as1dReal('h_sl-tw'), & prm%h_sl_tw = crystal_interaction_SlipByTwin(N_sl,prm%N_tw,pl%get_as1dReal('h_sl-tw'), &
phase_lattice(ph)) phase_lattice(ph))
if (prm%fccTwinTransNucleation .and. size(prm%N_tw) /= 1) extmsg = trim(extmsg)//' N_tw: nucleation' if (prm%fccTwinTransNucleation .and. size(prm%N_tw) /= 1) extmsg = trim(extmsg)//' N_tw: nucleation'
end if slipAndTwinActive end if slipAndTwinActive
slipAndTransActive: if (prm%sum_N_sl * prm%sum_N_tr > 0) then slipAndTransActive: if (prm%sum_N_sl * prm%sum_N_tr > 0) then
prm%h_sl_tr = lattice_interaction_SlipByTrans(N_sl,prm%N_tr,pl%get_as1dReal('h_sl-tr'), & prm%h_sl_tr = crystal_interaction_SlipByTrans(N_sl,prm%N_tr,pl%get_as1dReal('h_sl-tr'), &
phase_lattice(ph)) phase_lattice(ph))
if (prm%fccTwinTransNucleation .and. size(prm%N_tr) /= 1) extmsg = trim(extmsg)//' N_tr: nucleation' if (prm%fccTwinTransNucleation .and. size(prm%N_tr) /= 1) extmsg = trim(extmsg)//' N_tr: nucleation'
end if slipAndTransActive end if slipAndTransActive
@ -480,7 +480,7 @@ module function plastic_dislotwin_homogenizedC(ph,en) result(homogenizedC)
homogenizedC = f_matrix * C homogenizedC = f_matrix * C
twinActive: if (prm%sum_N_tw > 0) then twinActive: if (prm%sum_N_tw > 0) then
C66_tw = lattice_C66_twin(prm%N_tw,C,phase_lattice(ph),phase_cOverA(ph)) C66_tw = crystal_C66_twin(prm%N_tw,C,phase_lattice(ph),phase_cOverA(ph))
do i = 1, prm%sum_N_tw do i = 1, prm%sum_N_tw
homogenizedC = homogenizedC & homogenizedC = homogenizedC &
+ stt%f_tw(i,en)*C66_tw(1:6,1:6,i) + stt%f_tw(i,en)*C66_tw(1:6,1:6,i)
@ -488,7 +488,7 @@ module function plastic_dislotwin_homogenizedC(ph,en) result(homogenizedC)
end if twinActive end if twinActive
transActive: if (prm%sum_N_tr > 0) then transActive: if (prm%sum_N_tr > 0) then
C66_tr = lattice_C66_trans(prm%N_tr,C,'hP',prm%cOverA_hP) C66_tr = crystal_C66_trans(prm%N_tr,C,'hP',prm%cOverA_hP)
do i = 1, prm%sum_N_tr do i = 1, prm%sum_N_tr
homogenizedC = homogenizedC & homogenizedC = homogenizedC &
+ stt%f_tr(i,en)*C66_tr(1:6,1:6,i) + stt%f_tr(i,en)*C66_tr(1:6,1:6,i)

View File

@ -139,14 +139,14 @@ module function plastic_kinehardening_init() result(myPlasticity)
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray) N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
prm%sum_N_sl = sum(abs(N_sl)) prm%sum_N_sl = sum(abs(N_sl))
slipActive: if (prm%sum_N_sl > 0) then slipActive: if (prm%sum_N_sl > 0) then
prm%systems_sl = lattice_labels_slip(N_sl,phase_lattice(ph)) prm%systems_sl = crystal_labels_slip(N_sl,phase_lattice(ph))
prm%P = lattice_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%P = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
if (phase_lattice(ph) == 'cI') then if (phase_lattice(ph) == 'cI') then
a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray) a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray)
prm%nonSchmidActive = size(a) > 0 prm%nonSchmidActive = size(a) > 0
prm%P_nS_pos = lattice_nonSchmidMatrix(N_sl,a,+1) prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
prm%P_nS_neg = lattice_nonSchmidMatrix(N_sl,a,-1) prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
else else
prm%P_nS_pos = prm%P prm%P_nS_pos = prm%P
prm%P_nS_neg = prm%P prm%P_nS_neg = prm%P
@ -155,7 +155,7 @@ module function plastic_kinehardening_init() result(myPlasticity)
prm%dot_gamma_0 = pl%get_asReal('dot_gamma_0') prm%dot_gamma_0 = pl%get_asReal('dot_gamma_0')
prm%n = pl%get_asReal('n') prm%n = pl%get_asReal('n')
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'), & prm%h_sl_sl = crystal_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'), &
phase_lattice(ph)) phase_lattice(ph))
xi_0 = math_expand(pl%get_as1dReal('xi_0', requiredSize=size(N_sl)),N_sl) xi_0 = math_expand(pl%get_as1dReal('xi_0', requiredSize=size(N_sl)),N_sl)

View File

@ -249,30 +249,30 @@ module function plastic_nonlocal_init() result(myPlasticity)
ini%N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray) ini%N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
prm%sum_N_sl = sum(abs(ini%N_sl)) prm%sum_N_sl = sum(abs(ini%N_sl))
slipActive: if (prm%sum_N_sl > 0) then slipActive: if (prm%sum_N_sl > 0) then
prm%systems_sl = lattice_labels_slip(ini%N_sl,phase_lattice(ph)) prm%systems_sl = crystal_labels_slip(ini%N_sl,phase_lattice(ph))
prm%P_sl = lattice_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph), phase_cOverA(ph)) prm%P_sl = crystal_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph), phase_cOverA(ph))
if (phase_lattice(ph) == 'cI') then if (phase_lattice(ph) == 'cI') then
a = pl%get_as1dReal('a_nonSchmid',defaultVal = emptyRealArray) a = pl%get_as1dReal('a_nonSchmid',defaultVal = emptyRealArray)
if (size(a) > 0) prm%nonSchmidActive = .true. if (size(a) > 0) prm%nonSchmidActive = .true.
prm%P_nS_pos = lattice_nonSchmidMatrix(ini%N_sl,a,+1) prm%P_nS_pos = crystal_nonSchmidMatrix(ini%N_sl,a,+1)
prm%P_nS_neg = lattice_nonSchmidMatrix(ini%N_sl,a,-1) prm%P_nS_neg = crystal_nonSchmidMatrix(ini%N_sl,a,-1)
else else
prm%P_nS_pos = prm%P_sl prm%P_nS_pos = prm%P_sl
prm%P_nS_neg = prm%P_sl prm%P_nS_neg = prm%P_sl
end if end if
prm%h_sl_sl = lattice_interaction_SlipBySlip(ini%N_sl,pl%get_as1dReal('h_sl-sl'), & prm%h_sl_sl = crystal_interaction_SlipBySlip(ini%N_sl,pl%get_as1dReal('h_sl-sl'), &
phase_lattice(ph)) phase_lattice(ph))
prm%forestProjection_edge = lattice_forestProjection_edge (ini%N_sl,phase_lattice(ph),& prm%forestProjection_edge = crystal_forestProjection_edge (ini%N_sl,phase_lattice(ph),&
phase_cOverA(ph)) phase_cOverA(ph))
prm%forestProjection_screw = lattice_forestProjection_screw(ini%N_sl,phase_lattice(ph),& prm%forestProjection_screw = crystal_forestProjection_screw(ini%N_sl,phase_lattice(ph),&
phase_cOverA(ph)) phase_cOverA(ph))
prm%slip_direction = lattice_slip_direction (ini%N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%slip_direction = crystal_slip_direction (ini%N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%slip_transverse = lattice_slip_transverse(ini%N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%slip_transverse = crystal_slip_transverse(ini%N_sl,phase_lattice(ph),phase_cOverA(ph))
prm%slip_normal = lattice_slip_normal (ini%N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%slip_normal = crystal_slip_normal (ini%N_sl,phase_lattice(ph),phase_cOverA(ph))
! collinear systems (only for octahedral slip systems in fcc) ! collinear systems (only for octahedral slip systems in fcc)
allocate(prm%colinearSystem(prm%sum_N_sl), source = -1) allocate(prm%colinearSystem(prm%sum_N_sl), source = -1)

View File

@ -149,21 +149,21 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
prm%h_int = math_expand(pl%get_as1dReal('h_int', requiredSize=size(N_sl), & prm%h_int = math_expand(pl%get_as1dReal('h_int', requiredSize=size(N_sl), &
defaultVal=[(0.0_pREAL,i=1,size(N_sl))]),N_sl) defaultVal=[(0.0_pREAL,i=1,size(N_sl))]),N_sl)
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'),phase_lattice(ph)) prm%h_sl_sl = crystal_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'),phase_lattice(ph))
prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph)) prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
if (phase_lattice(ph) == 'cI') then if (phase_lattice(ph) == 'cI') then
a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray) a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray)
if (size(a) > 0) prm%nonSchmidActive = .true. if (size(a) > 0) prm%nonSchmidActive = .true.
prm%P_nS_pos = lattice_nonSchmidMatrix(N_sl,a,+1) prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
prm%P_nS_neg = lattice_nonSchmidMatrix(N_sl,a,-1) prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
else else
prm%P_nS_pos = prm%P_sl prm%P_nS_pos = prm%P_sl
prm%P_nS_neg = prm%P_sl prm%P_nS_neg = prm%P_sl
end if end if
prm%systems_sl = lattice_labels_slip(N_sl,phase_lattice(ph)) prm%systems_sl = crystal_labels_slip(N_sl,phase_lattice(ph))
! sanity checks ! sanity checks
if ( prm%dot_gamma_0_sl <= 0.0_pREAL) extmsg = trim(extmsg)//' dot_gamma_0_sl' if ( prm%dot_gamma_0_sl <= 0.0_pREAL) extmsg = trim(extmsg)//' dot_gamma_0_sl'
@ -196,11 +196,11 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
xi_0_tw = math_expand(pl%get_as1dReal('xi_0_tw',requiredSize=size(N_tw)),N_tw) xi_0_tw = math_expand(pl%get_as1dReal('xi_0_tw',requiredSize=size(N_tw)),N_tw)
prm%gamma_char = lattice_characteristicShear_twin(N_tw,phase_lattice(ph),phase_cOverA(ph)) prm%gamma_char = crystal_characteristicShear_twin(N_tw,phase_lattice(ph),phase_cOverA(ph))
prm%h_tw_tw = lattice_interaction_TwinByTwin(N_tw,pl%get_as1dReal('h_tw-tw'),phase_lattice(ph)) prm%h_tw_tw = crystal_interaction_TwinByTwin(N_tw,pl%get_as1dReal('h_tw-tw'),phase_lattice(ph))
prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase_lattice(ph),phase_cOverA(ph)) prm%P_tw = crystal_SchmidMatrix_twin(N_tw,phase_lattice(ph),phase_cOverA(ph))
prm%systems_tw = lattice_labels_twin(N_tw,phase_lattice(ph)) prm%systems_tw = crystal_labels_twin(N_tw,phase_lattice(ph))
! sanity checks ! sanity checks
if (prm%dot_gamma_0_tw <= 0.0_pREAL) extmsg = trim(extmsg)//' dot_gamma_0_tw' if (prm%dot_gamma_0_tw <= 0.0_pREAL) extmsg = trim(extmsg)//' dot_gamma_0_tw'
@ -216,9 +216,9 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
! slip-twin related parameters ! slip-twin related parameters
slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then
prm%h_0_tw_sl = pl%get_asReal('h_0_tw-sl') prm%h_0_tw_sl = pl%get_asReal('h_0_tw-sl')
prm%h_sl_tw = lattice_interaction_SlipByTwin(N_sl,N_tw,pl%get_as1dReal('h_sl-tw'), & prm%h_sl_tw = crystal_interaction_SlipByTwin(N_sl,N_tw,pl%get_as1dReal('h_sl-tw'), &
phase_lattice(ph)) phase_lattice(ph))
prm%h_tw_sl = lattice_interaction_TwinBySlip(N_tw,N_sl,pl%get_as1dReal('h_tw-sl'), & prm%h_tw_sl = crystal_interaction_TwinBySlip(N_tw,N_sl,pl%get_as1dReal('h_tw-sl'), &
phase_lattice(ph)) phase_lattice(ph))
else slipAndTwinActive else slipAndTwinActive
allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0 allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0

View File

@ -112,7 +112,7 @@ module subroutine thermal_init(phases)
param(ph)%C_p = thermal%get_asReal('C_p') param(ph)%C_p = thermal%get_asReal('C_p')
param(ph)%K(1,1) = thermal%get_asReal('K_11') param(ph)%K(1,1) = thermal%get_asReal('K_11')
if (any(phase_lattice(ph) == ['hP','tI'])) param(ph)%K(3,3) = thermal%get_asReal('K_33') if (any(phase_lattice(ph) == ['hP','tI'])) param(ph)%K(3,3) = thermal%get_asReal('K_33')
param(ph)%K = lattice_symmetrize_33(param(ph)%K,phase_lattice(ph)) param(ph)%K = crystal_symmetrize_33(param(ph)%K,phase_lattice(ph))
#if defined(__GFORTRAN__) #if defined(__GFORTRAN__)
param(ph)%output = output_as1dStr(thermal) param(ph)%output = output_as1dStr(thermal)