check agreement between rate and time #points, extrapolate to outside

This commit is contained in:
Philip Eisenlohr 2016-10-18 16:23:52 -04:00
parent ff2f827a68
commit 85076ad613
1 changed files with 38 additions and 30 deletions

View File

@ -1,6 +1,7 @@
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for thermal source due to plastic dissipation !> @author Philip Eisenlohr, Michigan State University
!> @brief material subroutine for variable heat source
!> @details to be done !> @details to be done
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module source_thermal_externalheat module source_thermal_externalheat
@ -10,24 +11,24 @@ module source_thermal_externalheat
implicit none implicit none
private private
integer(pInt), dimension(:), allocatable, public, protected :: & integer(pInt), dimension(:), allocatable, public, protected :: &
source_thermal_externalheat_sizePostResults, & !< cumulative size of post results source_thermal_externalheat_sizePostResults, & !< cumulative size of post results
source_thermal_externalheat_offset, & !< which source is my current thermal dissipation mechanism? source_thermal_externalheat_offset, & !< which source is my current thermal dissipation mechanism?
source_thermal_externalheat_instance !< instance of thermal dissipation source mechanism source_thermal_externalheat_instance !< instance of thermal dissipation source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: & integer(pInt), dimension(:,:), allocatable, target, public :: &
source_thermal_externalheat_sizePostResult !< size of each post result output source_thermal_externalheat_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: & character(len=64), dimension(:,:), allocatable, target, public :: &
source_thermal_externalheat_output !< name of each post result output source_thermal_externalheat_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: & integer(pInt), dimension(:), allocatable, target, public :: &
source_thermal_externalheat_Noutput !< number of outputs per instance of this source source_thermal_externalheat_Noutput !< number of outputs per instance of this source
integer(pInt), dimension(:), allocatable, private :: & integer(pInt), dimension(:), allocatable, private :: &
source_thermal_externalheat_nIntervals source_thermal_externalheat_nIntervals
real(pReal), dimension(:,:), allocatable, private :: & real(pReal), dimension(:,:), allocatable, private :: &
source_thermal_externalheat_time, & source_thermal_externalheat_time, &
source_thermal_externalheat_rate source_thermal_externalheat_rate
@ -136,23 +137,26 @@ subroutine source_thermal_externalheat_init(fileUnit)
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_thermal_externalheat_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_thermal_externalheat_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_thermal_externalheat_instance(phase) ! which instance of my source is present phase instance = source_thermal_externalheat_instance(phase) ! which instance of my source is present phase
chunkPos = IO_stringPos(line) chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag) select case(tag)
case ('externalheat_time') case ('externalheat_time','externalheat_rate')
if (chunkPos(1) <= 2_pInt) & if (chunkPos(1) <= 2_pInt) &
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//SOURCE_thermal_externalheat_label//')') call IO_error(150_pInt,ext_msg=trim(tag)//' ('//SOURCE_thermal_externalheat_label//')')
if ( source_thermal_externalheat_nIntervals(instance) > 0_pInt &
.and. source_thermal_externalheat_nIntervals(instance) /= chunkPos(1) - 2_pInt) &
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//SOURCE_thermal_externalheat_label//')')
source_thermal_externalheat_nIntervals(instance) = chunkPos(1) - 2_pInt source_thermal_externalheat_nIntervals(instance) = chunkPos(1) - 2_pInt
do interval = 1, source_thermal_externalheat_nIntervals(instance) + 1_pInt do interval = 1, source_thermal_externalheat_nIntervals(instance) + 1_pInt
temp_time(instance, interval) = IO_floatValue(line,chunkPos,1_pInt + interval) select case(tag)
case ('externalheat_time')
temp_time(instance, interval) = IO_floatValue(line,chunkPos,1_pInt + interval)
case ('externalheat_rate')
temp_rate(instance, interval) = IO_floatValue(line,chunkPos,1_pInt + interval)
end select
enddo enddo
case ('externalheat_rate')
do interval = 1, source_thermal_externalheat_nIntervals(instance) + 1_pInt
temp_rate(instance, interval) = IO_floatValue(line,chunkPos,1_pInt + interval)
enddo
end select end select
endif; endif endif; endif
enddo parsingFile enddo parsingFile
@ -162,13 +166,13 @@ subroutine source_thermal_externalheat_init(fileUnit)
initializeInstances: do phase = 1_pInt, material_Nphase initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_thermal_externalheat_ID)) then if (any(phase_source(:,phase) == SOURCE_thermal_externalheat_ID)) then
NofMyPhase=count(material_phase==phase) NofMyPhase = count(material_phase==phase)
instance = source_thermal_externalheat_instance(phase) instance = source_thermal_externalheat_instance(phase)
sourceOffset = source_thermal_externalheat_offset(phase) sourceOffset = source_thermal_externalheat_offset(phase)
source_thermal_externalheat_time(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) = & source_thermal_externalheat_time(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) = &
temp_time(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) temp_time(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt)
source_thermal_externalheat_rate(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) = & source_thermal_externalheat_rate(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) = &
temp_rate(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) temp_rate(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt)
sizeDotState = 1_pInt sizeDotState = 1_pInt
sizeDeltaState = 0_pInt sizeDeltaState = 0_pInt
@ -200,7 +204,8 @@ subroutine source_thermal_externalheat_init(fileUnit)
end subroutine source_thermal_externalheat_init end subroutine source_thermal_externalheat_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state !> @brief rate of change of state
!> @details state only contains current time to linearly interpolate given heat powers
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine source_thermal_externalheat_dotState(ipc, ip, el) subroutine source_thermal_externalheat_dotState(ipc, ip, el)
use material, only: & use material, only: &
@ -221,12 +226,12 @@ subroutine source_thermal_externalheat_dotState(ipc, ip, el)
constituent = phasememberAt(ipc,ip,el) constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_thermal_externalheat_offset(phase) sourceOffset = source_thermal_externalheat_offset(phase)
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = 1.0_pReal sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = 1.0_pReal ! state is current time
end subroutine source_thermal_externalheat_dotState end subroutine source_thermal_externalheat_dotState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate !> @brief returns local heat generation rate
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_dT, ipc, ip, el) subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_dT, ipc, ip, el)
use material, only: & use material, only: &
@ -244,21 +249,24 @@ subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_dT, ipc,
integer(pInt) :: & integer(pInt) :: &
instance, phase, constituent, sourceOffset, interval instance, phase, constituent, sourceOffset, interval
real(pReal) :: & real(pReal) :: &
norm_time frac_time
phase = phaseAt(ipc,ip,el) phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el) constituent = phasememberAt(ipc,ip,el)
instance = source_thermal_externalheat_instance(phase) instance = source_thermal_externalheat_instance(phase)
sourceOffset = source_thermal_externalheat_offset(phase) sourceOffset = source_thermal_externalheat_offset(phase)
do interval = 1, source_thermal_externalheat_nIntervals(instance) do interval = 1, source_thermal_externalheat_nIntervals(instance) ! scan through all rate segments
norm_time = (sourceState(phase)%p(sourceOffset)%state(1,constituent) - & frac_time = (sourceState(phase)%p(sourceOffset)%state(1,constituent) - &
source_thermal_externalheat_time(instance,interval)) / & source_thermal_externalheat_time(instance,interval)) / &
(source_thermal_externalheat_time(instance,interval+1) - & (source_thermal_externalheat_time(instance,interval+1) - &
source_thermal_externalheat_time(instance,interval)) source_thermal_externalheat_time(instance,interval)) ! fractional time within segment
if (norm_time >= 0.0_pReal .and. norm_time < 1.0_pReal) & if ( (frac_time < 0.0_pReal .and. interval == 1) &
TDot = source_thermal_externalheat_rate(instance,interval ) * (1.0_pReal - norm_time) + & .or. (frac_time >= 1.0_pReal .and. interval == source_thermal_externalheat_nIntervals(instance)) &
source_thermal_externalheat_rate(instance,interval+1) * norm_time .or. (frac_time >= 0.0_pReal .and. frac_time < 1.0_pReal) ) &
TDot = source_thermal_externalheat_rate(instance,interval ) * (1.0_pReal - frac_time) + &
source_thermal_externalheat_rate(instance,interval+1) * frac_time ! interpolate heat rate between segment boundaries...
! ...or extrapolate if outside of bounds
enddo enddo
dTDot_dT = 0.0 dTDot_dT = 0.0