condensed multiple import statements into general one at module start.

This commit is contained in:
Philip Eisenlohr 2015-06-15 15:36:58 +00:00
parent a5b3e9d64c
commit 83547ce29f
1 changed files with 45 additions and 47 deletions

View File

@ -1,5 +1,7 @@
# -*- coding: UTF-8 no BOM -*-
import math,numpy as np
### --- COLOR CLASS --------------------------------------------------
class Color():
@ -8,7 +10,6 @@ class Color():
Color('model',[vector]).To convert and copy color from one space to other, use the methods
convertTo('model') and expressAs('model')spectively
'''
import numpy
__slots__ = [
'model',
@ -19,8 +20,7 @@ class Color():
# ------------------------------------------------------------------
def __init__(self,
model = 'RGB',
color = numpy.zeros(3,'d')):
import numpy
color = np.zeros(3,'d')):
self.__transforms__ = \
{'HSL': {'index': 0, 'next': self._HSL2RGB},
@ -42,7 +42,7 @@ class Color():
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
self.model = model
self.color = numpy.array(color,'d')
self.color = np.array(color,'d')
# ------------------------------------------------------------------
@ -83,7 +83,7 @@ class Color():
# with S,L,H,R,G,B running from 0 to 1
# from http://en.wikipedia.org/wiki/HSL_and_HSV
def _HSL2RGB(self):
import numpy
if self.model != 'HSL': return
sextant = self.color[0]*6.0
@ -91,14 +91,14 @@ class Color():
x = c*(1.0 - abs(sextant%2 - 1.0))
m = self.color[2] - 0.5*c
converted = Color('RGB',numpy.array([
[c+m, x+m, m],
[x+m, c+m, m],
[m, c+m, x+m],
[m, x+m, c+m],
[x+m, m, c+m],
[c+m, m, x+m],
][int(sextant)],'d'))
converted = Color('RGB',np.array([
[c+m, x+m, m],
[x+m, c+m, m],
[m, c+m, x+m],
[m, x+m, c+m],
[x+m, m, c+m],
[c+m, m, x+m],
][int(sextant)],'d'))
self.model = converted.model
self.color = converted.color
@ -108,10 +108,10 @@ class Color():
# with S,L,H,R,G,B running from 0 to 1
# from http://130.113.54.154/~monger/hsl-rgb.html
def _RGB2HSL(self):
import numpy
if self.model != 'RGB': return
HSL = numpy.zeros(3,'d')
HSL = np.zeros(3,'d')
maxcolor = self.color.max()
mincolor = self.color.min()
HSL[2] = (maxcolor + mincolor)/2.0
@ -146,19 +146,19 @@ class Color():
# with all values in the range of 0 to 1
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
def _RGB2XYZ(self):
import numpy
if self.model != 'RGB': return
XYZ = numpy.zeros(3,'d')
RGB_lin = numpy.zeros(3,'d')
convert = numpy.array([[0.412453,0.357580,0.180423],
[0.212671,0.715160,0.072169],
[0.019334,0.119193,0.950227]])
XYZ = np.zeros(3,'d')
RGB_lin = np.zeros(3,'d')
convert = np.array([[0.412453,0.357580,0.180423],
[0.212671,0.715160,0.072169],
[0.019334,0.119193,0.950227]])
for i in xrange(3):
if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
else: RGB_lin[i] = self.color[i] /12.92
XYZ = numpy.dot(convert,RGB_lin)
XYZ = np.dot(convert,RGB_lin)
for i in xrange(3):
XYZ[i] = max(XYZ[i],0.0)
@ -173,14 +173,14 @@ class Color():
# with all values in the range of 0 to 1
# from http://www.cs.rit.edu/~ncs/color/t_convert.html
def _XYZ2RGB(self):
import numpy
if self.model != 'XYZ': return
convert = numpy.array([[ 3.240479,-1.537150,-0.498535],
[-0.969256, 1.875992, 0.041556],
[ 0.055648,-0.204043, 1.057311]])
RGB_lin = numpy.dot(convert,self.color)
RGB = numpy.zeros(3,'d')
convert = np.array([[ 3.240479,-1.537150,-0.498535],
[-0.969256, 1.875992, 0.041556],
[ 0.055648,-0.204043, 1.057311]])
RGB_lin = np.dot(convert,self.color)
RGB = np.zeros(3,'d')
for i in xrange(3):
if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
@ -202,11 +202,11 @@ class Color():
# with XYZ in the range of 0 to 1
# from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
def _CIELAB2XYZ(self):
import numpy
if self.model != 'CIELAB': return
ref_white = numpy.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
XYZ = numpy.zeros(3,'d')
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
XYZ = np.zeros(3,'d')
XYZ[1] = (self.color[0] + 16.0 ) / 116.0
XYZ[0] = XYZ[1] + self.color[1]/ 500.0
@ -226,19 +226,19 @@ class Color():
# with XYZ in the range of 0 to 1
# from http://en.wikipedia.org/wiki/Lab_color_space, http://www.cs.rit.edu/~ncs/color/t_convert.html
def _XYZ2CIELAB(self):
import numpy
if self.model != 'XYZ': return
ref_white = numpy.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
XYZ = self.color/ref_white
for i in xrange(len(XYZ)):
if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0)
else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0
converted = Color('CIELAB', numpy.array([ 116.0 * XYZ[1] - 16.0,
500.0 * (XYZ[0] - XYZ[1]),
200.0 * (XYZ[1] - XYZ[2]) ]))
converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0,
500.0 * (XYZ[0] - XYZ[1]),
200.0 * (XYZ[1] - XYZ[2]) ]))
self.model = converted.model
self.color = converted.color
@ -247,11 +247,11 @@ class Color():
# convert CIE Lab to Msh colorspace
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
def _CIELAB2MSH(self):
import numpy, math
if self.model != 'CIELAB': return
Msh = numpy.zeros(3,'d')
Msh[0] = math.sqrt(numpy.dot(self.color,self.color))
Msh = np.zeros(3,'d')
Msh[0] = math.sqrt(np.dot(self.color,self.color))
if (Msh[0] > 0.001):
Msh[1] = math.acos(self.color[0]/Msh[0])
if (self.color[1] != 0.0):
@ -267,10 +267,10 @@ class Color():
# s,h in radians
# from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
def _MSH2CIELAB(self):
import numpy, math
if self.model != 'MSH': return
Lab = numpy.zeros(3,'d')
Lab = np.zeros(3,'d')
Lab[0] = self.color[0] * math.cos(self.color[1])
Lab[1] = self.color[0] * math.sin(self.color[1]) * math.cos(self.color[2])
Lab[2] = self.color[0] * math.sin(self.color[1]) * math.sin(self.color[2])
@ -346,8 +346,6 @@ class Colormap():
def interpolate_Msh(lo, hi, frac):
import math,numpy as np
def rad_diff(a,b):
return abs(a[2]-b[2])
@ -381,8 +379,8 @@ class Colormap():
linearly interpolate color at given fraction between lower and higher color in model of lower color
'''
interpolation = (1.0 - frac) * numpy.array(lo.color[:]) \
+ frac * numpy.array(hi.expressAs(lo.model).color[:])
interpolation = (1.0 - frac) * np.array(lo.color[:]) \
+ frac * np.array(hi.expressAs(lo.model).color[:])
return Color(lo.model,interpolation)
@ -411,7 +409,7 @@ class Colormap():
'''
format = format.lower() # consistent comparison basis
frac = 0.5*(numpy.array(crop) + 1.0) # rescale crop range to fractions
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).expressAs(model).color for i in xrange(steps)]
if format == 'paraview':