added yield criterion of facet potential
This commit is contained in:
parent
0750f7fd01
commit
82758bd90f
|
@ -6,6 +6,8 @@ import numpy as np
|
||||||
from optparse import OptionParser
|
from optparse import OptionParser
|
||||||
import damask
|
import damask
|
||||||
from damask.util import leastsqBound
|
from damask.util import leastsqBound
|
||||||
|
from scipy.optimize import nnls
|
||||||
|
import math
|
||||||
|
|
||||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||||
scriptID = ' '.join([scriptName,damask.version])
|
scriptID = ' '.join([scriptName,damask.version])
|
||||||
|
@ -14,23 +16,24 @@ def runFit(exponent, eqStress, dimension, criterion):
|
||||||
global threads, myFit, myLoad
|
global threads, myFit, myLoad
|
||||||
global fitResidual
|
global fitResidual
|
||||||
global Guess, dDim
|
global Guess, dDim
|
||||||
|
|
||||||
|
if options.criterion!='facet':
|
||||||
|
dDim = dimension - 3
|
||||||
|
nParas = len(fitCriteria[criterion]['bound'][dDim])
|
||||||
|
nExpo = fitCriteria[criterion]['nExpo']
|
||||||
|
|
||||||
dDim = dimension - 3
|
if exponent > 0.0: # User defined exponents
|
||||||
nParas = len(fitCriteria[criterion]['bound'][dDim])
|
nParas = nParas-nExpo
|
||||||
nExpo = fitCriteria[criterion]['nExpo']
|
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas]
|
||||||
|
|
||||||
if exponent > 0.0: # User defined exponents
|
for i in range(nParas):
|
||||||
nParas = nParas-nExpo
|
temp = fitCriteria[criterion]['bound'][dDim][i]
|
||||||
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:nParas]
|
if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
|
||||||
|
Guess.append(1.0)
|
||||||
for i in range(nParas):
|
else:
|
||||||
temp = fitCriteria[criterion]['bound'][dDim][i]
|
g = (temp[0]+temp[1])/2.0
|
||||||
if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
|
if g == 0: g = temp[1]*0.5
|
||||||
Guess.append(1.0)
|
Guess.append(g)
|
||||||
else:
|
|
||||||
g = (temp[0]+temp[1])/2.0
|
|
||||||
if g == 0: g = temp[1]*0.5
|
|
||||||
Guess.append(g)
|
|
||||||
|
|
||||||
myLoad = Loadcase(options.load[0],options.load[1],options.load[2],options.flag,options.yieldValue,
|
myLoad = Loadcase(options.load[0],options.load[1],options.load[2],options.flag,options.yieldValue,
|
||||||
nSet = 10, dimension = dimension, vegter = options.criterion=='vegter')
|
nSet = 10, dimension = dimension, vegter = options.criterion=='vegter')
|
||||||
|
@ -43,9 +46,92 @@ def runFit(exponent, eqStress, dimension, criterion):
|
||||||
|
|
||||||
for t in range(options.threads):
|
for t in range(options.threads):
|
||||||
threads[t].join()
|
threads[t].join()
|
||||||
|
|
||||||
|
if options.criterion=='facet':
|
||||||
|
doFacetFit()
|
||||||
|
|
||||||
damask.util.croak('Residuals')
|
damask.util.croak('Residuals')
|
||||||
damask.util.croak(fitResidual)
|
damask.util.croak(fitResidual)
|
||||||
|
|
||||||
|
def doFacetFit():
|
||||||
|
n = options.order
|
||||||
|
Data = np.zeros((options.numpoints, 10))
|
||||||
|
for i in range(options.numpoints):
|
||||||
|
fileName = options.geometry + '_' + str(i+1) + '.yield'
|
||||||
|
while os.path.exists(fileName):
|
||||||
|
break
|
||||||
|
data_i = np.loadtxt(fileName)
|
||||||
|
|
||||||
|
sv = (data_i[0,0] + data_i[1,1] + data_i[2,2])/3.0
|
||||||
|
|
||||||
|
#convert stress and strain form the 6D to 5D space
|
||||||
|
S1 = math.sqrt(2.0)*(data_i[0,0] - data_i[1,1])/2.0
|
||||||
|
S2 = math.sqrt(6.0)*(data_i[0,0] + data_i[1,1] - 2.0*sv)/2.0
|
||||||
|
S3 = math.sqrt(2.0)*data_i[1,2]
|
||||||
|
S4 = math.sqrt(2.0)*data_i[2,0]
|
||||||
|
S5 = math.sqrt(2.0)*data_i[0,1]
|
||||||
|
|
||||||
|
E1 = math.sqrt(2.0)*(data_i[3,0]-data_i[4,1])/2.0
|
||||||
|
E2 = math.sqrt(6.0)*(data_i[3,0]+data_i[4,1])/2.0
|
||||||
|
E3 = math.sqrt(2.0)*data_i[4,2]
|
||||||
|
E4 = math.sqrt(2.0)*data_i[5,0]
|
||||||
|
E5 = math.sqrt(2.0)*data_i[3,1]
|
||||||
|
|
||||||
|
Data[i,:] = [E1,E2,E3,E4,E5,S1,S2,S3,S4,S5]
|
||||||
|
|
||||||
|
Data[:,5:] = Data[:,5:] / 100000000.0
|
||||||
|
|
||||||
|
path=os.path.join(os.getcwd(),'final.mmm')
|
||||||
|
np.savetxt(path, Data, header='', comments='', fmt='% 15.10f')
|
||||||
|
|
||||||
|
if options.dimension == 2:
|
||||||
|
reducedIndices = [0,1,4,5,6,9]
|
||||||
|
strainRateIndices = [0,1,4]
|
||||||
|
stressIndices = [5,6,9]
|
||||||
|
elif options.dimension == 3:
|
||||||
|
reducedIndices = [i for i in range(10)]
|
||||||
|
strainRateIndices = [0,1,2,3,4]
|
||||||
|
stressIndices = [5,6,7,8,9]
|
||||||
|
|
||||||
|
numDirections = Data.shape[0]
|
||||||
|
Indices = np.arange(numDirections)
|
||||||
|
sdPairs = Data[:,reducedIndices][Indices,:]
|
||||||
|
numPairs = sdPairs.shape[0]
|
||||||
|
dimensionality = sdPairs.shape[1] / 2
|
||||||
|
ds = sdPairs[:,0:dimensionality]
|
||||||
|
s = sdPairs[:,dimensionality::]
|
||||||
|
|
||||||
|
A = np.zeros((numPairs, numPairs))
|
||||||
|
B = np.ones((numPairs,))
|
||||||
|
for i in range(numPairs):
|
||||||
|
for j in range(numPairs):
|
||||||
|
lamb = 1.0
|
||||||
|
s_i = s[i,:]
|
||||||
|
ds_j = ds[j,:]
|
||||||
|
A[i,j] = lamb * (np.dot(s_i.ravel(), ds_j.ravel()) ** n)
|
||||||
|
|
||||||
|
lambdas, residuals = nnls(A, B)
|
||||||
|
nonZeroTerms = np.logical_not(np.isclose(lambdas, 0.))
|
||||||
|
numNonZeroTerms = np.sum(nonZeroTerms)
|
||||||
|
dataOut = np.zeros((numNonZeroTerms, 6))
|
||||||
|
|
||||||
|
if options.dimension == 2:
|
||||||
|
dataOut[:,0] = lambdas[nonZeroTerms]
|
||||||
|
dataOut[:,1] = ds[nonZeroTerms,:][:,0]
|
||||||
|
dataOut[:,2] = ds[nonZeroTerms,:][:,1]
|
||||||
|
dataOut[:,5] = ds[nonZeroTerms,:][:,2]
|
||||||
|
elif options.dimension == 3:
|
||||||
|
dataOut[:,0] = lambdas[nonZeroTerms]
|
||||||
|
dataOut[:,1] = ds[nonZeroTerms,:][:,0]
|
||||||
|
dataOut[:,2] = ds[nonZeroTerms,:][:,1]
|
||||||
|
dataOut[:,3] = ds[nonZeroTerms,:][:,2]
|
||||||
|
dataOut[:,4] = ds[nonZeroTerms,:][:,3]
|
||||||
|
dataOut[:,5] = ds[nonZeroTerms,:][:,4]
|
||||||
|
|
||||||
|
headerText = 'facet\n 1 \n F \n {0:<3d} \n {1:<3d} '.format(n, numNonZeroTerms)
|
||||||
|
path=os.path.join(os.getcwd(),'facet_o{0}.fac'.format(n))
|
||||||
|
np.savetxt(path, dataOut, header=headerText, comments='', fmt='% 15.10f')
|
||||||
|
|
||||||
def principalStresses(sigmas):
|
def principalStresses(sigmas):
|
||||||
"""
|
"""
|
||||||
Computes principal stresses (i.e. eigenvalues) for a set of Cauchy stresses.
|
Computes principal stresses (i.e. eigenvalues) for a set of Cauchy stresses.
|
||||||
|
@ -1014,7 +1100,13 @@ fitCriteria = {
|
||||||
'vegter' :{'name': 'Vegter',
|
'vegter' :{'name': 'Vegter',
|
||||||
'labels': 'a,b,c,d,e,f,g,h',
|
'labels': 'a,b,c,d,e,f,g,h',
|
||||||
'dimen': [2],
|
'dimen': [2],
|
||||||
},
|
},
|
||||||
|
'facet' :{'name': 'Facet',
|
||||||
|
'nExpo': None,
|
||||||
|
'bound': [(None,None)],
|
||||||
|
'labels': 'lambdas',
|
||||||
|
'dimen': [2,3],
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
thresholdParameter = ['totalshear','equivalentStrain']
|
thresholdParameter = ['totalshear','equivalentStrain']
|
||||||
|
@ -1225,7 +1317,10 @@ class myThread (threading.Thread):
|
||||||
conv=converged()
|
conv=converged()
|
||||||
semaphore.release()
|
semaphore.release()
|
||||||
while not conv:
|
while not conv:
|
||||||
doSim(self.name)
|
if options.criterion=='facet':
|
||||||
|
doSimForFacet(self.name)
|
||||||
|
else:
|
||||||
|
doSim(self.name)
|
||||||
semaphore.acquire()
|
semaphore.acquire()
|
||||||
conv=converged()
|
conv=converged()
|
||||||
semaphore.release()
|
semaphore.release()
|
||||||
|
@ -1278,6 +1373,26 @@ def doSim(thread):
|
||||||
return
|
return
|
||||||
damask.util.croak('\n')
|
damask.util.croak('\n')
|
||||||
semaphore.release()
|
semaphore.release()
|
||||||
|
|
||||||
|
def doSimForFacet(thread):
|
||||||
|
semaphore.acquire()
|
||||||
|
global myLoad
|
||||||
|
loadNo=loadcaseNo()
|
||||||
|
if not os.path.isfile('%s.load'%loadNo):
|
||||||
|
damask.util.croak('Generating load case for simulation %s (%s)'%(loadNo,thread))
|
||||||
|
f=open('%s.load'%loadNo,'w')
|
||||||
|
f.write(myLoad.getLoadcase(loadNo))
|
||||||
|
f.close()
|
||||||
|
semaphore.release()
|
||||||
|
else: semaphore.release()
|
||||||
|
|
||||||
|
# if spectralOut does not exist, run simulation
|
||||||
|
semaphore.acquire()
|
||||||
|
if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,loadNo)):
|
||||||
|
damask.util.croak('Starting simulation %i (%s)'%(loadNo,thread))
|
||||||
|
semaphore.release()
|
||||||
|
damask.util.execute('DAMASK_spectral -g %s -l %i'%(options.geometry,loadNo))
|
||||||
|
else: semaphore.release()
|
||||||
|
|
||||||
def loadcaseNo():
|
def loadcaseNo():
|
||||||
global N_simulations
|
global N_simulations
|
||||||
|
@ -1286,15 +1401,21 @@ def loadcaseNo():
|
||||||
|
|
||||||
def converged():
|
def converged():
|
||||||
global N_simulations; fitResidual
|
global N_simulations; fitResidual
|
||||||
|
|
||||||
if N_simulations < options.max:
|
if options.criterion=='facet':
|
||||||
if len(fitResidual) > 5 and N_simulations >= options.min:
|
if N_simulations == options.numpoints:
|
||||||
residualList = np.array(fitResidual[len(fitResidual)-5:])
|
return True
|
||||||
if np.std(residualList)/np.max(residualList) < 0.05:
|
else:
|
||||||
return True
|
return False
|
||||||
return False
|
|
||||||
else:
|
else:
|
||||||
return True
|
if N_simulations < options.max:
|
||||||
|
if len(fitResidual) > 5 and N_simulations >= options.min:
|
||||||
|
residualList = np.array(fitResidual[len(fitResidual)-5:])
|
||||||
|
if np.std(residualList)/np.max(residualList) < 0.05:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
return True
|
||||||
|
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
# MAIN
|
# MAIN
|
||||||
|
@ -1333,6 +1454,10 @@ parser.add_option('-u', '--uniaxial', dest='eqStress', type='float',
|
||||||
help='Equivalent stress', metavar='float')
|
help='Equivalent stress', metavar='float')
|
||||||
parser.add_option('--flag', dest='flag', type='string',
|
parser.add_option('--flag', dest='flag', type='string',
|
||||||
help='yield stop flag, totalStrain, plasticStrain or plasticWork', metavar='string')
|
help='yield stop flag, totalStrain, plasticStrain or plasticWork', metavar='string')
|
||||||
|
parser.add_option('--numpoints', dest='numpoints', type='int',
|
||||||
|
help='number of yield points to fit facet potential [%default]', metavar='int')
|
||||||
|
parser.add_option('--order', dest='order', type='int',
|
||||||
|
help='order of facet potential [%default]', metavar='int')
|
||||||
|
|
||||||
parser.set_defaults(min = 12,
|
parser.set_defaults(min = 12,
|
||||||
max = 20,
|
max = 20,
|
||||||
|
@ -1346,6 +1471,8 @@ parser.set_defaults(min = 12,
|
||||||
dimension = '3',
|
dimension = '3',
|
||||||
exponent = -1.0,
|
exponent = -1.0,
|
||||||
flag = 'totalStrain',
|
flag = 'totalStrain',
|
||||||
|
numpoints = 100,
|
||||||
|
order = 8
|
||||||
)
|
)
|
||||||
|
|
||||||
options = parser.parse_args()[0]
|
options = parser.parse_args()[0]
|
||||||
|
@ -1385,6 +1512,9 @@ dDim = None
|
||||||
myLoad = None
|
myLoad = None
|
||||||
myFit = None
|
myFit = None
|
||||||
|
|
||||||
run = runFit(options.exponent, options.eqStress, options.dimension, options.criterion)
|
if options.criterion == 'facet':
|
||||||
|
run = runFit(options.exponent, options.eqStress, options.dimension, options.criterion)
|
||||||
|
else:
|
||||||
|
run = runFit(options.exponent, options.eqStress, options.dimension, options.criterion)
|
||||||
|
|
||||||
damask.util.croak('Finished fitting to yield criteria')
|
damask.util.croak('Finished fitting to yield criteria')
|
||||||
|
|
|
@ -982,7 +982,7 @@ real(pReal) pure function math_detSym33(m)
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
|
|
||||||
math_detSym33 = -(m(1,1)*m(2,3)**2_pInt + m(2,2)*m(1,3)**2_pInt + m(3,3)*m(1,2)**2_pInt) &
|
math_detSym33 = -(m(1,1)*m(2,3)**2_pInt + m(2,2)*m(1,3)**2_pInt + m(3,3)*m(1,2)**2_pInt) &
|
||||||
+ m(1,1)*m(2,2)*m(3,3) - 2.0_pReal * m(1,2)*m(1,3)*m(2,3)
|
+ m(1,1)*m(2,2)*m(3,3) + 2.0_pReal * m(1,2)*m(1,3)*m(2,3)
|
||||||
|
|
||||||
end function math_detSym33
|
end function math_detSym33
|
||||||
|
|
||||||
|
@ -1994,7 +1994,7 @@ function math_eigenvectorBasisSym(m)
|
||||||
|
|
||||||
do i=1_pInt, size(m,1)
|
do i=1_pInt, size(m,1)
|
||||||
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
|
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
|
||||||
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
|
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
end function math_eigenvectorBasisSym
|
end function math_eigenvectorBasisSym
|
||||||
|
|
Loading…
Reference in New Issue