Merge branch 'DADF5_point_calculations-2' into development
This commit is contained in:
commit
822e6b7199
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit ec615d249d39e5d01446b01ab9a5b7e7601340ad
|
||||
Subproject commit 6db5f4666fc651b4de3b44ceaed3f2b848170ac9
|
|
@ -42,8 +42,8 @@ for name in filenames:
|
|||
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
table.add('Cauchy',
|
||||
damask.mechanics.Cauchy(table.get(options.defgrad).reshape(-1,3,3),
|
||||
table.get(options.stress ).reshape(-1,3,3)).reshape(-1,9),
|
||||
damask.mechanics.Cauchy(table.get(options.stress ).reshape(-1,3,3),
|
||||
table.get(options.defgrad).reshape(-1,3,3)).reshape(-1,9),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -43,8 +43,8 @@ for name in filenames:
|
|||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
|
||||
table.add('S',
|
||||
damask.mechanics.PK2(table.get(options.defgrad).reshape(-1,3,3),
|
||||
table.get(options.stress ).reshape(-1,3,3)).reshape(-1,9),
|
||||
damask.mechanics.PK2(table.get(options.stress ).reshape(-1,3,3),
|
||||
table.get(options.defgrad).reshape(-1,3,3)).reshape(-1,9),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
import os
|
||||
import sys
|
||||
from io import StringIO
|
||||
from optparse import OptionParser
|
||||
|
||||
import numpy as np
|
||||
|
@ -33,69 +34,27 @@ parser.add_option('--no-check',
|
|||
|
||||
parser.set_defaults(rh = True,
|
||||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.tensor is None:
|
||||
parser.error('no data column specified.')
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
|
||||
table.head_read()
|
||||
for tensor in options.tensor:
|
||||
|
||||
t = table.get(tensor).reshape(-1,3,3)
|
||||
(u,v) = np.linalg.eigh(damask.mechanics.symmetric(t))
|
||||
if options.rh: v[np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||
|
||||
# ------------------------------------------ assemble header 1 ------------------------------------
|
||||
for i,o in enumerate(['Min','Mid','Max']):
|
||||
table.add('eigval{}({})'.format(o,tensor),u[:,i],
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
items = {
|
||||
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'column': []},
|
||||
}
|
||||
errors = []
|
||||
remarks = []
|
||||
for i,o in enumerate(['Min','Mid','Max']):
|
||||
table.add('eigvec{}({})'.format(o,tensor),v[:,:,i],
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
for type, data in items.items():
|
||||
for what in data['labels']:
|
||||
dim = table.label_dimension(what)
|
||||
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
|
||||
else:
|
||||
items[type]['column'].append(table.label_index(what))
|
||||
for order in ['Min','Mid','Max']:
|
||||
table.labels_append(['eigval{}({})'.format(order,what)]) # extend ASCII header with new labels
|
||||
for order in ['Min','Mid','Max']:
|
||||
table.labels_append(['{}_eigvec{}({})'.format(i+1,order,what) for i in range(3)]) # extend ASCII header with new labels
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header 2 ------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data -----------------------------------------
|
||||
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for type, data in items.items():
|
||||
for column in data['column']:
|
||||
(u,v) = np.linalg.eigh(np.array(list(map(float,table.data[column:column+data['dim']]))).reshape(data['shape']))
|
||||
if options.rh and np.dot(np.cross(v[:,0], v[:,1]), v[:,2]) < 0.0 : v[:, 2] *= -1.0 # ensure right-handed eigenvector basis
|
||||
table.data_append(list(u)) # vector of max,mid,min eigval
|
||||
table.data_append(list(v.transpose().reshape(data['dim']))) # 3x3=9 combo vector of max,mid,min eigvec coordinates
|
||||
outputAlive = table.data_write() # output processed line in accordance with column labeling
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -15,6 +15,7 @@ from .config import Material # noqa
|
|||
from .colormaps import Colormap, Color # noqa
|
||||
from .orientation import Symmetry, Lattice, Rotation, Orientation # noqa
|
||||
from .dadf5 import DADF5 # noqa
|
||||
from .dadf5 import DADF5 as Result # noqa
|
||||
|
||||
from .geom import Geom # noqa
|
||||
from .solver import Solver # noqa
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -8,7 +8,7 @@ class Environment():
|
|||
def __init__(self):
|
||||
"""Read and provide values of DAMASK configuration."""
|
||||
self.options = {}
|
||||
self.get_options()
|
||||
self.__get_options()
|
||||
|
||||
def relPath(self,relative = '.'):
|
||||
return os.path.join(self.rootDir(),relative)
|
||||
|
@ -16,7 +16,7 @@ class Environment():
|
|||
def rootDir(self):
|
||||
return os.path.normpath(os.path.join(os.path.realpath(__file__),'../../../'))
|
||||
|
||||
def get_options(self):
|
||||
def __get_options(self):
|
||||
for item in ['DAMASK_NUM_THREADS',
|
||||
'MSC_ROOT',
|
||||
'MARC_VERSION',
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import numpy as np
|
||||
|
||||
def Cauchy(F,P):
|
||||
def Cauchy(P,F):
|
||||
"""
|
||||
Return Cauchy stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
Return Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
||||
|
||||
|
@ -21,23 +21,179 @@ def Cauchy(F,P):
|
|||
return symmetric(sigma)
|
||||
|
||||
|
||||
def PK2(F,P):
|
||||
def deviatoric_part(x):
|
||||
"""
|
||||
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
Return deviatoric part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
|
||||
|
||||
def eigenvalues(x):
|
||||
"""
|
||||
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||
|
||||
The eigenvalues are sorted in ascending order, each repeated according to
|
||||
its multiplicity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvalues are computed.
|
||||
|
||||
"""
|
||||
return np.linalg.eigvalsh(symmetric(x))
|
||||
|
||||
|
||||
def eigenvectors(x,RHS=False):
|
||||
"""
|
||||
Return eigenvectors of a symmetric tensor.
|
||||
|
||||
The eigenvalues are sorted in ascending order of their associated eigenvalues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvectors are computed.
|
||||
RHS: bool, optional
|
||||
Enforce right-handed coordinate system. Default is False.
|
||||
|
||||
"""
|
||||
(u,v) = np.linalg.eigh(symmetric(x))
|
||||
|
||||
if RHS:
|
||||
if np.shape(x) == (3,3):
|
||||
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
|
||||
else:
|
||||
v[np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||
return v
|
||||
|
||||
|
||||
def left_stretch(x):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')[0]
|
||||
|
||||
|
||||
def maximum_shear(x):
|
||||
"""
|
||||
Return the maximum shear component of a symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = eigenvalues(x)
|
||||
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
|
||||
(w[:,0] - w[:,2])*0.5
|
||||
|
||||
|
||||
def Mises_strain(epsilon):
|
||||
"""
|
||||
Return the Mises equivalent of a strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
return __Mises(epsilon,2.0/3.0)
|
||||
|
||||
|
||||
def Mises_stress(sigma):
|
||||
"""
|
||||
Return the Mises equivalent of a stress tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
return __Mises(sigma,3.0/2.0)
|
||||
|
||||
|
||||
def PK2(P,F):
|
||||
"""
|
||||
Calculate second Piola-Kirchhoff stress from first Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
P : numpy.array of shape (:,3,3) or (3,3)
|
||||
1. Piola-Kirchhoff stress.
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
|
||||
"""
|
||||
if np.shape(F) == np.shape(P) == (3,3):
|
||||
S = np.dot(np.linalg.inv(F),P)
|
||||
else:
|
||||
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
|
||||
return S
|
||||
return symmetric(S)
|
||||
|
||||
def right_stretch(x):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'U')[0]
|
||||
|
||||
|
||||
def rotational_part(x):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'R')[0]
|
||||
|
||||
|
||||
def spherical_part(x,tensor=False):
|
||||
"""
|
||||
Return spherical (hydrostatic) part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
tensor : bool, optional
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
|
||||
"""
|
||||
if x.shape == (3,3):
|
||||
sph = np.trace(x)/3.0
|
||||
return sph if not tensor else np.eye(3)*sph
|
||||
else:
|
||||
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
||||
if not tensor:
|
||||
return sph
|
||||
else:
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||
|
||||
|
||||
def strain_tensor(F,t,m):
|
||||
|
@ -78,73 +234,6 @@ def strain_tensor(F,t,m):
|
|||
eps
|
||||
|
||||
|
||||
def deviatoric_part(x):
|
||||
"""
|
||||
Return deviatoric part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
|
||||
|
||||
def spherical_part(x,tensor=False):
|
||||
"""
|
||||
Return spherical (hydrostatic) part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
tensor : bool, optional
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
|
||||
"""
|
||||
if x.shape == (3,3):
|
||||
sph = np.trace(x)/3.0
|
||||
return sph if not tensor else np.eye(3)*sph
|
||||
else:
|
||||
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
||||
if not tensor:
|
||||
return sph
|
||||
else:
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||
|
||||
|
||||
def Mises_stress(sigma):
|
||||
"""
|
||||
Return the Mises equivalent of a stress tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
s = deviatoric_part(sigma)
|
||||
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
|
||||
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
|
||||
|
||||
|
||||
def Mises_strain(epsilon):
|
||||
"""
|
||||
Return the Mises equivalent of a strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
s = deviatoric_part(epsilon)
|
||||
return np.sqrt(2.0/3.0*(np.sum(s**2.0))) if np.shape(epsilon) == (3,3) else \
|
||||
np.sqrt(2.0/3.0*np.einsum('ijk->i',s**2.0))
|
||||
|
||||
|
||||
def symmetric(x):
|
||||
"""
|
||||
Return the symmetrized tensor.
|
||||
|
@ -158,39 +247,6 @@ def symmetric(x):
|
|||
return (x+transpose(x))*0.5
|
||||
|
||||
|
||||
def maximum_shear(x):
|
||||
"""
|
||||
Return the maximum shear component of a symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||
return (w[2] - w[0])*0.5 if np.shape(x) == (3,3) else \
|
||||
(w[:,2] - w[:,0])*0.5
|
||||
|
||||
|
||||
def principal_components(x):
|
||||
"""
|
||||
Return the principal components of a symmetric tensor.
|
||||
|
||||
The principal components (eigenvalues) are sorted in descending order, each repeated according to
|
||||
its multiplicity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the principal compontents are computed.
|
||||
|
||||
"""
|
||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||
return w[::-1] if np.shape(x) == (3,3) else \
|
||||
w[:,::-1]
|
||||
|
||||
|
||||
def transpose(x):
|
||||
"""
|
||||
Return the transpose of a tensor.
|
||||
|
@ -205,45 +261,6 @@ def transpose(x):
|
|||
np.transpose(x,(0,2,1))
|
||||
|
||||
|
||||
def rotational_part(x):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'R')[0]
|
||||
|
||||
|
||||
def left_stretch(x):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')[0]
|
||||
|
||||
|
||||
def right_stretch(x):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'U')[0]
|
||||
|
||||
|
||||
def __polar_decomposition(x,requested):
|
||||
"""
|
||||
Singular value decomposition.
|
||||
|
@ -270,3 +287,20 @@ def __polar_decomposition(x,requested):
|
|||
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
||||
|
||||
return tuple(output)
|
||||
|
||||
|
||||
def __Mises(x,s):
|
||||
"""
|
||||
Base equation for Mises equivalent of a stres or strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the von Mises equivalent is computed.
|
||||
s : float
|
||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||
|
||||
"""
|
||||
d = deviatoric_part(x)
|
||||
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \
|
||||
np.sqrt(s*np.einsum('ijk->i',d**2.0))
|
||||
|
|
|
@ -3,10 +3,14 @@ import time
|
|||
import os
|
||||
import subprocess
|
||||
import shlex
|
||||
from fractions import Fraction
|
||||
from functools import reduce
|
||||
from optparse import Option
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
|
||||
class bcolors:
|
||||
"""
|
||||
ASCII Colors (Blender code).
|
||||
|
@ -161,6 +165,24 @@ def progressBar(iteration, total, prefix='', bar_length=50):
|
|||
sys.stderr.flush()
|
||||
|
||||
|
||||
def scale_to_coprime(v):
|
||||
"""Scale vector to co-prime (relatively prime) integers."""
|
||||
MAX_DENOMINATOR = 1000
|
||||
|
||||
def get_square_denominator(x):
|
||||
"""Denominator of the square of a number."""
|
||||
return Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator
|
||||
|
||||
def lcm(a, b):
|
||||
"""Least common multiple."""
|
||||
return a * b // np.gcd(a, b)
|
||||
|
||||
denominators = [int(get_square_denominator(i)) for i in v]
|
||||
s = reduce(lcm, denominators) ** 0.5
|
||||
m = (np.array(v)*s).astype(np.int)
|
||||
return m//reduce(np.gcd,m)
|
||||
|
||||
|
||||
class return_message():
|
||||
"""Object with formatted return message."""
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ class TestDADF5:
|
|||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_calculation(self,default):
|
||||
default.add_calculation('2.0*np.abs(#F#)-1.0','x','-','test')
|
||||
default.add_calculation('x','2.0*np.abs(#F#)-1.0','-','my notes')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'x': default.get_dataset_location('x')}
|
||||
in_memory = 2.0*np.abs(default.read_dataset(loc['F'],0))-1.0
|
||||
|
@ -52,8 +52,8 @@ class TestDADF5:
|
|||
loc = {'F': default.get_dataset_location('F'),
|
||||
'P': default.get_dataset_location('P'),
|
||||
'sigma':default.get_dataset_location('sigma')}
|
||||
in_memory = mechanics.Cauchy(default.read_dataset(loc['F'],0),
|
||||
default.read_dataset(loc['P'],0))
|
||||
in_memory = mechanics.Cauchy(default.read_dataset(loc['P'],0),
|
||||
default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['sigma'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
|
@ -73,6 +73,54 @@ class TestDADF5:
|
|||
in_file = default.read_dataset(loc['s_P'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_eigenvalues(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_eigenvalues('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'lambda(sigma)':default.get_dataset_location('lambda(sigma)')}
|
||||
in_memory = mechanics.eigenvalues(default.read_dataset(loc['sigma'],0))
|
||||
in_file = default.read_dataset(loc['lambda(sigma)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_eigenvectors(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_eigenvectors('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'v(sigma)':default.get_dataset_location('v(sigma)')}
|
||||
in_memory = mechanics.eigenvectors(default.read_dataset(loc['sigma'],0))
|
||||
in_file = default.read_dataset(loc['v(sigma)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_maximum_shear(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_maximum_shear('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'max_shear(sigma)':default.get_dataset_location('max_shear(sigma)')}
|
||||
in_memory = mechanics.maximum_shear(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc['max_shear(sigma)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_Mises_strain(self,default):
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*2.0 - 1.0
|
||||
default.add_strain_tensor('F',t,m)
|
||||
label = 'epsilon_{}^{}(F)'.format(t,m)
|
||||
default.add_Mises(label)
|
||||
loc = {label :default.get_dataset_location(label),
|
||||
label+'_vM':default.get_dataset_location(label+'_vM')}
|
||||
in_memory = mechanics.Mises_strain(default.read_dataset(loc[label],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc[label+'_vM'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_Mises_stress(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_Mises('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'sigma_vM':default.get_dataset_location('sigma_vM')}
|
||||
in_memory = mechanics.Mises_stress(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc['sigma_vM'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_norm(self,default):
|
||||
default.add_norm('F',1)
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
|
@ -81,6 +129,24 @@ class TestDADF5:
|
|||
in_file = default.read_dataset(loc['|F|_1'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_PK2(self,default):
|
||||
default.add_PK2('P','F')
|
||||
loc = {'F':default.get_dataset_location('F'),
|
||||
'P':default.get_dataset_location('P'),
|
||||
'S':default.get_dataset_location('S')}
|
||||
in_memory = mechanics.PK2(default.read_dataset(loc['P'],0),
|
||||
default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['S'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_rotational_part(self,default):
|
||||
default.add_rotational_part('F')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'R(F)': default.get_dataset_location('R(F)')}
|
||||
in_memory = mechanics.rotational_part(default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['R(F)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_spherical(self,default):
|
||||
default.add_spherical('P')
|
||||
loc = {'P': default.get_dataset_location('P'),
|
||||
|
@ -88,3 +154,30 @@ class TestDADF5:
|
|||
in_memory = mechanics.spherical_part(default.read_dataset(loc['P'],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc['p_P'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_strain(self,default):
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*2.0 - 1.0
|
||||
default.add_strain_tensor('F',t,m)
|
||||
label = 'epsilon_{}^{}(F)'.format(t,m)
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
label: default.get_dataset_location(label)}
|
||||
in_memory = mechanics.strain_tensor(default.read_dataset(loc['F'],0),t,m)
|
||||
in_file = default.read_dataset(loc[label],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_stretch_right(self,default):
|
||||
default.add_stretch_tensor('F','U')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'U(F)': default.get_dataset_location('U(F)')}
|
||||
in_memory = mechanics.right_stretch(default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['U(F)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_stretch_left(self,default):
|
||||
default.add_stretch_tensor('F','V')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'V(F)': default.get_dataset_location('V(F)')}
|
||||
in_memory = mechanics.left_stretch(default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['V(F)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
|
|
@ -8,181 +8,218 @@ class TestMechanics:
|
|||
|
||||
|
||||
def test_vectorize_Cauchy(self):
|
||||
P = np.random.random((self.n,3,3))
|
||||
F = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Cauchy(F,P)[self.c],
|
||||
mechanics.Cauchy(F[self.c],P[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_strain_tensor(self):
|
||||
F = np.random.random((self.n,3,3))
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*10. -5.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c],
|
||||
mechanics.strain_tensor(F[self.c],t,m))
|
||||
|
||||
P = np.random.random((self.n,3,3))
|
||||
F = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Cauchy(P,F)[self.c],
|
||||
mechanics.Cauchy(P[self.c],F[self.c]))
|
||||
|
||||
def test_vectorize_deviatoric_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
|
||||
mechanics.deviatoric_part(x[self.c]))
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
|
||||
mechanics.deviatoric_part(x[self.c]))
|
||||
|
||||
def test_vectorize_eigenvalues(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.eigenvalues(x)[self.c],
|
||||
mechanics.eigenvalues(x[self.c]))
|
||||
|
||||
def test_vectorize_spherical_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
|
||||
mechanics.spherical_part(x[self.c],True))
|
||||
|
||||
|
||||
def test_vectorize_Mises_stress(self):
|
||||
sigma = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
|
||||
mechanics.Mises_stress(sigma[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_Mises_strain(self):
|
||||
epsilon = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
|
||||
mechanics.Mises_strain(epsilon[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_symmetric(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.symmetric(x)[self.c],
|
||||
mechanics.symmetric(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_maximum_shear(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.maximum_shear(x)[self.c],
|
||||
mechanics.maximum_shear(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_principal_components(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.principal_components(x)[self.c],
|
||||
mechanics.principal_components(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_transpose(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.transpose(x)[self.c],
|
||||
mechanics.transpose(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_rotational_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.rotational_part(x)[self.c],
|
||||
mechanics.rotational_part(x[self.c]))
|
||||
|
||||
def test_vectorize_eigenvectors(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.eigenvectors(x)[self.c],
|
||||
mechanics.eigenvectors(x[self.c]))
|
||||
|
||||
def test_vectorize_left_stretch(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.left_stretch(x)[self.c],
|
||||
mechanics.left_stretch(x[self.c]))
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.left_stretch(x)[self.c],
|
||||
mechanics.left_stretch(x[self.c]))
|
||||
|
||||
def test_vectorize_maximum_shear(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.maximum_shear(x)[self.c],
|
||||
mechanics.maximum_shear(x[self.c]))
|
||||
|
||||
def test_vectorize_Mises_strain(self):
|
||||
epsilon = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
|
||||
mechanics.Mises_strain(epsilon[self.c]))
|
||||
|
||||
def test_vectorize_Mises_stress(self):
|
||||
sigma = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
|
||||
mechanics.Mises_stress(sigma[self.c]))
|
||||
|
||||
def test_vectorize_PK2(self):
|
||||
F = np.random.random((self.n,3,3))
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.PK2(P,F)[self.c],
|
||||
mechanics.PK2(P[self.c],F[self.c]))
|
||||
|
||||
def test_vectorize_right_stretch(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.right_stretch(x)[self.c],
|
||||
mechanics.right_stretch(x[self.c]))
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.right_stretch(x)[self.c],
|
||||
mechanics.right_stretch(x[self.c]))
|
||||
|
||||
def test_vectorize_rotational_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.rotational_part(x)[self.c],
|
||||
mechanics.rotational_part(x[self.c]))
|
||||
|
||||
def test_vectorize_spherical_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
|
||||
mechanics.spherical_part(x[self.c],True))
|
||||
|
||||
def test_vectorize_strain_tensor(self):
|
||||
F = np.random.random((self.n,3,3))
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*10. -5.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c],
|
||||
mechanics.strain_tensor(F[self.c],t,m))
|
||||
|
||||
def test_vectorize_symmetric(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.symmetric(x)[self.c],
|
||||
mechanics.symmetric(x[self.c]))
|
||||
|
||||
def test_vectorize_transpose(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.transpose(x)[self.c],
|
||||
mechanics.transpose(x[self.c]))
|
||||
|
||||
|
||||
def test_Cauchy(self):
|
||||
"""Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Cauchy(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
|
||||
mechanics.symmetric(P))
|
||||
"""Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Cauchy(P,np.broadcast_to(np.eye(3),(self.n,3,3))),
|
||||
mechanics.symmetric(P))
|
||||
|
||||
|
||||
def test_polar_decomposition(self):
|
||||
"""F = RU = VR."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||
R = mechanics.rotational_part(F)
|
||||
V = mechanics.left_stretch(F)
|
||||
U = mechanics.right_stretch(F)
|
||||
assert np.allclose(np.matmul(R,U),
|
||||
np.matmul(V,R))
|
||||
"""F = RU = VR."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||
R = mechanics.rotational_part(F)
|
||||
V = mechanics.left_stretch(F)
|
||||
U = mechanics.right_stretch(F)
|
||||
assert np.allclose(np.matmul(R,U),
|
||||
np.matmul(V,R))
|
||||
|
||||
|
||||
def test_PK2(self):
|
||||
"""Ensure 2. Piola-Kirchhoff stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.PK2(P,np.broadcast_to(np.eye(3),(self.n,3,3))),
|
||||
mechanics.symmetric(P))
|
||||
|
||||
|
||||
def test_strain_tensor_no_rotation(self):
|
||||
"""Ensure that left and right stretch give same results for no rotation."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||
m = np.random.random()*20.0-10.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,'U',m),
|
||||
mechanics.strain_tensor(F,'V',m))
|
||||
"""Ensure that left and right stretch give same results for no rotation."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||
m = np.random.random()*20.0-10.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,'U',m),
|
||||
mechanics.strain_tensor(F,'V',m))
|
||||
|
||||
def test_strain_tensor_rotation_equivalence(self):
|
||||
"""Ensure that left and right strain differ only by a rotation."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3]) + (np.random.random((self.n,3,3))*0.5 - 0.25)
|
||||
m = np.random.random()*5.0-2.5
|
||||
assert np.allclose(np.linalg.det(mechanics.strain_tensor(F,'U',m)),
|
||||
np.linalg.det(mechanics.strain_tensor(F,'V',m)))
|
||||
"""Ensure that left and right strain differ only by a rotation."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3]) + (np.random.random((self.n,3,3))*0.5 - 0.25)
|
||||
m = np.random.random()*5.0-2.5
|
||||
assert np.allclose(np.linalg.det(mechanics.strain_tensor(F,'U',m)),
|
||||
np.linalg.det(mechanics.strain_tensor(F,'V',m)))
|
||||
|
||||
def test_strain_tensor_rotation(self):
|
||||
"""Ensure that pure rotation results in no strain."""
|
||||
F = mechanics.rotational_part(np.random.random((self.n,3,3)))
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*2.0 - 1.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,t,m),
|
||||
0.0)
|
||||
"""Ensure that pure rotation results in no strain."""
|
||||
F = mechanics.rotational_part(np.random.random((self.n,3,3)))
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*2.0 - 1.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,t,m),
|
||||
0.0)
|
||||
|
||||
def test_rotation_determinant(self):
|
||||
"""
|
||||
Ensure that the determinant of the rotational part is +- 1.
|
||||
"""
|
||||
Ensure that the determinant of the rotational part is +- 1.
|
||||
|
||||
Should be +1, but random F might contain a reflection.
|
||||
"""
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(np.abs(np.linalg.det(mechanics.rotational_part(x))),
|
||||
1.0)
|
||||
Should be +1, but random F might contain a reflection.
|
||||
"""
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(np.abs(np.linalg.det(mechanics.rotational_part(x))),
|
||||
1.0)
|
||||
|
||||
|
||||
def test_spherical_deviatoric_part(self):
|
||||
"""Ensure that full tensor is sum of spherical and deviatoric part."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
sph = mechanics.spherical_part(x,True)
|
||||
assert np.allclose(sph + mechanics.deviatoric_part(x),
|
||||
x)
|
||||
"""Ensure that full tensor is sum of spherical and deviatoric part."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
sph = mechanics.spherical_part(x,True)
|
||||
assert np.allclose(sph + mechanics.deviatoric_part(x),
|
||||
x)
|
||||
|
||||
def test_deviatoric_Mises(self):
|
||||
"""Ensure that Mises equivalent stress depends only on deviatoric part."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
full = mechanics.Mises_stress(x)
|
||||
dev = mechanics.Mises_stress(mechanics.deviatoric_part(x))
|
||||
assert np.allclose(full,
|
||||
dev)
|
||||
"""Ensure that Mises equivalent stress depends only on deviatoric part."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
full = mechanics.Mises_stress(x)
|
||||
dev = mechanics.Mises_stress(mechanics.deviatoric_part(x))
|
||||
assert np.allclose(full,
|
||||
dev)
|
||||
|
||||
def test_spherical_mapping(self):
|
||||
"""Ensure that mapping to tensor is correct."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
tensor = mechanics.spherical_part(x,True)
|
||||
scalar = mechanics.spherical_part(x)
|
||||
assert np.allclose(np.linalg.det(tensor),
|
||||
scalar**3.0)
|
||||
"""Ensure that mapping to tensor is correct."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
tensor = mechanics.spherical_part(x,True)
|
||||
scalar = mechanics.spherical_part(x)
|
||||
assert np.allclose(np.linalg.det(tensor),
|
||||
scalar**3.0)
|
||||
|
||||
def test_spherical_Mises(self):
|
||||
"""Ensure that Mises equivalent strrain of spherical strain is 0."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
sph = mechanics.spherical_part(x,True)
|
||||
assert np.allclose(mechanics.Mises_strain(sph),
|
||||
0.0)
|
||||
"""Ensure that Mises equivalent strrain of spherical strain is 0."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
sph = mechanics.spherical_part(x,True)
|
||||
assert np.allclose(mechanics.Mises_strain(sph),
|
||||
0.0)
|
||||
|
||||
def test_symmetric(self):
|
||||
"""Ensure that a symmetric tensor is half of the sum of a tensor and its transpose."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.symmetric(x)*2.0,
|
||||
mechanics.transpose(x)+x)
|
||||
"""Ensure that a symmetric tensor is half of the sum of a tensor and its transpose."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.symmetric(x)*2.0,
|
||||
mechanics.transpose(x)+x)
|
||||
|
||||
|
||||
def test_transpose(self):
|
||||
"""Ensure that a symmetric tensor equals its transpose."""
|
||||
x = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
assert np.allclose(mechanics.transpose(x),
|
||||
x)
|
||||
"""Ensure that a symmetric tensor equals its transpose."""
|
||||
x = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
assert np.allclose(mechanics.transpose(x),
|
||||
x)
|
||||
|
||||
|
||||
def test_Mises(self):
|
||||
"""Ensure that equivalent stress is 3/2 of equivalent strain."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
|
||||
1.5)
|
||||
"""Ensure that equivalent stress is 3/2 of equivalent strain."""
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
|
||||
1.5)
|
||||
|
||||
|
||||
def test_eigenvalues(self):
|
||||
"""Ensure that the characteristic polynomial can be solved."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
lambd = mechanics.eigenvalues(A)
|
||||
s = np.random.randint(self.n)
|
||||
for i in range(3):
|
||||
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
|
||||
|
||||
def test_eigenvalues_and_vectors(self):
|
||||
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
lambd = mechanics.eigenvalues(A)
|
||||
x = mechanics.eigenvectors(A)
|
||||
s = np.random.randint(self.n)
|
||||
for i in range(3):
|
||||
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
|
||||
|
||||
def test_eigenvectors_RHS(self):
|
||||
"""Ensure that RHS coordinate system does only change sign of determinant."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
LRHS = np.linalg.det(mechanics.eigenvectors(A,RHS=False))
|
||||
RHS = np.linalg.det(mechanics.eigenvectors(A,RHS=True))
|
||||
assert np.allclose(np.abs(LRHS),RHS)
|
||||
|
||||
def test_spherical_no_shear(self):
|
||||
"""Ensure that sherical stress has max shear of 0.0."""
|
||||
A = mechanics.spherical_part(mechanics.symmetric(np.random.random((self.n,3,3))),True)
|
||||
assert np.allclose(mechanics.maximum_shear(A),0.0)
|
||||
|
|
Loading…
Reference in New Issue