Merge branch 'DADF5_point_calculations-2' into development
This commit is contained in:
commit
822e6b7199
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit ec615d249d39e5d01446b01ab9a5b7e7601340ad
|
||||
Subproject commit 6db5f4666fc651b4de3b44ceaed3f2b848170ac9
|
|
@ -42,8 +42,8 @@ for name in filenames:
|
|||
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
table.add('Cauchy',
|
||||
damask.mechanics.Cauchy(table.get(options.defgrad).reshape(-1,3,3),
|
||||
table.get(options.stress ).reshape(-1,3,3)).reshape(-1,9),
|
||||
damask.mechanics.Cauchy(table.get(options.stress ).reshape(-1,3,3),
|
||||
table.get(options.defgrad).reshape(-1,3,3)).reshape(-1,9),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -43,8 +43,8 @@ for name in filenames:
|
|||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
|
||||
table.add('S',
|
||||
damask.mechanics.PK2(table.get(options.defgrad).reshape(-1,3,3),
|
||||
table.get(options.stress ).reshape(-1,3,3)).reshape(-1,9),
|
||||
damask.mechanics.PK2(table.get(options.stress ).reshape(-1,3,3),
|
||||
table.get(options.defgrad).reshape(-1,3,3)).reshape(-1,9),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
import os
|
||||
import sys
|
||||
from io import StringIO
|
||||
from optparse import OptionParser
|
||||
|
||||
import numpy as np
|
||||
|
@ -33,69 +34,27 @@ parser.add_option('--no-check',
|
|||
|
||||
parser.set_defaults(rh = True,
|
||||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.tensor is None:
|
||||
parser.error('no data column specified.')
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
|
||||
table.head_read()
|
||||
for tensor in options.tensor:
|
||||
|
||||
t = table.get(tensor).reshape(-1,3,3)
|
||||
(u,v) = np.linalg.eigh(damask.mechanics.symmetric(t))
|
||||
if options.rh: v[np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||
|
||||
# ------------------------------------------ assemble header 1 ------------------------------------
|
||||
for i,o in enumerate(['Min','Mid','Max']):
|
||||
table.add('eigval{}({})'.format(o,tensor),u[:,i],
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
items = {
|
||||
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'column': []},
|
||||
}
|
||||
errors = []
|
||||
remarks = []
|
||||
for i,o in enumerate(['Min','Mid','Max']):
|
||||
table.add('eigvec{}({})'.format(o,tensor),v[:,:,i],
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
for type, data in items.items():
|
||||
for what in data['labels']:
|
||||
dim = table.label_dimension(what)
|
||||
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
|
||||
else:
|
||||
items[type]['column'].append(table.label_index(what))
|
||||
for order in ['Min','Mid','Max']:
|
||||
table.labels_append(['eigval{}({})'.format(order,what)]) # extend ASCII header with new labels
|
||||
for order in ['Min','Mid','Max']:
|
||||
table.labels_append(['{}_eigvec{}({})'.format(i+1,order,what) for i in range(3)]) # extend ASCII header with new labels
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header 2 ------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data -----------------------------------------
|
||||
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
for type, data in items.items():
|
||||
for column in data['column']:
|
||||
(u,v) = np.linalg.eigh(np.array(list(map(float,table.data[column:column+data['dim']]))).reshape(data['shape']))
|
||||
if options.rh and np.dot(np.cross(v[:,0], v[:,1]), v[:,2]) < 0.0 : v[:, 2] *= -1.0 # ensure right-handed eigenvector basis
|
||||
table.data_append(list(u)) # vector of max,mid,min eigval
|
||||
table.data_append(list(v.transpose().reshape(data['dim']))) # 3x3=9 combo vector of max,mid,min eigvec coordinates
|
||||
outputAlive = table.data_write() # output processed line in accordance with column labeling
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -15,6 +15,7 @@ from .config import Material # noqa
|
|||
from .colormaps import Colormap, Color # noqa
|
||||
from .orientation import Symmetry, Lattice, Rotation, Orientation # noqa
|
||||
from .dadf5 import DADF5 # noqa
|
||||
from .dadf5 import DADF5 as Result # noqa
|
||||
|
||||
from .geom import Geom # noqa
|
||||
from .solver import Solver # noqa
|
||||
|
|
|
@ -11,8 +11,11 @@ import numpy as np
|
|||
from . import util
|
||||
from . import version
|
||||
from . import mechanics
|
||||
from . import Rotation
|
||||
from . import Orientation
|
||||
from . import Environment
|
||||
from . import grid_filters
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
class DADF5():
|
||||
"""
|
||||
Read and write to DADF5 files.
|
||||
|
@ -20,7 +23,6 @@ class DADF5():
|
|||
DADF5 files contain DAMASK results.
|
||||
"""
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self,fname):
|
||||
"""
|
||||
Opens an existing DADF5 file.
|
||||
|
@ -72,10 +74,9 @@ class DADF5():
|
|||
self.mat_physics += f['/'.join([self.increments[0],'materialpoint',m])].keys()
|
||||
self.mat_physics = list(set(self.mat_physics)) # make unique
|
||||
|
||||
self.visible= {'increments': self.increments,
|
||||
self.selection= {'increments': self.increments,
|
||||
'constituents': self.constituents,
|
||||
'materialpoints': self.materialpoints,
|
||||
'constituent': range(self.Nconstituents), # ToDo: stupid naming
|
||||
'con_physics': self.con_physics,
|
||||
'mat_physics': self.mat_physics}
|
||||
|
||||
|
@ -92,7 +93,7 @@ class DADF5():
|
|||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
what : str
|
||||
attribute to change (must be in self.visible)
|
||||
attribute to change (must be in self.selection)
|
||||
action : str
|
||||
select from 'set', 'add', and 'del'
|
||||
|
||||
|
@ -105,15 +106,18 @@ class DADF5():
|
|||
choice = [datasets] if isinstance(datasets,str) else datasets
|
||||
|
||||
valid = [e for e_ in [glob.fnmatch.filter(getattr(self,what),s) for s in choice] for e in e_]
|
||||
existing = set(self.visible[what])
|
||||
existing = set(self.selection[what])
|
||||
|
||||
if action == 'set':
|
||||
self.visible[what] = valid
|
||||
self.selection[what] = valid
|
||||
elif action == 'add':
|
||||
self.visible[what] = list(existing.union(valid))
|
||||
add=existing.union(valid)
|
||||
add_sorted=sorted(add, key=lambda x: int("".join([i for i in x if i.isdigit()])))
|
||||
self.selection[what] = add_sorted
|
||||
elif action == 'del':
|
||||
self.visible[what] = list(existing.difference_update(valid))
|
||||
|
||||
diff=existing.difference(valid)
|
||||
diff_sorted=sorted(diff, key=lambda x: int("".join([i for i in x if i.isdigit()])))
|
||||
self.selection[what] = diff_sorted
|
||||
|
||||
def __time_to_inc(self,start,end):
|
||||
selected = []
|
||||
|
@ -229,17 +233,17 @@ class DADF5():
|
|||
Parameters
|
||||
----------
|
||||
what : str
|
||||
attribute to change (must be in self.visible)
|
||||
attribute to change (must be in self.selection)
|
||||
|
||||
"""
|
||||
datasets = self.visible[what]
|
||||
datasets = self.selection[what]
|
||||
last_datasets = datasets.copy()
|
||||
for dataset in datasets:
|
||||
if last_datasets != self.visible[what]:
|
||||
if last_datasets != self.selection[what]:
|
||||
self.__manage_visible(datasets,what,'set')
|
||||
raise Exception
|
||||
self.__manage_visible(dataset,what,'set')
|
||||
last_datasets = self.visible[what]
|
||||
last_datasets = self.selection[what]
|
||||
yield dataset
|
||||
self.__manage_visible(datasets,what,'set')
|
||||
|
||||
|
@ -254,7 +258,7 @@ class DADF5():
|
|||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
what : str
|
||||
attribute to change (must be in self.visible)
|
||||
attribute to change (must be in self.selection)
|
||||
|
||||
"""
|
||||
self.__manage_visible(datasets,what,'set')
|
||||
|
@ -270,7 +274,7 @@ class DADF5():
|
|||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
what : str
|
||||
attribute to change (must be in self.visible)
|
||||
attribute to change (must be in self.selection)
|
||||
|
||||
"""
|
||||
self.__manage_visible(datasets,what,'add')
|
||||
|
@ -278,7 +282,7 @@ class DADF5():
|
|||
|
||||
def del_visible(self,what,datasets):
|
||||
"""
|
||||
Delete from active groupse.
|
||||
Delete from active groupe.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -286,7 +290,7 @@ class DADF5():
|
|||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
what : str
|
||||
attribute to change (must be in self.visible)
|
||||
attribute to change (must be in self.selection)
|
||||
|
||||
"""
|
||||
self.__manage_visible(datasets,what,'del')
|
||||
|
@ -351,7 +355,8 @@ class DADF5():
|
|||
for d in f[group].keys():
|
||||
try:
|
||||
dataset = f['/'.join([group,d])]
|
||||
message+=' {} / ({}): {}\n'.format(d,dataset.attrs['Unit'].decode(),dataset.attrs['Description'].decode())
|
||||
message+=' {} / ({}): {}\n'.\
|
||||
format(d,dataset.attrs['Unit'].decode(),dataset.attrs['Description'].decode())
|
||||
except KeyError:
|
||||
pass
|
||||
return message
|
||||
|
@ -435,12 +440,7 @@ class DADF5():
|
|||
def cell_coordinates(self):
|
||||
"""Return initial coordinates of the cell centers."""
|
||||
if self.structured:
|
||||
delta = self.size/self.grid*0.5
|
||||
z, y, x = np.meshgrid(np.linspace(delta[2],self.size[2]-delta[2],self.grid[2]),
|
||||
np.linspace(delta[1],self.size[1]-delta[1],self.grid[1]),
|
||||
np.linspace(delta[0],self.size[0]-delta[0],self.grid[0]),
|
||||
)
|
||||
return np.concatenate((x[:,:,:,None],y[:,:,:,None],z[:,:,:,None]),axis = 3).reshape([np.product(self.grid),3])
|
||||
return grid_filters.cell_coord0(self.grid,self.size,self.origin)
|
||||
else:
|
||||
with h5py.File(self.fname,'r') as f:
|
||||
return f['geometry/x_c'][()]
|
||||
|
@ -453,10 +453,10 @@ class DADF5():
|
|||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a scalar, vector, or tensor.
|
||||
Label of scalar, vector, or tensor dataset to take absolute value of.
|
||||
|
||||
"""
|
||||
def __add_absolute(x):
|
||||
def _add_absolute(x):
|
||||
|
||||
return {
|
||||
'data': np.abs(x['data']),
|
||||
|
@ -468,33 +468,31 @@ class DADF5():
|
|||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_absolute,requested)
|
||||
self.__add_generic_pointwise(_add_absolute,{'x':x})
|
||||
|
||||
|
||||
def add_calculation(self,formula,label,unit='n/a',description=None,vectorized=True):
|
||||
def add_calculation(self,label,formula,unit='n/a',description=None,vectorized=True):
|
||||
"""
|
||||
Add result of a general formula.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
formula : str
|
||||
Formula, refer to datasets by ‘#Label#‘.
|
||||
label : str
|
||||
Label of the dataset containing the result of the calculation.
|
||||
Label of resulting dataset.
|
||||
formula : str
|
||||
Formula to calculate resulting dataset. Existing datasets are referenced by ‘#TheirLabel#‘.
|
||||
unit : str, optional
|
||||
Physical unit of the result.
|
||||
description : str, optional
|
||||
Human readable description of the result.
|
||||
Human-readable description of the result.
|
||||
vectorized : bool, optional
|
||||
Indicate whether the formula is written in vectorized form. Default is ‘True’.
|
||||
Indicate whether the formula can be used in vectorized form. Defaults to ‘True’.
|
||||
|
||||
"""
|
||||
if vectorized is False:
|
||||
if not vectorized:
|
||||
raise NotImplementedError
|
||||
|
||||
def __add_calculation(**kwargs):
|
||||
def _add_calculation(**kwargs):
|
||||
|
||||
formula = kwargs['formula']
|
||||
for d in re.findall(r'#(.*?)#',formula):
|
||||
|
@ -510,154 +508,233 @@ class DADF5():
|
|||
}
|
||||
}
|
||||
|
||||
requested = [{'label':d,'arg':d} for d in set(re.findall(r'#(.*?)#',formula))] # datasets used in the formula
|
||||
pass_through = {'formula':formula,'label':label,'unit':unit,'description':description}
|
||||
dataset_mapping = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula
|
||||
args = {'formula':formula,'label':label,'unit':unit,'description':description}
|
||||
|
||||
self.__add_generic_pointwise(__add_calculation,requested,pass_through)
|
||||
self.__add_generic_pointwise(_add_calculation,dataset_mapping,args)
|
||||
|
||||
|
||||
def add_Cauchy(self,P='P',F='F'):
|
||||
"""
|
||||
Add Cauchy stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
Add Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
P : str, optional
|
||||
Label of the dataset containing the 1. Piola-Kirchhoff stress. Default value is ‘P’.
|
||||
Label of the dataset containing the first Piola-Kirchhoff stress. Defaults to ‘P’.
|
||||
F : str, optional
|
||||
Label of the dataset containing the deformation gradient. Default value is ‘F’.
|
||||
Label of the dataset containing the deformation gradient. Defaults to ‘F’.
|
||||
|
||||
"""
|
||||
def __add_Cauchy(F,P):
|
||||
def _add_Cauchy(P,F):
|
||||
|
||||
return {
|
||||
'data': mechanics.Cauchy(F['data'],P['data']),
|
||||
'data': mechanics.Cauchy(P['data'],F['data']),
|
||||
'label': 'sigma',
|
||||
'meta': {
|
||||
'Unit': P['meta']['Unit'],
|
||||
'Description': 'Cauchy stress calculated from {} ({}) '.format(P['label'],P['meta']['Description'])+\
|
||||
'and deformation gradient {} ({})'.format(F['label'],F['meta']['Description']),
|
||||
'Description': 'Cauchy stress calculated from {} ({}) '.format(P['label'],
|
||||
P['meta']['Description'])+\
|
||||
'and {} ({})'.format(F['label'],F['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_Cauchy v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':F,'arg':'F'},
|
||||
{'label':P,'arg':'P'} ]
|
||||
|
||||
self.__add_generic_pointwise(__add_Cauchy,requested)
|
||||
self.__add_generic_pointwise(_add_Cauchy,{'P':P,'F':F})
|
||||
|
||||
|
||||
def add_determinant(self,x):
|
||||
def add_determinant(self,T):
|
||||
"""
|
||||
Add the determinant of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a tensor.
|
||||
T : str
|
||||
Label of tensor dataset.
|
||||
|
||||
"""
|
||||
def __add_determinant(x):
|
||||
def _add_determinant(T):
|
||||
|
||||
return {
|
||||
'data': np.linalg.det(x['data']),
|
||||
'label': 'det({})'.format(x['label']),
|
||||
'data': np.linalg.det(T['data']),
|
||||
'label': 'det({})'.format(T['label']),
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': 'Determinant of tensor {} ({})'.format(x['label'],x['meta']['Description']),
|
||||
'Unit': T['meta']['Unit'],
|
||||
'Description': 'Determinant of tensor {} ({})'.format(T['label'],T['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_determinant v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_determinant,requested)
|
||||
self.__add_generic_pointwise(_add_determinant,{'T':T})
|
||||
|
||||
|
||||
def add_deviator(self,x):
|
||||
def add_deviator(self,T):
|
||||
"""
|
||||
Add the deviatoric part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a tensor.
|
||||
T : str
|
||||
Label of tensor dataset.
|
||||
|
||||
"""
|
||||
def __add_deviator(x):
|
||||
def _add_deviator(T):
|
||||
|
||||
if not np.all(np.array(x['data'].shape[1:]) == np.array([3,3])):
|
||||
if not np.all(np.array(T['data'].shape[1:]) == np.array([3,3])):
|
||||
raise ValueError
|
||||
|
||||
return {
|
||||
'data': mechanics.deviatoric_part(x['data']),
|
||||
'label': 's_{}'.format(x['label']),
|
||||
'data': mechanics.deviatoric_part(T['data']),
|
||||
'label': 's_{}'.format(T['label']),
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': 'Deviator of tensor {} ({})'.format(x['label'],x['meta']['Description']),
|
||||
'Unit': T['meta']['Unit'],
|
||||
'Description': 'Deviator of tensor {} ({})'.format(T['label'],T['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_deviator v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_deviator,requested)
|
||||
self.__add_generic_pointwise(_add_deviator,{'T':T})
|
||||
|
||||
|
||||
def add_maximum_shear(self,x):
|
||||
def add_eigenvalues(self,S):
|
||||
"""
|
||||
Add eigenvalues of symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
S : str
|
||||
Label of symmetric tensor dataset.
|
||||
|
||||
"""
|
||||
def _add_eigenvalue(S):
|
||||
|
||||
return {
|
||||
'data': mechanics.eigenvalues(S['data']),
|
||||
'label': 'lambda({})'.format(S['label']),
|
||||
'meta' : {
|
||||
'Unit': S['meta']['Unit'],
|
||||
'Description': 'Eigenvalues of {} ({})'.format(S['label'],S['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_eigenvalues v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
self.__add_generic_pointwise(_add_eigenvalue,{'S':S})
|
||||
|
||||
|
||||
def add_eigenvectors(self,S):
|
||||
"""
|
||||
Add eigenvectors of symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
S : str
|
||||
Label of symmetric tensor dataset.
|
||||
|
||||
"""
|
||||
def _add_eigenvector(S):
|
||||
|
||||
return {
|
||||
'data': mechanics.eigenvectors(S['data']),
|
||||
'label': 'v({})'.format(S['label']),
|
||||
'meta' : {
|
||||
'Unit': '1',
|
||||
'Description': 'Eigenvectors of {} ({})'.format(S['label'],S['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_eigenvectors v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
self.__add_generic_pointwise(_add_eigenvector,{'S':S})
|
||||
|
||||
|
||||
def add_IPFcolor(self,q,l):
|
||||
"""
|
||||
Add RGB color tuple of inverse pole figure (IPF) color.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
q : str
|
||||
Label of the dataset containing the crystallographic orientation as quaternions.
|
||||
l : numpy.array of shape (3)
|
||||
Lab frame direction for inverse pole figure.
|
||||
|
||||
"""
|
||||
def _add_IPFcolor(q,l):
|
||||
|
||||
d = np.array(l)
|
||||
d_unit = d/np.linalg.norm(d)
|
||||
m = util.scale_to_coprime(d)
|
||||
colors = np.empty((len(q['data']),3),np.uint8)
|
||||
|
||||
lattice = q['meta']['Lattice']
|
||||
|
||||
for i,q in enumerate(q['data']):
|
||||
o = Orientation(np.array([q['w'],q['x'],q['y'],q['z']]),lattice).reduced()
|
||||
colors[i] = np.uint8(o.IPFcolor(d_unit)*255)
|
||||
|
||||
return {
|
||||
'data': colors,
|
||||
'label': 'IPFcolor_[{} {} {}]'.format(*m),
|
||||
'meta' : {
|
||||
'Unit': 'RGB (8bit)',
|
||||
'Lattice': lattice,
|
||||
'Description': 'Inverse Pole Figure (IPF) colors for direction/plane [{} {} {})'.format(*m),
|
||||
'Creator': 'dadf5.py:add_IPFcolor v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
self.__add_generic_pointwise(_add_IPFcolor,{'q':q},{'l':l})
|
||||
|
||||
|
||||
def add_maximum_shear(self,S):
|
||||
"""
|
||||
Add maximum shear components of symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a symmetric tensor.
|
||||
S : str
|
||||
Label of symmetric tensor dataset.
|
||||
|
||||
"""
|
||||
def __add_maximum_shear(x):
|
||||
def _add_maximum_shear(S):
|
||||
|
||||
return {
|
||||
'data': mechanics.maximum_shear(x['data']),
|
||||
'label': 'max_shear({})'.format(x['label']),
|
||||
'data': mechanics.maximum_shear(S['data']),
|
||||
'label': 'max_shear({})'.format(S['label']),
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': 'Maximum shear component of of {} ({})'.format(x['label'],x['meta']['Description']),
|
||||
'Unit': S['meta']['Unit'],
|
||||
'Description': 'Maximum shear component of {} ({})'.format(S['label'],S['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_maximum_shear v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_maximum_shear,requested)
|
||||
self.__add_generic_pointwise(_add_maximum_shear,{'S':S})
|
||||
|
||||
|
||||
def add_Mises(self,x):
|
||||
def add_Mises(self,S):
|
||||
"""
|
||||
Add the equivalent Mises stress or strain of a symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a symmetric stress or strain tensor.
|
||||
S : str
|
||||
Label of symmetric tensorial stress or strain dataset.
|
||||
|
||||
"""
|
||||
def __add_Mises(x):
|
||||
def _add_Mises(S):
|
||||
|
||||
t = 'strain' if x['meta']['Unit'] == '1' else \
|
||||
t = 'strain' if S['meta']['Unit'] == '1' else \
|
||||
'stress'
|
||||
return {
|
||||
'data': mechanics.Mises_strain(x['data']) if t=='strain' else mechanics.Mises_stress(x['data']),
|
||||
'label': '{}_vM'.format(x['label']),
|
||||
'data': mechanics.Mises_strain(S['data']) if t=='strain' else mechanics.Mises_stress(S['data']),
|
||||
'label': '{}_vM'.format(S['label']),
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': 'Mises equivalent {} of {} ({})'.format(t,x['label'],x['meta']['Description']),
|
||||
'Unit': S['meta']['Unit'],
|
||||
'Description': 'Mises equivalent {} of {} ({})'.format(t,S['label'],S['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_Mises v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_Mises,requested)
|
||||
self.__add_generic_pointwise(_add_Mises,{'S':S})
|
||||
|
||||
|
||||
def add_norm(self,x,ord=None):
|
||||
|
@ -667,12 +744,12 @@ class DADF5():
|
|||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a vector or tensor.
|
||||
Label of vector or tensor dataset.
|
||||
ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
|
||||
Order of the norm. inf means numpy’s inf object. For details refer to numpy.linalg.norm.
|
||||
Order of the norm. inf means NumPy’s inf object. For details refer to numpy.linalg.norm.
|
||||
|
||||
"""
|
||||
def __add_norm(x,ord):
|
||||
def _add_norm(x,ord):
|
||||
|
||||
o = ord
|
||||
if len(x['data'].shape) == 2:
|
||||
|
@ -691,93 +768,155 @@ class DADF5():
|
|||
'label': '|{}|_{}'.format(x['label'],o),
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': '{}-Norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
||||
'Description': '{}-norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_norm v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_norm,requested,{'ord':ord})
|
||||
self.__add_generic_pointwise(_add_norm,{'x':x},{'ord':ord})
|
||||
|
||||
|
||||
def add_principal_components(self,x):
|
||||
def add_PK2(self,P='P',F='F'):
|
||||
"""
|
||||
Add principal components of symmetric tensor.
|
||||
|
||||
The principal components are sorted in descending order, each repeated according to its multiplicity.
|
||||
Add 2. Piola-Kirchhoff calculated from first Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a symmetric tensor.
|
||||
P : str, optional
|
||||
Label first Piola-Kirchhoff stress dataset. Defaults to ‘P’.
|
||||
F : str, optional
|
||||
Label of deformation gradient dataset. Defaults to ‘F’.
|
||||
|
||||
"""
|
||||
def __add_principal_components(x):
|
||||
def _add_PK2(P,F):
|
||||
|
||||
return {
|
||||
'data': mechanics.principal_components(x['data']),
|
||||
'label': 'lambda_{}'.format(x['label']),
|
||||
'data': mechanics.PK2(P['data'],F['data']),
|
||||
'label': 'S',
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': 'Pricipal components of {} ({})'.format(x['label'],x['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_principal_components v{}'.format(version)
|
||||
'Unit': P['meta']['Unit'],
|
||||
'Description': '2. Kirchhoff stress calculated from {} ({}) '.format(P['label'],
|
||||
P['meta']['Description'])+\
|
||||
'and {} ({})'.format(F['label'],F['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_PK2 v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_principal_components,requested)
|
||||
self.__add_generic_pointwise(_add_PK2,{'P':P,'F':F})
|
||||
|
||||
|
||||
def add_spherical(self,x):
|
||||
def add_pole(self,q,p,polar=False):
|
||||
"""
|
||||
Add coordinates of stereographic projection of given pole in crystal frame.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
q : str
|
||||
Label of the dataset containing the crystallographic orientation as quaternions.
|
||||
p : numpy.array of shape (3)
|
||||
Crystallographic direction or plane.
|
||||
polar : bool, optional
|
||||
Give pole in polar coordinates. Defaults to False.
|
||||
|
||||
"""
|
||||
def _add_pole(q,p,polar):
|
||||
|
||||
pole = np.array(p)
|
||||
unit_pole = pole/np.linalg.norm(pole)
|
||||
m = util.scale_to_coprime(pole)
|
||||
coords = np.empty((len(q['data']),2))
|
||||
|
||||
for i,q in enumerate(q['data']):
|
||||
o = Rotation(np.array([q['w'],q['x'],q['y'],q['z']]))
|
||||
rotatedPole = o*unit_pole # rotate pole according to crystal orientation
|
||||
(x,y) = rotatedPole[0:2]/(1.+abs(unit_pole[2])) # stereographic projection
|
||||
coords[i] = [np.sqrt(x*x+y*y),np.arctan2(y,x)] if polar else [x,y]
|
||||
|
||||
return {
|
||||
'data': coords,
|
||||
'label': 'p^{}_[{} {} {})'.format(u'rφ' if polar else 'xy',*m),
|
||||
'meta' : {
|
||||
'Unit': '1',
|
||||
'Description': '{} coordinates of stereographic projection of pole (direction/plane) in crystal frame'\
|
||||
.format('Polar' if polar else 'Cartesian'),
|
||||
'Creator' : 'dadf5.py:add_pole v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
self.__add_generic_pointwise(_add_pole,{'q':q},{'p':p,'polar':polar})
|
||||
|
||||
|
||||
def add_rotational_part(self,F):
|
||||
"""
|
||||
Add rotational part of a deformation gradient.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : str, optional
|
||||
Label of deformation gradient dataset.
|
||||
|
||||
"""
|
||||
def _add_rotational_part(F):
|
||||
|
||||
return {
|
||||
'data': mechanics.rotational_part(F['data']),
|
||||
'label': 'R({})'.format(F['label']),
|
||||
'meta': {
|
||||
'Unit': F['meta']['Unit'],
|
||||
'Description': 'Rotational part of {} ({})'.format(F['label'],F['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_rotational_part v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
self.__add_generic_pointwise(_add_rotational_part,{'F':F})
|
||||
|
||||
|
||||
def add_spherical(self,T):
|
||||
"""
|
||||
Add the spherical (hydrostatic) part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
Label of the dataset containing a tensor.
|
||||
T : str
|
||||
Label of tensor dataset.
|
||||
|
||||
"""
|
||||
def __add_spherical(x):
|
||||
def _add_spherical(T):
|
||||
|
||||
if not np.all(np.array(x['data'].shape[1:]) == np.array([3,3])):
|
||||
if not np.all(np.array(T['data'].shape[1:]) == np.array([3,3])):
|
||||
raise ValueError
|
||||
|
||||
return {
|
||||
'data': mechanics.spherical_part(x['data']),
|
||||
'label': 'p_{}'.format(x['label']),
|
||||
'data': mechanics.spherical_part(T['data']),
|
||||
'label': 'p_{}'.format(T['label']),
|
||||
'meta': {
|
||||
'Unit': x['meta']['Unit'],
|
||||
'Description': 'Spherical component of tensor {} ({})'.format(x['label'],x['meta']['Description']),
|
||||
'Unit': T['meta']['Unit'],
|
||||
'Description': 'Spherical component of tensor {} ({})'.format(T['label'],T['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_spherical v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
requested = [{'label':x,'arg':'x'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_spherical,requested)
|
||||
self.__add_generic_pointwise(_add_spherical,{'T':T})
|
||||
|
||||
|
||||
def add_strain_tensor(self,F='F',t='U',m=0):
|
||||
def add_strain_tensor(self,F='F',t='V',m=0.0):
|
||||
"""
|
||||
Add strain tensor calculated from a deformation gradient.
|
||||
Add strain tensor of a deformation gradient.
|
||||
|
||||
For details refer to damask.mechanics.strain_tensor
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : str, optional
|
||||
Label of the dataset containing the deformation gradient. Default value is ‘F’.
|
||||
Label of deformation gradient dataset. Defaults to ‘F’.
|
||||
t : {‘V’, ‘U’}, optional
|
||||
Type of the polar decomposition, ‘V’ for right stretch tensor and ‘U’ for left stretch tensor.
|
||||
Defaults value is ‘U’.
|
||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
Defaults to ‘V’.
|
||||
m : float, optional
|
||||
Order of the strain calculation. Default value is ‘0.0’.
|
||||
Order of the strain calculation. Defaults to ‘0.0’.
|
||||
|
||||
"""
|
||||
def __add_strain_tensor(F,t,m):
|
||||
def _add_strain_tensor(F,t,m):
|
||||
|
||||
return {
|
||||
'data': mechanics.strain_tensor(F['data'],t,m),
|
||||
|
@ -789,12 +928,39 @@ class DADF5():
|
|||
}
|
||||
}
|
||||
|
||||
requested = [{'label':F,'arg':'F'}]
|
||||
|
||||
self.__add_generic_pointwise(__add_strain_tensor,requested,{'t':t,'m':m})
|
||||
self.__add_generic_pointwise(_add_strain_tensor,{'F':F},{'t':t,'m':m})
|
||||
|
||||
|
||||
def __add_generic_pointwise(self,func,datasets_requested,extra_args={}):
|
||||
def add_stretch_tensor(self,F='F',t='V'):
|
||||
"""
|
||||
Add stretch tensor of a deformation gradient.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : str, optional
|
||||
Label of deformation gradient dataset. Defaults to ‘F’.
|
||||
t : {‘V’, ‘U’}, optional
|
||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
Defaults to ‘V’.
|
||||
|
||||
"""
|
||||
def _add_stretch_tensor(F,t):
|
||||
|
||||
return {
|
||||
'data': mechanics.left_stretch(F['data']) if t == 'V' else mechanics.right_stretch(F['data']),
|
||||
'label': '{}({})'.format(t,F['label']),
|
||||
'meta': {
|
||||
'Unit': F['meta']['Unit'],
|
||||
'Description': '{} stretch tensor of {} ({})'.format('Left' if t == 'V' else 'Right',
|
||||
F['label'],F['meta']['Description']),
|
||||
'Creator': 'dadf5.py:add_stretch_tensor v{}'.format(version)
|
||||
}
|
||||
}
|
||||
|
||||
self.__add_generic_pointwise(_add_stretch_tensor,{'F':F},{'t':t})
|
||||
|
||||
|
||||
def __add_generic_pointwise(self,func,dataset_mapping,args={}):
|
||||
"""
|
||||
General function to add pointwise data.
|
||||
|
||||
|
@ -802,8 +968,8 @@ class DADF5():
|
|||
----------
|
||||
func : function
|
||||
Function that calculates a new dataset from one or more datasets per HDF5 group.
|
||||
datasets_requested : list of dictionaries
|
||||
Details of the datasets to be used: label (in HDF5 file) and arg (argument to which the data is parsed in func).
|
||||
dataset_mapping : dictionary
|
||||
Mapping HDF5 data label to callback function argument
|
||||
extra_args : dictionary, optional
|
||||
Any extra arguments parsed to func.
|
||||
|
||||
|
@ -812,8 +978,9 @@ class DADF5():
|
|||
"""Call function with input data + extra arguments, returns results + group."""
|
||||
args['results'].put({**args['func'](**args['in']),'group':args['group']})
|
||||
|
||||
|
||||
N_threads = 1 # ToDo: should be a parameter
|
||||
env = Environment()
|
||||
N_threads = int(env.options['DAMASK_NUM_THREADS'])
|
||||
N_threads //=N_threads # disable for the moment
|
||||
|
||||
results = Queue(N_threads)
|
||||
pool = util.ThreadPool(N_threads)
|
||||
|
@ -821,16 +988,16 @@ class DADF5():
|
|||
|
||||
todo = []
|
||||
# ToDo: It would be more memory efficient to read only from file when required, i.e. do to it in pool.add_task
|
||||
for group in self.groups_with_datasets([d['label'] for d in datasets_requested]):
|
||||
for group in self.groups_with_datasets(dataset_mapping.values()):
|
||||
with h5py.File(self.fname,'r') as f:
|
||||
datasets_in = {}
|
||||
for d in datasets_requested:
|
||||
loc = f[group+'/'+d['label']]
|
||||
for arg,label in dataset_mapping.items():
|
||||
loc = f[group+'/'+label]
|
||||
data = loc[()]
|
||||
meta = {k:loc.attrs[k].decode() for k in loc.attrs.keys()}
|
||||
datasets_in[d['arg']] = {'data': data, 'meta' : meta, 'label' : d['label']}
|
||||
datasets_in[arg] = {'data': data, 'meta': meta, 'label': label}
|
||||
|
||||
todo.append({'in':{**datasets_in,**extra_args},'func':func,'group':group,'results':results})
|
||||
todo.append({'in':{**datasets_in,**args},'func':func,'group':group,'results':results})
|
||||
|
||||
pool.map(job, todo[:N_added]) # initialize
|
||||
|
||||
|
@ -850,7 +1017,7 @@ class DADF5():
|
|||
pool.wait_completion()
|
||||
|
||||
|
||||
def to_vtk(self,labels,mode='Cell'):
|
||||
def to_vtk(self,labels,mode='cell'):
|
||||
"""
|
||||
Export to vtk cell/point data.
|
||||
|
||||
|
@ -858,12 +1025,12 @@ class DADF5():
|
|||
----------
|
||||
labels : str or list of
|
||||
Labels of the datasets to be exported.
|
||||
mode : str, either 'Cell' or 'Point'
|
||||
mode : str, either 'cell' or 'point'
|
||||
Export in cell format or point format.
|
||||
Default value is 'Cell'.
|
||||
Defaults to 'cell'.
|
||||
|
||||
"""
|
||||
if mode=='Cell':
|
||||
if mode.lower()=='cell':
|
||||
|
||||
if self.structured:
|
||||
|
||||
|
@ -908,7 +1075,7 @@ class DADF5():
|
|||
for i in f['/geometry/T_c']:
|
||||
vtk_geom.InsertNextCell(vtk_type,n_nodes,i-1)
|
||||
|
||||
elif mode == 'Point':
|
||||
elif mode.lower()=='point':
|
||||
Points = vtk.vtkPoints()
|
||||
Vertices = vtk.vtkCellArray()
|
||||
for c in self.cell_coordinates():
|
||||
|
@ -926,7 +1093,7 @@ class DADF5():
|
|||
for i,inc in enumerate(self.iter_visible('increments')):
|
||||
vtk_data = []
|
||||
|
||||
materialpoints_backup = self.visible['materialpoints'].copy()
|
||||
materialpoints_backup = self.selection['materialpoints'].copy()
|
||||
self.set_visible('materialpoints',False)
|
||||
for label in (labels if isinstance(labels,list) else [labels]):
|
||||
for p in self.iter_visible('con_physics'):
|
||||
|
@ -957,7 +1124,7 @@ class DADF5():
|
|||
|
||||
self.set_visible('materialpoints',materialpoints_backup)
|
||||
|
||||
constituents_backup = self.visible['constituents'].copy()
|
||||
constituents_backup = self.selection['constituents'].copy()
|
||||
self.set_visible('constituents',False)
|
||||
for label in (labels if isinstance(labels,list) else [labels]):
|
||||
for p in self.iter_visible('mat_physics'):
|
||||
|
@ -984,7 +1151,7 @@ class DADF5():
|
|||
vtk_geom.GetCellData().AddArray(vtk_data[-1])
|
||||
self.set_visible('constituents',constituents_backup)
|
||||
|
||||
if mode=='Cell':
|
||||
if mode.lower()=='cell':
|
||||
writer = vtk.vtkXMLRectilinearGridWriter() if self.structured else \
|
||||
vtk.vtkXMLUnstructuredGridWriter()
|
||||
x = self.get_dataset_location('u_n')
|
||||
|
@ -992,7 +1159,7 @@ class DADF5():
|
|||
deep=True,array_type=vtk.VTK_DOUBLE))
|
||||
vtk_data[-1].SetName('u')
|
||||
vtk_geom.GetPointData().AddArray(vtk_data[-1])
|
||||
elif mode == 'Point':
|
||||
elif mode.lower()=='point':
|
||||
writer = vtk.vtkXMLPolyDataWriter()
|
||||
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ class Environment():
|
|||
def __init__(self):
|
||||
"""Read and provide values of DAMASK configuration."""
|
||||
self.options = {}
|
||||
self.get_options()
|
||||
self.__get_options()
|
||||
|
||||
def relPath(self,relative = '.'):
|
||||
return os.path.join(self.rootDir(),relative)
|
||||
|
@ -16,7 +16,7 @@ class Environment():
|
|||
def rootDir(self):
|
||||
return os.path.normpath(os.path.join(os.path.realpath(__file__),'../../../'))
|
||||
|
||||
def get_options(self):
|
||||
def __get_options(self):
|
||||
for item in ['DAMASK_NUM_THREADS',
|
||||
'MSC_ROOT',
|
||||
'MARC_VERSION',
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import numpy as np
|
||||
|
||||
def Cauchy(F,P):
|
||||
def Cauchy(P,F):
|
||||
"""
|
||||
Return Cauchy stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
Return Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
||||
|
||||
|
@ -21,23 +21,179 @@ def Cauchy(F,P):
|
|||
return symmetric(sigma)
|
||||
|
||||
|
||||
def PK2(F,P):
|
||||
def deviatoric_part(x):
|
||||
"""
|
||||
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
Return deviatoric part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
|
||||
|
||||
def eigenvalues(x):
|
||||
"""
|
||||
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||
|
||||
The eigenvalues are sorted in ascending order, each repeated according to
|
||||
its multiplicity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvalues are computed.
|
||||
|
||||
"""
|
||||
return np.linalg.eigvalsh(symmetric(x))
|
||||
|
||||
|
||||
def eigenvectors(x,RHS=False):
|
||||
"""
|
||||
Return eigenvectors of a symmetric tensor.
|
||||
|
||||
The eigenvalues are sorted in ascending order of their associated eigenvalues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvectors are computed.
|
||||
RHS: bool, optional
|
||||
Enforce right-handed coordinate system. Default is False.
|
||||
|
||||
"""
|
||||
(u,v) = np.linalg.eigh(symmetric(x))
|
||||
|
||||
if RHS:
|
||||
if np.shape(x) == (3,3):
|
||||
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
|
||||
else:
|
||||
v[np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||
return v
|
||||
|
||||
|
||||
def left_stretch(x):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')[0]
|
||||
|
||||
|
||||
def maximum_shear(x):
|
||||
"""
|
||||
Return the maximum shear component of a symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = eigenvalues(x)
|
||||
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
|
||||
(w[:,0] - w[:,2])*0.5
|
||||
|
||||
|
||||
def Mises_strain(epsilon):
|
||||
"""
|
||||
Return the Mises equivalent of a strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
return __Mises(epsilon,2.0/3.0)
|
||||
|
||||
|
||||
def Mises_stress(sigma):
|
||||
"""
|
||||
Return the Mises equivalent of a stress tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
return __Mises(sigma,3.0/2.0)
|
||||
|
||||
|
||||
def PK2(P,F):
|
||||
"""
|
||||
Calculate second Piola-Kirchhoff stress from first Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
P : numpy.array of shape (:,3,3) or (3,3)
|
||||
1. Piola-Kirchhoff stress.
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
|
||||
"""
|
||||
if np.shape(F) == np.shape(P) == (3,3):
|
||||
S = np.dot(np.linalg.inv(F),P)
|
||||
else:
|
||||
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
|
||||
return S
|
||||
return symmetric(S)
|
||||
|
||||
def right_stretch(x):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'U')[0]
|
||||
|
||||
|
||||
def rotational_part(x):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'R')[0]
|
||||
|
||||
|
||||
def spherical_part(x,tensor=False):
|
||||
"""
|
||||
Return spherical (hydrostatic) part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
tensor : bool, optional
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
|
||||
"""
|
||||
if x.shape == (3,3):
|
||||
sph = np.trace(x)/3.0
|
||||
return sph if not tensor else np.eye(3)*sph
|
||||
else:
|
||||
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
||||
if not tensor:
|
||||
return sph
|
||||
else:
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||
|
||||
|
||||
def strain_tensor(F,t,m):
|
||||
|
@ -78,73 +234,6 @@ def strain_tensor(F,t,m):
|
|||
eps
|
||||
|
||||
|
||||
def deviatoric_part(x):
|
||||
"""
|
||||
Return deviatoric part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
|
||||
|
||||
def spherical_part(x,tensor=False):
|
||||
"""
|
||||
Return spherical (hydrostatic) part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
tensor : bool, optional
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
|
||||
"""
|
||||
if x.shape == (3,3):
|
||||
sph = np.trace(x)/3.0
|
||||
return sph if not tensor else np.eye(3)*sph
|
||||
else:
|
||||
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
||||
if not tensor:
|
||||
return sph
|
||||
else:
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||
|
||||
|
||||
def Mises_stress(sigma):
|
||||
"""
|
||||
Return the Mises equivalent of a stress tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
s = deviatoric_part(sigma)
|
||||
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
|
||||
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
|
||||
|
||||
|
||||
def Mises_strain(epsilon):
|
||||
"""
|
||||
Return the Mises equivalent of a strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||
|
||||
"""
|
||||
s = deviatoric_part(epsilon)
|
||||
return np.sqrt(2.0/3.0*(np.sum(s**2.0))) if np.shape(epsilon) == (3,3) else \
|
||||
np.sqrt(2.0/3.0*np.einsum('ijk->i',s**2.0))
|
||||
|
||||
|
||||
def symmetric(x):
|
||||
"""
|
||||
Return the symmetrized tensor.
|
||||
|
@ -158,39 +247,6 @@ def symmetric(x):
|
|||
return (x+transpose(x))*0.5
|
||||
|
||||
|
||||
def maximum_shear(x):
|
||||
"""
|
||||
Return the maximum shear component of a symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||
return (w[2] - w[0])*0.5 if np.shape(x) == (3,3) else \
|
||||
(w[:,2] - w[:,0])*0.5
|
||||
|
||||
|
||||
def principal_components(x):
|
||||
"""
|
||||
Return the principal components of a symmetric tensor.
|
||||
|
||||
The principal components (eigenvalues) are sorted in descending order, each repeated according to
|
||||
its multiplicity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the principal compontents are computed.
|
||||
|
||||
"""
|
||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||
return w[::-1] if np.shape(x) == (3,3) else \
|
||||
w[:,::-1]
|
||||
|
||||
|
||||
def transpose(x):
|
||||
"""
|
||||
Return the transpose of a tensor.
|
||||
|
@ -205,45 +261,6 @@ def transpose(x):
|
|||
np.transpose(x,(0,2,1))
|
||||
|
||||
|
||||
def rotational_part(x):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'R')[0]
|
||||
|
||||
|
||||
def left_stretch(x):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')[0]
|
||||
|
||||
|
||||
def right_stretch(x):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'U')[0]
|
||||
|
||||
|
||||
def __polar_decomposition(x,requested):
|
||||
"""
|
||||
Singular value decomposition.
|
||||
|
@ -270,3 +287,20 @@ def __polar_decomposition(x,requested):
|
|||
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
||||
|
||||
return tuple(output)
|
||||
|
||||
|
||||
def __Mises(x,s):
|
||||
"""
|
||||
Base equation for Mises equivalent of a stres or strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the von Mises equivalent is computed.
|
||||
s : float
|
||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||
|
||||
"""
|
||||
d = deviatoric_part(x)
|
||||
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \
|
||||
np.sqrt(s*np.einsum('ijk->i',d**2.0))
|
||||
|
|
|
@ -3,10 +3,14 @@ import time
|
|||
import os
|
||||
import subprocess
|
||||
import shlex
|
||||
from fractions import Fraction
|
||||
from functools import reduce
|
||||
from optparse import Option
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
|
||||
class bcolors:
|
||||
"""
|
||||
ASCII Colors (Blender code).
|
||||
|
@ -161,6 +165,24 @@ def progressBar(iteration, total, prefix='', bar_length=50):
|
|||
sys.stderr.flush()
|
||||
|
||||
|
||||
def scale_to_coprime(v):
|
||||
"""Scale vector to co-prime (relatively prime) integers."""
|
||||
MAX_DENOMINATOR = 1000
|
||||
|
||||
def get_square_denominator(x):
|
||||
"""Denominator of the square of a number."""
|
||||
return Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator
|
||||
|
||||
def lcm(a, b):
|
||||
"""Least common multiple."""
|
||||
return a * b // np.gcd(a, b)
|
||||
|
||||
denominators = [int(get_square_denominator(i)) for i in v]
|
||||
s = reduce(lcm, denominators) ** 0.5
|
||||
m = (np.array(v)*s).astype(np.int)
|
||||
return m//reduce(np.gcd,m)
|
||||
|
||||
|
||||
class return_message():
|
||||
"""Object with formatted return message."""
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ class TestDADF5:
|
|||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_calculation(self,default):
|
||||
default.add_calculation('2.0*np.abs(#F#)-1.0','x','-','test')
|
||||
default.add_calculation('x','2.0*np.abs(#F#)-1.0','-','my notes')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'x': default.get_dataset_location('x')}
|
||||
in_memory = 2.0*np.abs(default.read_dataset(loc['F'],0))-1.0
|
||||
|
@ -52,8 +52,8 @@ class TestDADF5:
|
|||
loc = {'F': default.get_dataset_location('F'),
|
||||
'P': default.get_dataset_location('P'),
|
||||
'sigma':default.get_dataset_location('sigma')}
|
||||
in_memory = mechanics.Cauchy(default.read_dataset(loc['F'],0),
|
||||
default.read_dataset(loc['P'],0))
|
||||
in_memory = mechanics.Cauchy(default.read_dataset(loc['P'],0),
|
||||
default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['sigma'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
|
@ -73,6 +73,54 @@ class TestDADF5:
|
|||
in_file = default.read_dataset(loc['s_P'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_eigenvalues(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_eigenvalues('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'lambda(sigma)':default.get_dataset_location('lambda(sigma)')}
|
||||
in_memory = mechanics.eigenvalues(default.read_dataset(loc['sigma'],0))
|
||||
in_file = default.read_dataset(loc['lambda(sigma)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_eigenvectors(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_eigenvectors('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'v(sigma)':default.get_dataset_location('v(sigma)')}
|
||||
in_memory = mechanics.eigenvectors(default.read_dataset(loc['sigma'],0))
|
||||
in_file = default.read_dataset(loc['v(sigma)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_maximum_shear(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_maximum_shear('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'max_shear(sigma)':default.get_dataset_location('max_shear(sigma)')}
|
||||
in_memory = mechanics.maximum_shear(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc['max_shear(sigma)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_Mises_strain(self,default):
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*2.0 - 1.0
|
||||
default.add_strain_tensor('F',t,m)
|
||||
label = 'epsilon_{}^{}(F)'.format(t,m)
|
||||
default.add_Mises(label)
|
||||
loc = {label :default.get_dataset_location(label),
|
||||
label+'_vM':default.get_dataset_location(label+'_vM')}
|
||||
in_memory = mechanics.Mises_strain(default.read_dataset(loc[label],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc[label+'_vM'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_Mises_stress(self,default):
|
||||
default.add_Cauchy('P','F')
|
||||
default.add_Mises('sigma')
|
||||
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||
'sigma_vM':default.get_dataset_location('sigma_vM')}
|
||||
in_memory = mechanics.Mises_stress(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc['sigma_vM'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_norm(self,default):
|
||||
default.add_norm('F',1)
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
|
@ -81,6 +129,24 @@ class TestDADF5:
|
|||
in_file = default.read_dataset(loc['|F|_1'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_PK2(self,default):
|
||||
default.add_PK2('P','F')
|
||||
loc = {'F':default.get_dataset_location('F'),
|
||||
'P':default.get_dataset_location('P'),
|
||||
'S':default.get_dataset_location('S')}
|
||||
in_memory = mechanics.PK2(default.read_dataset(loc['P'],0),
|
||||
default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['S'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_rotational_part(self,default):
|
||||
default.add_rotational_part('F')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'R(F)': default.get_dataset_location('R(F)')}
|
||||
in_memory = mechanics.rotational_part(default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['R(F)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_spherical(self,default):
|
||||
default.add_spherical('P')
|
||||
loc = {'P': default.get_dataset_location('P'),
|
||||
|
@ -88,3 +154,30 @@ class TestDADF5:
|
|||
in_memory = mechanics.spherical_part(default.read_dataset(loc['P'],0)).reshape(-1,1)
|
||||
in_file = default.read_dataset(loc['p_P'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_strain(self,default):
|
||||
t = ['V','U'][np.random.randint(0,2)]
|
||||
m = np.random.random()*2.0 - 1.0
|
||||
default.add_strain_tensor('F',t,m)
|
||||
label = 'epsilon_{}^{}(F)'.format(t,m)
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
label: default.get_dataset_location(label)}
|
||||
in_memory = mechanics.strain_tensor(default.read_dataset(loc['F'],0),t,m)
|
||||
in_file = default.read_dataset(loc[label],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_stretch_right(self,default):
|
||||
default.add_stretch_tensor('F','U')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'U(F)': default.get_dataset_location('U(F)')}
|
||||
in_memory = mechanics.right_stretch(default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['U(F)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
||||
def test_add_stretch_left(self,default):
|
||||
default.add_stretch_tensor('F','V')
|
||||
loc = {'F': default.get_dataset_location('F'),
|
||||
'V(F)': default.get_dataset_location('V(F)')}
|
||||
in_memory = mechanics.left_stretch(default.read_dataset(loc['F'],0))
|
||||
in_file = default.read_dataset(loc['V(F)'],0)
|
||||
assert np.allclose(in_memory,in_file)
|
||||
|
|
|
@ -10,9 +10,64 @@ class TestMechanics:
|
|||
def test_vectorize_Cauchy(self):
|
||||
P = np.random.random((self.n,3,3))
|
||||
F = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Cauchy(F,P)[self.c],
|
||||
mechanics.Cauchy(F[self.c],P[self.c]))
|
||||
assert np.allclose(mechanics.Cauchy(P,F)[self.c],
|
||||
mechanics.Cauchy(P[self.c],F[self.c]))
|
||||
|
||||
def test_vectorize_deviatoric_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
|
||||
mechanics.deviatoric_part(x[self.c]))
|
||||
|
||||
def test_vectorize_eigenvalues(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.eigenvalues(x)[self.c],
|
||||
mechanics.eigenvalues(x[self.c]))
|
||||
|
||||
def test_vectorize_eigenvectors(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.eigenvectors(x)[self.c],
|
||||
mechanics.eigenvectors(x[self.c]))
|
||||
|
||||
def test_vectorize_left_stretch(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.left_stretch(x)[self.c],
|
||||
mechanics.left_stretch(x[self.c]))
|
||||
|
||||
def test_vectorize_maximum_shear(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.maximum_shear(x)[self.c],
|
||||
mechanics.maximum_shear(x[self.c]))
|
||||
|
||||
def test_vectorize_Mises_strain(self):
|
||||
epsilon = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
|
||||
mechanics.Mises_strain(epsilon[self.c]))
|
||||
|
||||
def test_vectorize_Mises_stress(self):
|
||||
sigma = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
|
||||
mechanics.Mises_stress(sigma[self.c]))
|
||||
|
||||
def test_vectorize_PK2(self):
|
||||
F = np.random.random((self.n,3,3))
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.PK2(P,F)[self.c],
|
||||
mechanics.PK2(P[self.c],F[self.c]))
|
||||
|
||||
def test_vectorize_right_stretch(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.right_stretch(x)[self.c],
|
||||
mechanics.right_stretch(x[self.c]))
|
||||
|
||||
def test_vectorize_rotational_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.rotational_part(x)[self.c],
|
||||
mechanics.rotational_part(x[self.c]))
|
||||
|
||||
def test_vectorize_spherical_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
|
||||
mechanics.spherical_part(x[self.c],True))
|
||||
|
||||
def test_vectorize_strain_tensor(self):
|
||||
F = np.random.random((self.n,3,3))
|
||||
|
@ -21,79 +76,24 @@ class TestMechanics:
|
|||
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c],
|
||||
mechanics.strain_tensor(F[self.c],t,m))
|
||||
|
||||
|
||||
def test_vectorize_deviatoric_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
|
||||
mechanics.deviatoric_part(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_spherical_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
|
||||
mechanics.spherical_part(x[self.c],True))
|
||||
|
||||
|
||||
def test_vectorize_Mises_stress(self):
|
||||
sigma = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
|
||||
mechanics.Mises_stress(sigma[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_Mises_strain(self):
|
||||
epsilon = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
|
||||
mechanics.Mises_strain(epsilon[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_symmetric(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.symmetric(x)[self.c],
|
||||
mechanics.symmetric(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_maximum_shear(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.maximum_shear(x)[self.c],
|
||||
mechanics.maximum_shear(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_principal_components(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.principal_components(x)[self.c],
|
||||
mechanics.principal_components(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_transpose(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.transpose(x)[self.c],
|
||||
mechanics.transpose(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_rotational_part(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.rotational_part(x)[self.c],
|
||||
mechanics.rotational_part(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_left_stretch(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.left_stretch(x)[self.c],
|
||||
mechanics.left_stretch(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_right_stretch(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.right_stretch(x)[self.c],
|
||||
mechanics.right_stretch(x[self.c]))
|
||||
|
||||
|
||||
def test_Cauchy(self):
|
||||
"""Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Cauchy(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
|
||||
assert np.allclose(mechanics.Cauchy(P,np.broadcast_to(np.eye(3),(self.n,3,3))),
|
||||
mechanics.symmetric(P))
|
||||
|
||||
|
||||
def test_polar_decomposition(self):
|
||||
"""F = RU = VR."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||
|
@ -104,6 +104,13 @@ class TestMechanics:
|
|||
np.matmul(V,R))
|
||||
|
||||
|
||||
def test_PK2(self):
|
||||
"""Ensure 2. Piola-Kirchhoff stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.PK2(P,np.broadcast_to(np.eye(3),(self.n,3,3))),
|
||||
mechanics.symmetric(P))
|
||||
|
||||
|
||||
def test_strain_tensor_no_rotation(self):
|
||||
"""Ensure that left and right stretch give same results for no rotation."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||
|
@ -186,3 +193,33 @@ class TestMechanics:
|
|||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
|
||||
1.5)
|
||||
|
||||
|
||||
def test_eigenvalues(self):
|
||||
"""Ensure that the characteristic polynomial can be solved."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
lambd = mechanics.eigenvalues(A)
|
||||
s = np.random.randint(self.n)
|
||||
for i in range(3):
|
||||
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
|
||||
|
||||
def test_eigenvalues_and_vectors(self):
|
||||
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
lambd = mechanics.eigenvalues(A)
|
||||
x = mechanics.eigenvectors(A)
|
||||
s = np.random.randint(self.n)
|
||||
for i in range(3):
|
||||
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
|
||||
|
||||
def test_eigenvectors_RHS(self):
|
||||
"""Ensure that RHS coordinate system does only change sign of determinant."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
LRHS = np.linalg.det(mechanics.eigenvectors(A,RHS=False))
|
||||
RHS = np.linalg.det(mechanics.eigenvectors(A,RHS=True))
|
||||
assert np.allclose(np.abs(LRHS),RHS)
|
||||
|
||||
def test_spherical_no_shear(self):
|
||||
"""Ensure that sherical stress has max shear of 0.0."""
|
||||
A = mechanics.spherical_part(mechanics.symmetric(np.random.random((self.n,3,3))),True)
|
||||
assert np.allclose(mechanics.maximum_shear(A),0.0)
|
||||
|
|
Loading…
Reference in New Issue