Merge remote-tracking branch 'origin/20-NewStyleDislotwin' into 20-NewStyleDislotwin

This commit is contained in:
Martin Diehl 2018-09-14 10:00:11 +02:00
commit 80a2062c4b
3 changed files with 45 additions and 72 deletions

View File

@ -1 +1 @@
v2.0.2-514-gbfa56e9b v2.0.2-540-gce6e6679

View File

@ -12,7 +12,7 @@ module math
implicit none implicit none
private private
real(pReal), parameter, public :: PI = 3.141592653589793_pReal !< ratio of a circle's circumference to its diameter real(pReal), parameter, public :: PI = acos(-1.0_pReal) !< ratio of a circle's circumference to its diameter
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
complex(pReal), parameter, public :: TWOPIIMG = (0.0_pReal,2.0_pReal)*(PI,0.0_pReal) !< Re(0.0), Im(2xPi) complex(pReal), parameter, public :: TWOPIIMG = (0.0_pReal,2.0_pReal)*(PI,0.0_pReal) !< Re(0.0), Im(2xPi)
@ -36,13 +36,13 @@ module math
real(pReal), dimension(6), parameter, private :: & real(pReal), dimension(6), parameter, private :: &
nrmMandel = [& nrmMandel = [&
1.0_pReal, 1.0_pReal, 1.0_pReal,& 1.0_pReal, 1.0_pReal, 1.0_pReal, &
1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal ] !< weighting for Mandel notation (forward) sqrt(2.0_pReal), sqrt(2.0_pReal), sqrt(2.0_pReal) ] !< weighting for Mandel notation (forward)
real(pReal), dimension(6), parameter , public :: & real(pReal), dimension(6), parameter , public :: &
invnrmMandel = [& invnrmMandel = [&
1.0_pReal, 1.0_pReal, 1.0_pReal,& 1.0_pReal, 1.0_pReal, 1.0_pReal, &
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal ] !< weighting for Mandel notation (backward) 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal) ] !< weighting for Mandel notation (backward)
integer(pInt), dimension (2,6), parameter, private :: & integer(pInt), dimension (2,6), parameter, private :: &
mapVoigt = reshape([& mapVoigt = reshape([&
@ -160,7 +160,7 @@ module math
math_rotate_forward33, & math_rotate_forward33, &
math_rotate_backward33, & math_rotate_backward33, &
math_rotate_forward3333, & math_rotate_forward3333, &
math_limit math_clip
private :: & private :: &
math_check, & math_check, &
halton halton
@ -1366,16 +1366,16 @@ pure function math_RtoEuler(R)
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)) sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
! calculate PHI ! calculate PHI
math_RtoEuler(2) = acos(math_limit(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal)) math_RtoEuler(2) = acos(math_clip(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
math_RtoEuler(3) = 0.0_pReal math_RtoEuler(3) = 0.0_pReal
math_RtoEuler(1) = acos(math_limit(R(1,1)/squvw, -1.0_pReal, 1.0_pReal)) math_RtoEuler(1) = acos(math_clip(R(1,1)/squvw, -1.0_pReal, 1.0_pReal))
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1) if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
else else
math_RtoEuler(3) = acos(math_limit(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal)) math_RtoEuler(3) = acos(math_clip(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal))
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3) if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
math_RtoEuler(1) = acos(math_limit(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal)) math_RtoEuler(1) = acos(math_clip(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal))
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1) if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
end if end if
@ -1657,7 +1657,7 @@ pure function math_qToEuler(qPassive)
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2)) math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2))
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
math_qToEuler(1) = sign(2.0_pReal*acos(math_limit(q(1),-1.0_pReal, 1.0_pReal)),q(4)) math_qToEuler(1) = sign(2.0_pReal*acos(math_clip(q(1),-1.0_pReal, 1.0_pReal)),q(4))
math_qToEuler(3) = 0.0_pReal math_qToEuler(3) = 0.0_pReal
else else
math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4)) math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
@ -1684,7 +1684,7 @@ pure function math_qToAxisAngle(Q)
real(pReal) :: halfAngle, sinHalfAngle real(pReal) :: halfAngle, sinHalfAngle
real(pReal), dimension(4) :: math_qToAxisAngle real(pReal), dimension(4) :: math_qToAxisAngle
halfAngle = acos(math_limit(Q(1),-1.0_pReal,1.0_pReal)) halfAngle = acos(math_clip(Q(1),-1.0_pReal,1.0_pReal))
sinHalfAngle = sin(halfAngle) sinHalfAngle = sin(halfAngle)
smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then
@ -1744,7 +1744,7 @@ real(pReal) pure function math_EulerMisorientation(EulerA,EulerB)
cosTheta = (math_trace33(math_mul33x33(math_EulerToR(EulerB), & cosTheta = (math_trace33(math_mul33x33(math_EulerToR(EulerB), &
transpose(math_EulerToR(EulerA)))) - 1.0_pReal) * 0.5_pReal transpose(math_EulerToR(EulerA)))) - 1.0_pReal) * 0.5_pReal
math_EulerMisorientation = acos(math_limit(cosTheta,-1.0_pReal,1.0_pReal)) math_EulerMisorientation = acos(math_clip(cosTheta,-1.0_pReal,1.0_pReal))
end function math_EulerMisorientation end function math_EulerMisorientation
@ -2055,7 +2055,7 @@ function math_eigenvectorBasisSym33(m)
EB(3,3,3)=1.0_pReal EB(3,3,3)=1.0_pReal
else threeSimilarEigenvalues else threeSimilarEigenvalues
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal)) phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* & values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), & [cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), & cos((phi+2.0_pReal*PI)/3.0_pReal), &
@ -2120,7 +2120,7 @@ function math_eigenvectorBasisSym33_log(m)
EB(3,3,3)=1.0_pReal EB(3,3,3)=1.0_pReal
else threeSimilarEigenvalues else threeSimilarEigenvalues
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal)) phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* & values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), & [cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), & cos((phi+2.0_pReal*PI)/3.0_pReal), &
@ -2232,7 +2232,7 @@ function math_eigenvaluesSym33(m)
math_eigenvaluesSym33 = math_eigenvaluesSym(m) math_eigenvaluesSym33 = math_eigenvaluesSym(m)
else else
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal)) phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* & math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), & [cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), & cos((phi+2.0_pReal*PI)/3.0_pReal), &
@ -2617,7 +2617,7 @@ end function math_rotate_forward3333
!> @brief limits a scalar value to a certain range (either one or two sided) !> @brief limits a scalar value to a certain range (either one or two sided)
! Will return NaN if left > right ! Will return NaN if left > right
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
real(pReal) pure function math_limit(a, left, right) real(pReal) pure function math_clip(a, left, right)
use, intrinsic :: & use, intrinsic :: &
IEEE_arithmetic IEEE_arithmetic
@ -2626,14 +2626,14 @@ real(pReal) pure function math_limit(a, left, right)
real(pReal), intent(in), optional :: left, right real(pReal), intent(in), optional :: left, right
math_limit = min ( & math_clip = min ( &
max (merge(left, -huge(a), present(left)), a), & max (merge(left, -huge(a), present(left)), a), &
merge(right, huge(a), present(right)) & merge(right, huge(a), present(right)) &
) )
if (present(left) .and. present(right)) & if (present(left) .and. present(right)) &
math_limit = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_limit, left>right) math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
end function math_limit end function math_clip
end module math end module math

View File

@ -448,50 +448,50 @@ subroutine plastic_dislotwin_init(fileUnit)
outputID = undefined_ID outputID = undefined_ID
select case(outputs(i)) select case(outputs(i))
case ('edge_density') case ('edge_density')
outputID = edge_density_ID outputID = merge(edge_density_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('dipole_density') case ('dipole_density')
outputID = dipole_density_ID outputID = merge(dipole_density_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('shear_rate_slip','shearrate_slip') case ('shear_rate_slip','shearrate_slip')
outputID = shear_rate_slip_ID outputID = merge(shear_rate_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('accumulated_shear_slip') case ('accumulated_shear_slip')
outputID = accumulated_shear_slip_ID outputID = merge(accumulated_shear_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('mfp_slip') case ('mfp_slip')
outputID = mfp_slip_ID outputID = merge(mfp_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('resolved_stress_slip') case ('resolved_stress_slip')
outputID = resolved_stress_slip_ID outputID = merge(resolved_stress_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('threshold_stress_slip') case ('threshold_stress_slip')
outputID= threshold_stress_slip_ID outputID= merge(threshold_stress_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('edge_dipole_distance') case ('edge_dipole_distance')
outputID = edge_dipole_distance_ID outputID = merge(edge_dipole_distance_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('stress_exponent') case ('stress_exponent')
outputID = stress_exponent_ID outputID = merge(stress_exponent_ID,undefined_ID,prm%totalNslip > 0_pInt)
outputSize = prm%totalNslip outputSize = prm%totalNslip
case ('twin_fraction') case ('twin_fraction')
outputID = twin_fraction_ID outputID = merge(twin_fraction_ID,undefined_ID,prm%totalNtwin >0_pInt)
outputSize = prm%totalNtwin outputSize = prm%totalNtwin
case ('shear_rate_twin','shearrate_twin') case ('shear_rate_twin','shearrate_twin')
outputID = shear_rate_twin_ID outputID = merge(shear_rate_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
outputSize = prm%totalNtwin outputSize = prm%totalNtwin
case ('accumulated_shear_twin') case ('accumulated_shear_twin')
outputID = accumulated_shear_twin_ID outputID = merge(accumulated_shear_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
outputSize = prm%totalNtwin outputSize = prm%totalNtwin
case ('mfp_twin') case ('mfp_twin')
outputID = mfp_twin_ID outputID = merge(mfp_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
outputSize = prm%totalNtwin outputSize = prm%totalNtwin
case ('resolved_stress_twin') case ('resolved_stress_twin')
outputID = resolved_stress_twin_ID outputID = merge(resolved_stress_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
outputSize = prm%totalNtwin outputSize = prm%totalNtwin
case ('threshold_stress_twin') case ('threshold_stress_twin')
outputID = threshold_stress_twin_ID outputID = merge(threshold_stress_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
outputSize = prm%totalNtwin outputSize = prm%totalNtwin
case ('resolved_stress_shearband') case ('resolved_stress_shearband')
@ -840,54 +840,28 @@ subroutine plastic_dislotwin_init(fileUnit)
dst%strainTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:) dst%strainTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac
invLambdaSlip0 = spread(0.0_pReal,1,prm%totalNslip) ! calculation required? Seems to be the same as in microstructure dst%whole => plasticState(p)%dotState
forall (i = 1_pInt:prm%totalNslip) &
invLambdaSlip0(i) = sqrt(dot_product(math_expand(prm%rho0,prm%Nslip)+ &
math_expand(prm%rhoDip0,prm%Nslip),prm%forestProjectionEdge(1:prm%totalNslip,i)))/ &
prm%CLambdaSlip(i)
mse%invLambdaSlip = spread(math_expand(invLambdaSlip0,prm%Nslip),2, NofMyPhase)
allocate(mse%invLambdaSlip(prm%totalNslip,NofMyPhase),source=0.0_pReal)
allocate(mse%invLambdaSlipTwin(prm%totalNslip,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaSlipTwin(prm%totalNslip,NofMyPhase),source=0.0_pReal)
allocate(mse%invLambdaTwin(prm%totalNtwin,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaTwin(prm%totalNtwin,NofMyPhase),source=0.0_pReal)
allocate(mse%invLambdaSlipTrans(prm%totalNtrans,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaSlipTrans(prm%totalNtrans,NofMyPhase),source=0.0_pReal)
allocate(mse%invLambdaTrans(prm%totalNtrans,NofMyPhase),source=0.0_pReal) allocate(mse%invLambdaTrans(prm%totalNtrans,NofMyPhase),source=0.0_pReal)
MeanFreePathSlip0 = prm%GrainSize/(1.0_pReal+invLambdaSlip0*prm%GrainSize) allocate(mse%mfp_slip(prm%totalNslip,NofMyPhase), source=0.0_pReal)
mse%mfp_slip = spread(math_expand(MeanFreePathSlip0,prm%Nslip),2, NofMyPhase) allocate(mse%mfp_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
allocate(mse%mfp_trans(prm%totalNtrans,NofMyPhase),source=0.0_pReal)
MeanFreePathTwin0 = spread(prm%GrainSize,1,prm%totalNtwin)
mse%mfp_twin = spread(math_expand(MeanFreePathTwin0,prm%Ntwin),2, NofMyPhase)
MeanFreePathTrans0 = spread(prm%GrainSize,1,prm%totalNtrans)
mse%mfp_trans = spread(math_expand(MeanFreePathTrans0,prm%Ntrans),2, NofMyPhase)
tauSlipThreshold0 = spread(0.0_pReal,1,prm%totalNslip)
forall (i = 1_pInt:prm%totalNslip) tauSlipThreshold0(i) = &
prm%mu*prm%burgers_slip(i) * sqrt(dot_product(math_expand(prm%rho0 + prm%rhoDip0,prm%Nslip),&
prm%interaction_SlipSlip(i,1:prm%totalNslip)))
mse%threshold_stress_slip = spread(math_expand(tauSlipThreshold0,prm%Nslip),2, NofMyPhase)
allocate(mse%threshold_stress_slip(prm%totalNslip,NofMyPhase), source=0.0_pReal)
allocate(mse%threshold_stress_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal) allocate(mse%threshold_stress_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
allocate(mse%threshold_stress_trans(prm%totalNtrans,NofMyPhase),source=0.0_pReal) allocate(mse%threshold_stress_trans(prm%totalNtrans,NofMyPhase),source=0.0_pReal)
TwinVolume0= spread(0.0_pReal,1,prm%totalNtwin)
forall (i = 1_pInt:prm%totalNtwin) TwinVolume0(i) = &
(PI/4.0_pReal)*prm%twinsize(i)*MeanFreePathTwin0(i)**2.0_pReal
mse%twinVolume = &
spread(math_expand(TwinVolume0,prm%Ntwin),2, NofMyPhase)
MartensiteVolume0= spread(0.0_pReal,1,prm%totalNtrans)
forall (i = 1_pInt:prm%totalNtrans) MartensiteVolume0(i) = &
(PI/4.0_pReal)*prm%lamellarsizePerTransSystem(i)*MeanFreePathTrans0(i)**2.0_pReal
mse%martensiteVolume = &
spread(math_expand(MartensiteVolume0,prm%Ntrans),2, NofMyPhase)
dst%whole => plasticState(p)%dotState
allocate(mse%tau_r_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal) allocate(mse%tau_r_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
allocate(mse%tau_r_trans(prm%totalNtrans,NofMyPhase), source=0.0_pReal) allocate(mse%tau_r_trans(prm%totalNtrans,NofMyPhase), source=0.0_pReal)
allocate(mse%twinVolume(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
allocate(mse%martensiteVolume(prm%totalNtrans,NofMyPhase), source=0.0_pReal)
end associate end associate
enddo enddo
@ -916,7 +890,6 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
of of
real(pReal) :: sumf_twin, sumf_trans real(pReal) :: sumf_twin, sumf_trans
!* Shortened notation
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),& associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el)))) stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))