Merge branch 'systematic-name' into 'development'

more systematic name

See merge request damask/DAMASK!708
This commit is contained in:
Daniel Otto de Mentock 2023-02-03 10:36:25 +00:00
commit 805fd06a8a
23 changed files with 130 additions and 130 deletions

View File

@ -250,8 +250,8 @@ subroutine homogenization_mechanical_response(Delta_t,cell_start,cell_end)
!$OMP PARALLEL DO PRIVATE(en,ho,co,NiterationMPstate,converged,doneAndHappy) !$OMP PARALLEL DO PRIVATE(en,ho,co,NiterationMPstate,converged,doneAndHappy)
do ce = cell_start, cell_end do ce = cell_start, cell_end
en = material_homogenizationEntry(ce) en = material_entry_homogenization(ce)
ho = material_homogenizationID(ce) ho = material_ID_homogenization(ce)
call phase_restore(ce,.false.) ! wrong name (is more a forward function) call phase_restore(ce,.false.) ! wrong name (is more a forward function)
@ -303,9 +303,9 @@ subroutine homogenization_thermal_response(Delta_t,cell_start,cell_end)
!$OMP PARALLEL DO PRIVATE(ho) !$OMP PARALLEL DO PRIVATE(ho)
do ce = cell_start, cell_end do ce = cell_start, cell_end
if (terminallyIll) continue if (terminallyIll) continue
ho = material_homogenizationID(ce) ho = material_ID_homogenization(ce)
do co = 1, homogenization_Nconstituents(ho) do co = 1, homogenization_Nconstituents(ho)
if (.not. phase_thermal_constitutive(Delta_t,material_phaseID(co,ce),material_phaseEntry(co,ce))) then if (.not. phase_thermal_constitutive(Delta_t,material_ID_phase(co,ce),material_entry_phase(co,ce))) then
if (.not. terminallyIll) print*, ' Cell ', ce, ' terminally ill' if (.not. terminallyIll) print*, ' Cell ', ce, ' terminally ill'
terminallyIll = .true. terminallyIll = .true.
end if end if
@ -333,7 +333,7 @@ subroutine homogenization_mechanical_response2(Delta_t,FEsolving_execIP,FEsolvin
elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2) elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2) IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip ce = (el-1)*discretization_nIPs + ip
ho = material_homogenizationID(ce) ho = material_ID_homogenization(ce)
do co = 1, homogenization_Nconstituents(ho) do co = 1, homogenization_Nconstituents(ho)
call crystallite_orientations(co,ip,el) call crystallite_orientations(co,ip,el)
end do end do

View File

@ -47,7 +47,7 @@ module subroutine damage_init()
allocate(current(configHomogenizations%length)) allocate(current(configHomogenizations%length))
do ho = 1, configHomogenizations%length do ho = 1, configHomogenizations%length
Nmembers = count(material_homogenizationID == ho) Nmembers = count(material_ID_homogenization == ho)
allocate(current(ho)%phi(Nmembers), source=1.0_pReal) allocate(current(ho)%phi(Nmembers), source=1.0_pReal)
configHomogenization => configHomogenizations%get_dict(ho) configHomogenization => configHomogenizations%get_dict(ho)
associate(prm => param(ho)) associate(prm => param(ho))
@ -95,9 +95,9 @@ module subroutine damage_partition(ce)
integer :: co integer :: co
if (damageState_h(material_homogenizationID(ce))%sizeState < 1) return if (damageState_h(material_ID_homogenization(ce))%sizeState < 1) return
phi = damagestate_h(material_homogenizationID(ce))%state(1,material_homogenizationEntry(ce)) phi = damagestate_h(material_ID_homogenization(ce))%state(1,material_entry_homogenization(ce))
do co = 1, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1, homogenization_Nconstituents(material_ID_homogenization(ce))
call phase_set_phi(phi,co,ce) call phase_set_phi(phi,co,ce)
end do end do
@ -161,8 +161,8 @@ module subroutine homogenization_set_phi(phi,ce)
en en
ho = material_homogenizationID(ce) ho = material_ID_homogenization(ce)
en = material_homogenizationEntry(ce) en = material_entry_homogenization(ce)
damagestate_h(ho)%state(1,en) = phi damagestate_h(ho)%state(1,en) = phi
current(ho)%phi(en) = phi current(ho)%phi(en) = phi

View File

@ -99,10 +99,10 @@ module subroutine mechanical_partition(subF,ce)
ce ce
integer :: co integer :: co
real(pReal), dimension (3,3,homogenization_Nconstituents(material_homogenizationID(ce))) :: Fs real(pReal), dimension (3,3,homogenization_Nconstituents(material_ID_homogenization(ce))) :: Fs
chosenHomogenization: select case(mechanical_type(material_homogenizationID(ce))) chosenHomogenization: select case(mechanical_type(material_ID_homogenization(ce)))
case (MECHANICAL_PASS_ID) chosenHomogenization case (MECHANICAL_PASS_ID) chosenHomogenization
Fs(1:3,1:3,1) = subF Fs(1:3,1:3,1) = subF
@ -115,7 +115,7 @@ module subroutine mechanical_partition(subF,ce)
end select chosenHomogenization end select chosenHomogenization
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1,homogenization_Nconstituents(material_ID_homogenization(ce))
call phase_set_F(Fs(1:3,1:3,co),co,ce) call phase_set_F(Fs(1:3,1:3,co),co,ce)
end do end do
@ -136,7 +136,7 @@ module subroutine mechanical_homogenize(Delta_t,ce)
homogenization_P(1:3,1:3,ce) = phase_P(1,ce)*material_v(1,ce) homogenization_P(1:3,1:3,ce) = phase_P(1,ce)*material_v(1,ce)
homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = phase_mechanical_dPdF(Delta_t,1,ce)*material_v(1,ce) homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = phase_mechanical_dPdF(Delta_t,1,ce)*material_v(1,ce)
do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 2, homogenization_Nconstituents(material_ID_homogenization(ce))
homogenization_P(1:3,1:3,ce) = homogenization_P(1:3,1:3,ce) & homogenization_P(1:3,1:3,ce) = homogenization_P(1:3,1:3,ce) &
+ phase_P(co,ce)*material_v(co,ce) + phase_P(co,ce)*material_v(co,ce)
homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = homogenization_dPdF(1:3,1:3,1:3,1:3,ce) & homogenization_dPdF(1:3,1:3,1:3,1:3,ce) = homogenization_dPdF(1:3,1:3,1:3,1:3,ce) &
@ -161,13 +161,13 @@ module function mechanical_updateState(subdt,subF,ce) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy logical, dimension(2) :: doneAndHappy
integer :: co integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationID(ce))) real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_ID_homogenization(ce)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationID(ce))) real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_ID_homogenization(ce)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationID(ce))) real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_ID_homogenization(ce)))
if (mechanical_type(material_homogenizationID(ce)) == MECHANICAL_RGC_ID) then if (mechanical_type(material_ID_homogenization(ce)) == MECHANICAL_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1, homogenization_Nconstituents(material_ID_homogenization(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(subdt,co,ce) dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(subdt,co,ce)
Fs(:,:,co) = phase_F(co,ce) Fs(:,:,co) = phase_F(co,ce)
Ps(:,:,co) = phase_P(co,ce) Ps(:,:,co) = phase_P(co,ce)

View File

@ -162,7 +162,7 @@ module subroutine RGC_init()
prm%D_alpha = homogMech%get_as1dFloat('D_alpha', requiredSize=3) prm%D_alpha = homogMech%get_as1dFloat('D_alpha', requiredSize=3)
prm%a_g = homogMech%get_as1dFloat('a_g', requiredSize=3) prm%a_g = homogMech%get_as1dFloat('a_g', requiredSize=3)
Nmembers = count(material_homogenizationID == ho) Nmembers = count(material_ID_homogenization == ho)
nIntFaceTot = 3*( (prm%N_constituents(1)-1)*prm%N_constituents(2)*prm%N_constituents(3) & nIntFaceTot = 3*( (prm%N_constituents(1)-1)*prm%N_constituents(2)*prm%N_constituents(3) &
+ prm%N_constituents(1)*(prm%N_constituents(2)-1)*prm%N_constituents(3) & + prm%N_constituents(1)*(prm%N_constituents(2)-1)*prm%N_constituents(3) &
+ prm%N_constituents(1)*prm%N_constituents(2)*(prm%N_constituents(3)-1)) + prm%N_constituents(1)*prm%N_constituents(2)*(prm%N_constituents(3)-1))
@ -208,10 +208,10 @@ module subroutine RGC_partitionDeformation(F,avgF,ce)
integer, dimension(3) :: iGrain3 integer, dimension(3) :: iGrain3
integer :: iGrain,iFace,i,j,ho,en integer :: iGrain,iFace,i,j,ho,en
associate(prm => param(material_homogenizationID(ce))) associate(prm => param(material_ID_homogenization(ce)))
ho = material_homogenizationID(ce) ho = material_ID_homogenization(ce)
en = material_homogenizationEntry(ce) en = material_entry_homogenization(ce)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations ! compute the deformation gradient of individual grains due to relaxations
F = 0.0_pReal F = 0.0_pReal
@ -263,8 +263,8 @@ module function RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
return return
end if zeroTimeStep end if zeroTimeStep
ho = material_homogenizationID(ce) ho = material_ID_homogenization(ce)
en = material_homogenizationEntry(ce) en = material_entry_homogenization(ce)
associate(stt => state(ho), st0 => state0(ho), dst => dependentState(ho), prm => param(ho)) associate(stt => state(ho), st0 => state0(ho), dst => dependentState(ho), prm => param(ho))
@ -652,7 +652,7 @@ module function RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
real(pReal), dimension(6,6) :: C real(pReal), dimension(6,6) :: C
C = phase_homogenizedC66(material_phaseID(co,ce),material_phaseEntry(co,ce)) ! damage not included! C = phase_homogenizedC66(material_ID_phase(co,ce),material_entry_phase(co,ce)) ! damage not included!
equivalentMu = lattice_isotropic_mu(C,'isostrain') equivalentMu = lattice_isotropic_mu(C,'isostrain')

View File

@ -25,7 +25,7 @@ module subroutine isostrain_init
do ho = 1, size(mechanical_type) do ho = 1, size(mechanical_type)
if (mechanical_type(ho) /= MECHANICAL_ISOSTRAIN_ID) cycle if (mechanical_type(ho) /= MECHANICAL_ISOSTRAIN_ID) cycle
Nmembers = count(material_homogenizationID == ho) Nmembers = count(material_ID_homogenization == ho)
homogState(ho)%sizeState = 0 homogState(ho)%sizeState = 0
allocate(homogState(ho)%state0(0,Nmembers)) allocate(homogState(ho)%state0(0,Nmembers))
allocate(homogState(ho)%state (0,Nmembers)) allocate(homogState(ho)%state (0,Nmembers))

View File

@ -28,7 +28,7 @@ module subroutine pass_init()
if (homogenization_Nconstituents(ho) /= 1) & if (homogenization_Nconstituents(ho) /= 1) &
call IO_error(211,ext_msg='(pass) with N_constituents !=1') call IO_error(211,ext_msg='(pass) with N_constituents !=1')
Nmembers = count(material_homogenizationID == ho) Nmembers = count(material_ID_homogenization == ho)
homogState(ho)%sizeState = 0 homogState(ho)%sizeState = 0
allocate(homogState(ho)%state0(0,Nmembers)) allocate(homogState(ho)%state0(0,Nmembers))
allocate(homogState(ho)%state (0,Nmembers)) allocate(homogState(ho)%state (0,Nmembers))

View File

@ -50,8 +50,8 @@ module subroutine thermal_init()
allocate(current(configHomogenizations%length)) allocate(current(configHomogenizations%length))
do ho = 1, configHomogenizations%length do ho = 1, configHomogenizations%length
allocate(current(ho)%T(count(material_homogenizationID==ho)), source=T_ROOM) allocate(current(ho)%T(count(material_ID_homogenization==ho)), source=T_ROOM)
allocate(current(ho)%dot_T(count(material_homogenizationID==ho)), source=0.0_pReal) allocate(current(ho)%dot_T(count(material_ID_homogenization==ho)), source=0.0_pReal)
configHomogenization => configHomogenizations%get_dict(ho) configHomogenization => configHomogenizations%get_dict(ho)
associate(prm => param(ho)) associate(prm => param(ho))
@ -104,9 +104,9 @@ module subroutine thermal_partition(ce)
integer :: co integer :: co
T = current(material_homogenizationID(ce))%T(material_homogenizationEntry(ce)) T = current(material_ID_homogenization(ce))%T(material_entry_homogenization(ce))
dot_T = current(material_homogenizationID(ce))%dot_T(material_homogenizationEntry(ce)) dot_T = current(material_ID_homogenization(ce))%dot_T(material_entry_homogenization(ce))
do co = 1, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1, homogenization_Nconstituents(material_ID_homogenization(ce))
call phase_thermal_setField(T,dot_T,co,ce) call phase_thermal_setField(T,dot_T,co,ce)
end do end do
@ -125,7 +125,7 @@ module function homogenization_mu_T(ce) result(mu)
mu = phase_mu_T(1,ce)*material_v(1,ce) mu = phase_mu_T(1,ce)*material_v(1,ce)
do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 2, homogenization_Nconstituents(material_ID_homogenization(ce))
mu = mu + phase_mu_T(co,ce)*material_v(co,ce) mu = mu + phase_mu_T(co,ce)*material_v(co,ce)
end do end do
@ -144,7 +144,7 @@ module function homogenization_K_T(ce) result(K)
K = phase_K_T(1,ce)*material_v(1,ce) K = phase_K_T(1,ce)*material_v(1,ce)
do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 2, homogenization_Nconstituents(material_ID_homogenization(ce))
K = K + phase_K_T(co,ce)*material_v(co,ce) K = K + phase_K_T(co,ce)*material_v(co,ce)
end do end do
@ -162,9 +162,9 @@ module function homogenization_f_T(ce) result(f)
integer :: co integer :: co
f = phase_f_T(material_phaseID(1,ce),material_phaseEntry(1,ce))*material_v(1,ce) f = phase_f_T(material_ID_phase(1,ce),material_entry_phase(1,ce))*material_v(1,ce)
do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) do co = 2, homogenization_Nconstituents(material_ID_homogenization(ce))
f = f + phase_f_T(material_phaseID(co,ce),material_phaseEntry(co,ce))*material_v(co,ce) f = f + phase_f_T(material_ID_phase(co,ce),material_entry_phase(co,ce))*material_v(co,ce)
end do end do
end function homogenization_f_T end function homogenization_f_T
@ -179,8 +179,8 @@ module subroutine homogenization_thermal_setField(T,dot_T, ce)
real(pReal), intent(in) :: T, dot_T real(pReal), intent(in) :: T, dot_T
current(material_homogenizationID(ce))%T(material_homogenizationEntry(ce)) = T current(material_ID_homogenization(ce))%T(material_entry_homogenization(ce)) = T
current(material_homogenizationID(ce))%dot_T(material_homogenizationEntry(ce)) = dot_T current(material_ID_homogenization(ce))%dot_T(material_entry_homogenization(ce)) = dot_T
call thermal_partition(ce) call thermal_partition(ce)
end subroutine homogenization_thermal_setField end subroutine homogenization_thermal_setField

View File

@ -39,11 +39,11 @@ module material
material_name_homogenization !< name of each homogenization material_name_homogenization !< name of each homogenization
integer, dimension(:), allocatable, public, protected :: & ! (cell) integer, dimension(:), allocatable, public, protected :: & ! (cell)
material_homogenizationID, & ! TODO: rename to material_ID_homogenization material_ID_homogenization, & !< Number of the homogenization
material_homogenizationEntry ! TODO: rename to material_entry_homogenization material_entry_homogenization !< Position in array of used homogenization
integer, dimension(:,:), allocatable, public, protected :: & ! (constituent,cell) integer, dimension(:,:), allocatable, public, protected :: & ! (constituent,cell)
material_phaseID, & ! TODO: rename to material_ID_phase material_ID_phase, & !< Number of the phase
material_phaseEntry ! TODO: rename to material_entry_phase material_entry_phase !< Position in array of used phase
real(pReal), dimension(:,:), allocatable, public, protected :: & real(pReal), dimension(:,:), allocatable, public, protected :: &
material_v ! fraction material_v ! fraction
@ -70,8 +70,8 @@ subroutine material_init(restart)
if (.not. restart) then if (.not. restart) then
call result_openJobFile call result_openJobFile
call result_mapping_phase(material_phaseID,material_phaseEntry,material_name_phase) call result_mapping_phase(material_ID_phase,material_entry_phase,material_name_phase)
call result_mapping_homogenization(material_homogenizationID,material_homogenizationEntry,material_name_homogenization) call result_mapping_homogenization(material_ID_homogenization,material_entry_homogenization,material_name_homogenization)
call result_closeJobFile call result_closeJobFile
end if end if
@ -166,11 +166,11 @@ subroutine parse()
allocate(counterPhase(phases%length),source=0) allocate(counterPhase(phases%length),source=0)
allocate(counterHomogenization(homogenizations%length),source=0) allocate(counterHomogenization(homogenizations%length),source=0)
allocate(material_homogenizationID(discretization_Ncells),source=0) allocate(material_ID_homogenization(discretization_Ncells),source=0)
allocate(material_homogenizationEntry(discretization_Ncells),source=0) allocate(material_entry_homogenization(discretization_Ncells),source=0)
allocate(material_phaseID(homogenization_maxNconstituents,discretization_Ncells),source=0) allocate(material_ID_phase(homogenization_maxNconstituents,discretization_Ncells),source=0)
allocate(material_phaseEntry(homogenization_maxNconstituents,discretization_Ncells),source=0) allocate(material_entry_phase(homogenization_maxNconstituents,discretization_Ncells),source=0)
! build mappings ! build mappings
@ -181,9 +181,9 @@ subroutine parse()
do ip = 1, discretization_nIPs do ip = 1, discretization_nIPs
ce = (el-1)*discretization_nIPs + ip ce = (el-1)*discretization_nIPs + ip
material_homogenizationID(ce) = ho material_ID_homogenization(ce) = ho
counterHomogenization(ho) = counterHomogenization(ho) + 1 counterHomogenization(ho) = counterHomogenization(ho) + 1
material_homogenizationEntry(ce) = counterHomogenization(ho) material_entry_homogenization(ce) = counterHomogenization(ho)
end do end do
do co = 1, size(ph_of(ma,:)>0) do co = 1, size(ph_of(ma,:)>0)
@ -193,9 +193,9 @@ subroutine parse()
do ip = 1, discretization_nIPs do ip = 1, discretization_nIPs
ce = (el-1)*discretization_nIPs + ip ce = (el-1)*discretization_nIPs + ip
material_phaseID(co,ce) = ph material_ID_phase(co,ce) = ph
counterPhase(ph) = counterPhase(ph) + 1 counterPhase(ph) = counterPhase(ph) + 1
material_phaseEntry(co,ce) = counterPhase(ph) material_entry_phase(co,ce) = counterPhase(ph)
material_v(co,ce) = v material_v(co,ce) = v
end do end do

View File

@ -419,14 +419,14 @@ subroutine phase_init
if (any(phase_lattice(ph) == ['hP','tI'])) & if (any(phase_lattice(ph) == ['hP','tI'])) &
phase_cOverA(ph) = phase%get_asFloat('c/a') phase_cOverA(ph) = phase%get_asFloat('c/a')
phase_rho(ph) = phase%get_asFloat('rho',defaultVal=0.0_pReal) phase_rho(ph) = phase%get_asFloat('rho',defaultVal=0.0_pReal)
allocate(phase_O_0(ph)%data(count(material_phaseID==ph))) allocate(phase_O_0(ph)%data(count(material_ID_phase==ph)))
end do end do
do ce = 1, size(material_phaseID,2) do ce = 1, size(material_ID_phase,2)
ma = discretization_materialAt((ce-1)/discretization_nIPs+1) ma = discretization_materialAt((ce-1)/discretization_nIPs+1)
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1,homogenization_Nconstituents(material_ID_homogenization(ce))
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
phase_O_0(ph)%data(material_phaseEntry(co,ce)) = material_O_0(ma)%data(co) phase_O_0(ph)%data(material_entry_phase(co,ce)) = material_O_0(ma)%data(co)
end do end do
end do end do
@ -586,9 +586,9 @@ subroutine crystallite_init()
do el = 1, discretization_Nelems do el = 1, discretization_Nelems
do ip = 1, discretization_nIPs do ip = 1, discretization_nIPs
ce = (el-1)*discretization_nIPs + ip ce = (el-1)*discretization_nIPs + ip
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1,homogenization_Nconstituents(material_ID_homogenization(ce))
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
call crystallite_orientations(co,ip,el) call crystallite_orientations(co,ip,el)
call plastic_dependentState(ph,en) ! update dependent state variables to be consistent with basic states call plastic_dependentState(ph,en) ! update dependent state variables to be consistent with basic states
end do end do
@ -613,13 +613,13 @@ subroutine crystallite_orientations(co,ip,el)
integer :: ph, en integer :: ph, en
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip) ph = material_ID_phase(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip) en = material_entry_phase(co,(el-1)*discretization_nIPs + ip)
call phase_O(ph)%data(en)%fromMatrix(transpose(math_rotationalPart(mechanical_F_e(ph,en)))) call phase_O(ph)%data(en)%fromMatrix(transpose(math_rotationalPart(mechanical_F_e(ph,en))))
if (plasticState(material_phaseID(1,(el-1)*discretization_nIPs + ip))%nonlocal) & if (plasticState(material_ID_phase(1,(el-1)*discretization_nIPs + ip))%nonlocal) &
call plastic_nonlocal_updateCompatibility(phase_O,material_phaseID(1,(el-1)*discretization_nIPs + ip),ip,el) call plastic_nonlocal_updateCompatibility(phase_O,material_ID_phase(1,(el-1)*discretization_nIPs + ip),ip,el)
end subroutine crystallite_orientations end subroutine crystallite_orientations
@ -640,8 +640,8 @@ function crystallite_push33ToRef(co,ce, tensor33)
integer :: ph, en integer :: ph, en
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
T = matmul(phase_O_0(ph)%data(en)%asMatrix(),transpose(math_inv33(phase_F(co,ce)))) ! ToDo: initial orientation correct? T = matmul(phase_O_0(ph)%data(en)%asMatrix(),transpose(math_inv33(phase_F(co,ce)))) ! ToDo: initial orientation correct?
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T)) crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))

View File

@ -96,7 +96,7 @@ module subroutine damage_init()
damage_active = .false. damage_active = .false.
do ph = 1,phases%length do ph = 1,phases%length
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
allocate(current(ph)%phi(Nmembers),source=1.0_pReal) allocate(current(ph)%phi(Nmembers),source=1.0_pReal)
@ -137,8 +137,8 @@ module function phase_damage_constitutive(Delta_t,co,ce) result(converged_)
ph, en ph, en
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
converged_ = .not. integrateDamageState(Delta_t,ph,en) converged_ = .not. integrateDamageState(Delta_t,ph,en)
@ -176,10 +176,10 @@ module subroutine damage_restore(ce)
co co
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1,homogenization_Nconstituents(material_ID_homogenization(ce))
if (damageState(material_phaseID(co,ce))%sizeState > 0) & if (damageState(material_ID_phase(co,ce))%sizeState > 0) &
damageState(material_phaseID(co,ce))%state( :,material_phaseEntry(co,ce)) = & damageState(material_ID_phase(co,ce))%state( :,material_entry_phase(co,ce)) = &
damageState(material_phaseID(co,ce))%state0(:,material_phaseEntry(co,ce)) damageState(material_ID_phase(co,ce))%state0(:,material_entry_phase(co,ce))
end do end do
end subroutine damage_restore end subroutine damage_restore
@ -200,8 +200,8 @@ module function phase_f_phi(phi,co,ce) result(f)
ph, & ph, &
en en
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
select case(phase_damage(ph)) select case(phase_damage(ph))
case(DAMAGE_ISOBRITTLE_ID,DAMAGE_ANISOBRITTLE_ID) case(DAMAGE_ISOBRITTLE_ID,DAMAGE_ANISOBRITTLE_ID)
@ -400,7 +400,7 @@ module function phase_mu_phi(co,ce) result(mu)
real(pReal) :: mu real(pReal) :: mu
mu = param(material_phaseID(co,ce))%mu mu = param(material_ID_phase(co,ce))%mu
end function phase_mu_phi end function phase_mu_phi
@ -414,7 +414,7 @@ module function phase_K_phi(co,ce) result(K)
real(pReal), dimension(3,3) :: K real(pReal), dimension(3,3) :: K
K = crystallite_push33ToRef(co,ce,param(material_phaseID(co,ce))%l_c**2*math_I3) K = crystallite_push33ToRef(co,ce,param(material_ID_phase(co,ce))%l_c**2*math_I3)
end function phase_K_phi end function phase_K_phi
@ -498,7 +498,7 @@ module subroutine phase_set_phi(phi,co,ce)
integer, intent(in) :: ce, co integer, intent(in) :: ce, co
current(material_phaseID(co,ce))%phi(material_phaseEntry(co,ce)) = phi current(material_ID_phase(co,ce))%phi(material_entry_phase(co,ce)) = phi
end subroutine phase_set_phi end subroutine phase_set_phi

View File

@ -89,7 +89,7 @@ module function anisobrittle_init() result(mySources)
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit' if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
if (any(prm%s_crit < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit' if (any(prm%s_crit < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit'
Nmembers = count(material_phaseID==ph) Nmembers = count(material_ID_phase==ph)
call phase_allocateState(damageState(ph),Nmembers,1,1,0) call phase_allocateState(damageState(ph),Nmembers,1,1,0)
damageState(ph)%atol = src%get_asFloat('atol_phi',defaultVal=1.0e-9_pReal) damageState(ph)%atol = src%get_asFloat('atol_phi',defaultVal=1.0e-9_pReal)
if (any(damageState(ph)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' atol_phi' if (any(damageState(ph)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' atol_phi'

View File

@ -73,7 +73,7 @@ module function isobrittle_init() result(mySources)
! sanity checks ! sanity checks
if (prm%W_crit <= 0.0_pReal) extmsg = trim(extmsg)//' W_crit' if (prm%W_crit <= 0.0_pReal) extmsg = trim(extmsg)//' W_crit'
Nmembers = count(material_phaseID==ph) Nmembers = count(material_ID_phase==ph)
call phase_allocateState(damageState(ph),Nmembers,1,0,1) call phase_allocateState(damageState(ph),Nmembers,1,0,1)
damageState(ph)%atol = src%get_asFloat('atol_phi',defaultVal=1.0e-9_pReal) damageState(ph)%atol = src%get_asFloat('atol_phi',defaultVal=1.0e-9_pReal)
if (any(damageState(ph)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' atol_phi' if (any(damageState(ph)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' atol_phi'

View File

@ -237,7 +237,7 @@ module subroutine mechanical_init(phases)
allocate(phase_mechanical_S0(phases%length)) allocate(phase_mechanical_S0(phases%length))
do ph = 1, phases%length do ph = 1, phases%length
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
allocate(phase_mechanical_Fe(ph)%data(3,3,Nmembers)) allocate(phase_mechanical_Fe(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fi(ph)%data(3,3,Nmembers)) allocate(phase_mechanical_Fi(ph)%data(3,3,Nmembers))
@ -260,11 +260,11 @@ module subroutine mechanical_init(phases)
#endif #endif
end do end do
do ce = 1, size(material_phaseID,2) do ce = 1, size(material_ID_phase,2)
ma = discretization_materialAt((ce-1)/discretization_nIPs+1) ma = discretization_materialAt((ce-1)/discretization_nIPs+1)
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1,homogenization_Nconstituents(material_ID_homogenization(ce))
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
phase_mechanical_F(ph)%data(1:3,1:3,en) = math_I3 phase_mechanical_F(ph)%data(1:3,1:3,en) = math_I3
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = material_O_0(ma)%data(co)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005) phase_mechanical_Fp(ph)%data(1:3,1:3,en) = material_O_0(ma)%data(co)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
phase_mechanical_Fe(ph)%data(1:3,1:3,en) = matmul(material_V_e_0(ma)%data(1:3,1:3,co), & phase_mechanical_Fe(ph)%data(1:3,1:3,en) = matmul(material_V_e_0(ma)%data(1:3,1:3,co), &
@ -1005,11 +1005,11 @@ module function phase_mechanical_constitutive(Delta_t,co,ce) result(converged_)
subLi0, & subLi0, &
subF0, & subF0, &
subF subF
real(pReal), dimension(plasticState(material_phaseID(co,ce))%sizeState) :: subState0 real(pReal), dimension(plasticState(material_ID_phase(co,ce))%sizeState) :: subState0
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
subState0 = plasticState(ph)%state0(:,en) subState0 = plasticState(ph)%state0(:,en)
subLi0 = phase_mechanical_Li0(ph)%data(1:3,1:3,en) subLi0 = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
@ -1082,9 +1082,9 @@ module subroutine mechanical_restore(ce,includeL)
co, ph, en co, ph, en
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce)) do co = 1,homogenization_Nconstituents(material_ID_homogenization(ce))
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
if (includeL) then if (includeL) then
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = phase_mechanical_Lp0(ph)%data(1:3,1:3,en) phase_mechanical_Lp(ph)%data(1:3,1:3,en) = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
phase_mechanical_Li(ph)%data(1:3,1:3,en) = phase_mechanical_Li0(ph)%data(1:3,1:3,en) phase_mechanical_Li(ph)%data(1:3,1:3,en) = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
@ -1133,8 +1133,8 @@ module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF)
logical :: error logical :: error
ph = material_phaseID(co,ce) ph = material_ID_phase(co,ce)
en = material_phaseEntry(co,ce) en = material_entry_phase(co,ce)
call phase_hooke_SandItsTangents(devNull,dSdFe,dSdFi, & call phase_hooke_SandItsTangents(devNull,dSdFe,dSdFi, &
phase_mechanical_Fe(ph)%data(1:3,1:3,en), & phase_mechanical_Fe(ph)%data(1:3,1:3,en), &
@ -1328,7 +1328,7 @@ module function phase_P(co,ce) result(P)
real(pReal), dimension(3,3) :: P real(pReal), dimension(3,3) :: P
P = phase_mechanical_P(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce)) P = phase_mechanical_P(material_ID_phase(co,ce))%data(1:3,1:3,material_entry_phase(co,ce))
end function phase_P end function phase_P
@ -1342,7 +1342,7 @@ module function phase_F(co,ce) result(F)
real(pReal), dimension(3,3) :: F real(pReal), dimension(3,3) :: F
F = phase_mechanical_F(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce)) F = phase_mechanical_F(material_ID_phase(co,ce))%data(1:3,1:3,material_entry_phase(co,ce))
end function phase_F end function phase_F
@ -1356,7 +1356,7 @@ module subroutine phase_set_F(F,co,ce)
integer, intent(in) :: co, ce integer, intent(in) :: co, ce
phase_mechanical_F(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce)) = F phase_mechanical_F(material_ID_phase(co,ce))%data(1:3,1:3,material_entry_phase(co,ce)) = F
end subroutine phase_set_F end subroutine phase_set_F

View File

@ -219,7 +219,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl
sizeState = sizeDotState sizeState = sizeDotState

View File

@ -380,7 +380,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl & sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl &
+ size(['f_tw']) * prm%sum_N_tw & + size(['f_tw']) * prm%sum_N_tw &
+ size(['f_tr']) * prm%sum_N_tr + size(['f_tr']) * prm%sum_N_tr

View File

@ -118,7 +118,7 @@ module function plastic_isotropic_init() result(myPlasticity)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
sizeDotState = size(['xi']) sizeDotState = size(['xi'])
sizeState = sizeDotState sizeState = sizeDotState

View File

@ -173,7 +173,7 @@ module function plastic_kinehardening_init() result(myPlasticity)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
sizeDotState = size(['xi ','chi ', 'gamma']) * prm%sum_N_sl sizeDotState = size(['xi ','chi ', 'gamma']) * prm%sum_N_sl
sizeDeltaState = size(['sgn_gamma', 'chi_0 ', 'gamma_0 ']) * prm%sum_N_sl sizeDeltaState = size(['sgn_gamma', 'chi_0 ', 'gamma_0 ']) * prm%sum_N_sl
sizeState = sizeDotState + sizeDeltaState sizeState = sizeDotState + sizeDeltaState

View File

@ -31,7 +31,7 @@ module function plastic_none_init() result(myPlasticity)
phases => config_material%get_dict('phase') phases => config_material%get_dict('phase')
do ph = 1, phases%length do ph = 1, phases%length
if (.not. myPlasticity(ph)) cycle if (.not. myPlasticity(ph)) cycle
call phase_allocateState(plasticState(ph),count(material_phaseID == ph),0,0,0) call phase_allocateState(plasticState(ph),count(material_ID_phase == ph),0,0,0)
end do end do
end function plastic_none_init end function plastic_none_init

View File

@ -394,7 +394,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
sizeDotState = size([ 'rhoSglEdgePosMobile ','rhoSglEdgeNegMobile ', & sizeDotState = size([ 'rhoSglEdgePosMobile ','rhoSglEdgeNegMobile ', &
'rhoSglScrewPosMobile ','rhoSglScrewNegMobile ', & 'rhoSglScrewPosMobile ','rhoSglScrewNegMobile ', &
'rhoSglEdgePosImmobile ','rhoSglEdgeNegImmobile ', & 'rhoSglEdgePosImmobile ','rhoSglEdgeNegImmobile ', &
@ -522,7 +522,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
if (.not. myPlasticity(ph)) cycle if (.not. myPlasticity(ph)) cycle
phase => phases%get_dict(ph) phase => phases%get_dict(ph)
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
l = 0 l = 0
do t = 1,4 do t = 1,4
do s = 1,param(ph)%sum_N_sl do s = 1,param(ph)%sum_N_sl
@ -662,8 +662,8 @@ module subroutine nonlocal_dependentState(ph, en)
neighbor_ip = geom(ph)%IPneighborhood(2,n,en) neighbor_ip = geom(ph)%IPneighborhood(2,n,en)
if (neighbor_el > 0 .and. neighbor_ip > 0) then if (neighbor_el > 0 .and. neighbor_ip > 0) then
if (material_phaseID(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip) == ph) then if (material_ID_phase(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip) == ph) then
no = material_phaseEntry(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip) no = material_entry_phase(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip)
nRealNeighbors = nRealNeighbors + 1.0_pReal nRealNeighbors = nRealNeighbors + 1.0_pReal
rho_neighbor0 = getRho0(ph,no) rho_neighbor0 = getRho0(ph,no)
@ -1251,8 +1251,8 @@ function rhoDotFlux(timestep,ph,en)
neighbor_el = geom(ph)%IPneighborhood(1,n,en) neighbor_el = geom(ph)%IPneighborhood(1,n,en)
neighbor_ip = geom(ph)%IPneighborhood(2,n,en) neighbor_ip = geom(ph)%IPneighborhood(2,n,en)
neighbor_n = geom(ph)%IPneighborhood(3,n,en) neighbor_n = geom(ph)%IPneighborhood(3,n,en)
np = material_phaseID(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip) np = material_ID_phase(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip)
no = material_phaseEntry(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip) no = material_entry_phase(1,(neighbor_el-1)*discretization_nIPs + neighbor_ip)
opposite_neighbor = n + mod(n,2) - mod(n+1,2) opposite_neighbor = n + mod(n,2) - mod(n+1,2)
opposite_el = geom(ph)%IPneighborhood(1,opposite_neighbor,en) opposite_el = geom(ph)%IPneighborhood(1,opposite_neighbor,en)
@ -1399,7 +1399,7 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,ip,el)
associate(prm => param(ph)) associate(prm => param(ph))
ns = prm%sum_N_sl ns = prm%sum_N_sl
en = material_phaseEntry(1,(el-1)*discretization_nIPs + ip) en = material_entry_phase(1,(el-1)*discretization_nIPs + ip)
!*** start out fully compatible !*** start out fully compatible
my_compatibility = 0.0_pReal my_compatibility = 0.0_pReal
forall(s1 = 1:ns) my_compatibility(:,s1,s1,:) = 1.0_pReal forall(s1 = 1:ns) my_compatibility(:,s1,s1,:) = 1.0_pReal
@ -1407,8 +1407,8 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,ip,el)
neighbors: do n = 1,nIPneighbors neighbors: do n = 1,nIPneighbors
neighbor_e = IPneighborhood(1,n,ip,el) neighbor_e = IPneighborhood(1,n,ip,el)
neighbor_i = IPneighborhood(2,n,ip,el) neighbor_i = IPneighborhood(2,n,ip,el)
neighbor_me = material_phaseEntry(1,(neighbor_e-1)*discretization_nIPs + neighbor_i) neighbor_me = material_entry_phase(1,(neighbor_e-1)*discretization_nIPs + neighbor_i)
neighbor_phase = material_phaseID(1,(neighbor_e-1)*discretization_nIPs + neighbor_i) neighbor_phase = material_ID_phase(1,(neighbor_e-1)*discretization_nIPs + neighbor_i)
if (neighbor_e <= 0 .or. neighbor_i <= 0) then if (neighbor_e <= 0 .or. neighbor_i <= 0) then
!* FREE SURFACE !* FREE SURFACE
@ -1467,7 +1467,7 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,ip,el)
end do neighbors end do neighbors
dependentState(ph)%compatibility(:,:,:,:,material_phaseEntry(1,(el-1)*discretization_nIPs + ip)) = my_compatibility dependentState(ph)%compatibility(:,:,:,:,material_entry_phase(1,(el-1)*discretization_nIPs + ip)) = my_compatibility
end associate end associate
@ -1772,14 +1772,14 @@ subroutine storeGeometry(ph)
areaNormal = reshape(IPareaNormal,[3,nIPneighbors,nCell]) areaNormal = reshape(IPareaNormal,[3,nIPneighbors,nCell])
coords = reshape(discretization_IPcoords,[3,nCell]) coords = reshape(discretization_IPcoords,[3,nCell])
do ce = 1, size(material_homogenizationEntry,1) do ce = 1, size(material_entry_homogenization,1)
do co = 1, homogenization_maxNconstituents do co = 1, homogenization_maxNconstituents
if (material_phaseID(co,ce) == ph) then if (material_ID_phase(co,ce) == ph) then
geom(ph)%V_0(material_phaseEntry(co,ce)) = V(ce) geom(ph)%V_0(material_entry_phase(co,ce)) = V(ce)
geom(ph)%IPneighborhood(:,:,material_phaseEntry(co,ce)) = neighborhood(:,:,ce) geom(ph)%IPneighborhood(:,:,material_entry_phase(co,ce)) = neighborhood(:,:,ce)
geom(ph)%IParea(:,material_phaseEntry(co,ce)) = area(:,ce) geom(ph)%IParea(:,material_entry_phase(co,ce)) = area(:,ce)
geom(ph)%IPareaNormal(:,:,material_phaseEntry(co,ce)) = areaNormal(:,:,ce) geom(ph)%IPareaNormal(:,:,material_entry_phase(co,ce)) = areaNormal(:,:,ce)
geom(ph)%IPcoordinates(:,material_phaseEntry(co,ce)) = coords(:,ce) geom(ph)%IPcoordinates(:,material_entry_phase(co,ce)) = coords(:,ce)
end if end if
end do end do
end do end do

View File

@ -228,7 +228,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl & sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw + size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
sizeState = sizeDotState sizeState = sizeDotState

View File

@ -99,7 +99,7 @@ module subroutine thermal_init(phases)
allocate(param(phases%length)) allocate(param(phases%length))
do ph = 1, phases%length do ph = 1, phases%length
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
allocate(current(ph)%T(Nmembers),source=T_ROOM) allocate(current(ph)%T(Nmembers),source=T_ROOM)
allocate(current(ph)%dot_T(Nmembers),source=0.0_pReal) allocate(current(ph)%dot_T(Nmembers),source=0.0_pReal)
phase => phases%get_dict(ph) phase => phases%get_dict(ph)
@ -212,8 +212,8 @@ module function phase_mu_T(co,ce) result(mu)
real(pReal) :: mu real(pReal) :: mu
mu = phase_rho(material_phaseID(co,ce)) & mu = phase_rho(material_ID_phase(co,ce)) &
* param(material_phaseID(co,ce))%C_p * param(material_ID_phase(co,ce))%C_p
end function phase_mu_T end function phase_mu_T
@ -227,7 +227,7 @@ module function phase_K_T(co,ce) result(K)
real(pReal), dimension(3,3) :: K real(pReal), dimension(3,3) :: K
K = crystallite_push33ToRef(co,ce,param(material_phaseID(co,ce))%K) K = crystallite_push33ToRef(co,ce,param(material_ID_phase(co,ce))%K)
end function phase_K_T end function phase_K_T
@ -352,8 +352,8 @@ module subroutine phase_thermal_setField(T,dot_T, co,ce)
integer, intent(in) :: ce, co integer, intent(in) :: ce, co
current(material_phaseID(co,ce))%T(material_phaseEntry(co,ce)) = T current(material_ID_phase(co,ce))%T(material_entry_phase(co,ce)) = T
current(material_phaseID(co,ce))%dot_T(material_phaseEntry(co,ce)) = dot_T current(material_ID_phase(co,ce))%dot_T(material_entry_phase(co,ce)) = dot_T
end subroutine phase_thermal_setField end subroutine phase_thermal_setField

View File

@ -57,7 +57,7 @@ module function dissipation_init(source_length) result(mySources)
src => sources%get_dict(so) src => sources%get_dict(so)
prm%kappa = src%get_asFloat('kappa') prm%kappa = src%get_asFloat('kappa')
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
call phase_allocateState(thermalState(ph)%p(so),Nmembers,0,0,0) call phase_allocateState(thermalState(ph)%p(so),Nmembers,0,0,0)
end associate end associate

View File

@ -63,7 +63,7 @@ module function externalheat_init(source_length) result(mySources)
prm%f = table(src,'t','f') prm%f = table(src,'t','f')
Nmembers = count(material_phaseID == ph) Nmembers = count(material_ID_phase == ph)
call phase_allocateState(thermalState(ph)%p(so),Nmembers,1,1,0) call phase_allocateState(thermalState(ph)%p(so),Nmembers,1,1,0)
end associate end associate
end if end if