removed unused function
were based on/used for deprecated orientation handling
This commit is contained in:
parent
be0d961954
commit
7fa979f800
140
src/lattice.f90
140
src/lattice.f90
|
@ -502,7 +502,6 @@ module lattice
|
|||
|
||||
public :: &
|
||||
lattice_init, &
|
||||
lattice_qDisorientation, &
|
||||
LATTICE_iso_ID, &
|
||||
LATTICE_fcc_ID, &
|
||||
LATTICE_bcc_ID, &
|
||||
|
@ -529,9 +528,7 @@ module lattice
|
|||
lattice_slip_direction, &
|
||||
lattice_slip_transverse
|
||||
|
||||
|
||||
contains
|
||||
|
||||
contains
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Module initialization
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -827,141 +824,6 @@ pure function lattice_symmetrize33(struct,T33)
|
|||
end function lattice_symmetrize33
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief figures whether unit quat falls into stereographic standard triangle
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
logical pure function lattice_qInSST(Q, struct)
|
||||
|
||||
real(pReal), dimension(4), intent(in) :: Q ! orientation
|
||||
integer(kind(LATTICE_undefined_ID)), intent(in) :: struct ! lattice structure
|
||||
real(pReal), dimension(3) :: Rodrig ! Rodrigues vector of Q
|
||||
|
||||
Rodrig = math_qToRodrig(Q)
|
||||
if (any(IEEE_is_NaN(Rodrig))) then
|
||||
lattice_qInSST = .false.
|
||||
else
|
||||
select case (struct)
|
||||
case (LATTICE_bcc_ID,LATTICE_fcc_ID)
|
||||
lattice_qInSST = Rodrig(1) > Rodrig(2) .and. &
|
||||
Rodrig(2) > Rodrig(3) .and. &
|
||||
Rodrig(3) > 0.0_pReal
|
||||
case (LATTICE_hex_ID)
|
||||
lattice_qInSST = Rodrig(1) > sqrt(3.0_pReal)*Rodrig(2) .and. &
|
||||
Rodrig(2) > 0.0_pReal .and. &
|
||||
Rodrig(3) > 0.0_pReal
|
||||
case default
|
||||
lattice_qInSST = .true.
|
||||
end select
|
||||
endif
|
||||
|
||||
end function lattice_qInSST
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates the disorientation for 2 unit quaternions
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function lattice_qDisorientation(Q1, Q2, struct)
|
||||
|
||||
real(pReal), dimension(4) :: lattice_qDisorientation
|
||||
real(pReal), dimension(4), intent(in) :: &
|
||||
Q1, & !< 1st orientation
|
||||
Q2 !< 2nd orientation
|
||||
integer(kind(LATTICE_undefined_ID)), optional, intent(in) :: & !< if given, symmetries between the two orientation will be considered
|
||||
struct
|
||||
|
||||
real(pReal), dimension(4) :: dQ,dQsymA,mis
|
||||
integer :: i,j,k,s,symmetry
|
||||
integer(kind(LATTICE_undefined_ID)) :: myStruct
|
||||
|
||||
integer, dimension(2), parameter :: &
|
||||
NsymOperations = [24,12]
|
||||
|
||||
real(pReal), dimension(4,36), parameter :: &
|
||||
symOperations = reshape([&
|
||||
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
|
||||
0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), & ! 2-fold symmetry
|
||||
0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
|
||||
0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
|
||||
0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), -1.0_pReal/sqrt(2.0_pReal), &
|
||||
0.0_pReal, -1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
|
||||
0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), -1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
|
||||
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
|
||||
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
||||
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
||||
-0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
||||
0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
||||
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
||||
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
||||
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
||||
1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
|
||||
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
|
||||
-1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, &
|
||||
1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
|
||||
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
||||
-1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
|
||||
1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
|
||||
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
|
||||
-1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
|
||||
!
|
||||
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
|
||||
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
|
||||
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
||||
0.0_pReal, 0.5_pReal, 2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, &
|
||||
0.0_pReal, -0.5_pReal, 2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, &
|
||||
0.0_pReal, 2.0_pReal/sqrt(3.0_pReal), 0.5_pReal, 0.0_pReal, &
|
||||
0.0_pReal, -2.0_pReal/sqrt(3.0_pReal), 0.5_pReal, 0.0_pReal, &
|
||||
2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
|
||||
-2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, 0.0_pReal, 0.5_pReal, &
|
||||
0.5_pReal, 0.0_pReal, 0.0_pReal, 2.0_pReal/sqrt(3.0_pReal), &
|
||||
-0.5_pReal, 0.0_pReal, 0.0_pReal, 2.0_pReal/sqrt(3.0_pReal), &
|
||||
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
|
||||
],[4,36]) !< Symmetry operations as quaternions 24 for cubic, 12 for hexagonal = 36
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! check if a structure with known symmetries is given
|
||||
if (present(struct)) then
|
||||
myStruct = struct
|
||||
select case (struct)
|
||||
case(LATTICE_fcc_ID,LATTICE_bcc_ID)
|
||||
symmetry = 1
|
||||
case(LATTICE_hex_ID)
|
||||
symmetry = 2
|
||||
case default
|
||||
symmetry = 0
|
||||
end select
|
||||
else
|
||||
symmetry = 0
|
||||
myStruct = LATTICE_undefined_ID
|
||||
endif
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate misorientation, for cubic and hexagonal structure find symmetries
|
||||
dQ = math_qMul(math_qConj(Q1),Q2)
|
||||
lattice_qDisorientation = dQ
|
||||
|
||||
select case(symmetry)
|
||||
|
||||
case (1,2)
|
||||
s = sum(NsymOperations(1:symmetry-1))
|
||||
do i = 1,2
|
||||
dQ = math_qConj(dQ) ! switch order of "from -- to"
|
||||
do j = 1,NsymOperations(symmetry) ! run through first crystal's symmetries
|
||||
dQsymA = math_qMul(symOperations(1:4,s+j),dQ) ! apply sym
|
||||
do k = 1,NsymOperations(symmetry) ! run through 2nd crystal's symmetries
|
||||
mis = math_qMul(dQsymA,symOperations(1:4,s+k)) ! apply sym
|
||||
if (mis(1) < 0.0_pReal) & ! want positive angle
|
||||
mis = -mis
|
||||
if (mis(1)-lattice_qDisorientation(1) > -tol_math_check &
|
||||
.and. lattice_qInSST(mis,LATTICE_undefined_ID)) lattice_qDisorientation = mis ! found better one
|
||||
enddo; enddo; enddo
|
||||
case (0)
|
||||
if (lattice_qDisorientation(1) < 0.0_pReal) lattice_qDisorientation = -lattice_qDisorientation ! keep omega within 0 to 180 deg
|
||||
end select
|
||||
|
||||
end function lattice_qDisorientation
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Characteristic shear for twinning
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
66
src/math.f90
66
src/math.f90
|
@ -1021,59 +1021,6 @@ pure function math_RtoEuler(R)
|
|||
end function math_RtoEuler
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief converts a rotation matrix into a quaternion (w+ix+jy+kz)
|
||||
!> @details math adopted from http://arxiv.org/pdf/math/0701759v1.pdf
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_RtoQ(R)
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: R
|
||||
real(pReal), dimension(4) :: absQ, math_RtoQ
|
||||
real(pReal) :: max_absQ
|
||||
integer, dimension(1) :: largest
|
||||
|
||||
math_RtoQ = 0.0_pReal
|
||||
|
||||
absQ = [+ R(1,1) + R(2,2) + R(3,3), &
|
||||
+ R(1,1) - R(2,2) - R(3,3), &
|
||||
- R(1,1) + R(2,2) - R(3,3), &
|
||||
- R(1,1) - R(2,2) + R(3,3)] + 1.0_pReal
|
||||
|
||||
largest = maxloc(absQ)
|
||||
|
||||
largestComponent: select case(largest(1))
|
||||
case (1) largestComponent
|
||||
!1----------------------------------
|
||||
math_RtoQ(2) = R(3,2) - R(2,3)
|
||||
math_RtoQ(3) = R(1,3) - R(3,1)
|
||||
math_RtoQ(4) = R(2,1) - R(1,2)
|
||||
|
||||
case (2) largestComponent
|
||||
math_RtoQ(1) = R(3,2) - R(2,3)
|
||||
!2----------------------------------
|
||||
math_RtoQ(3) = R(2,1) + R(1,2)
|
||||
math_RtoQ(4) = R(1,3) + R(3,1)
|
||||
|
||||
case (3) largestComponent
|
||||
math_RtoQ(1) = R(1,3) - R(3,1)
|
||||
math_RtoQ(2) = R(2,1) + R(1,2)
|
||||
!3----------------------------------
|
||||
math_RtoQ(4) = R(3,2) + R(2,3)
|
||||
|
||||
case (4) largestComponent
|
||||
math_RtoQ(1) = R(2,1) - R(1,2)
|
||||
math_RtoQ(2) = R(1,3) + R(3,1)
|
||||
math_RtoQ(3) = R(2,3) + R(3,2)
|
||||
!4----------------------------------
|
||||
end select largestComponent
|
||||
|
||||
max_absQ = 0.5_pReal * sqrt(absQ(largest(1)))
|
||||
math_RtoQ = math_RtoQ * 0.25_pReal / max_absQ
|
||||
math_RtoQ(largest(1)) = max_absQ
|
||||
|
||||
end function math_RtoQ
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotation matrix from Bunge-Euler (3-1-3) angles (in radians)
|
||||
!> @details rotation matrix is meant to represent a PASSIVE rotation, composed of INTRINSIC
|
||||
|
@ -1153,19 +1100,6 @@ pure function math_axisAngleToR(axis,omega)
|
|||
end function math_axisAngleToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToRodrig(Q)
|
||||
|
||||
real(pReal), dimension(4), intent(in) :: Q
|
||||
real(pReal), dimension(3) :: math_qToRodrig
|
||||
|
||||
math_qToRodrig = merge(Q(2:4)/Q(1),IEEE_value(1.0_pReal,IEEE_quiet_NaN),abs(Q(1)) > tol_math_check)! NaN for 180 deg since Rodrig is unbound
|
||||
|
||||
end function math_qToRodrig
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief draw a random sample from Gauss variable
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue