int is 32 bit on Windows (cause trouble for hybrid_IA)
This commit is contained in:
parent
e9906864cf
commit
7f09bbeb08
|
@ -754,8 +754,8 @@ class Grid:
|
||||||
# materials: 1
|
# materials: 1
|
||||||
|
|
||||||
"""
|
"""
|
||||||
offset_ = np.array(offset,int) if offset is not None else np.zeros(3,int)
|
offset_ = np.array(offset,np.int64) if offset is not None else np.zeros(3,np.int64)
|
||||||
cells_ = np.array(cells,int) if cells is not None else self.cells
|
cells_ = np.array(cells,np.int64) if cells is not None else self.cells
|
||||||
|
|
||||||
canvas = np.full(cells_,np.nanmax(self.material) + 1 if fill is None else fill,self.material.dtype)
|
canvas = np.full(cells_,np.nanmax(self.material) + 1 if fill is None else fill,self.material.dtype)
|
||||||
|
|
||||||
|
|
|
@ -159,8 +159,8 @@ def coordinates0_point(cells: _IntSequence,
|
||||||
|
|
||||||
"""
|
"""
|
||||||
size_ = _np.array(size,float)
|
size_ = _np.array(size,float)
|
||||||
start = origin + size_/_np.array(cells,int)*.5
|
start = origin + size_/_np.array(cells,_np.int64)*.5
|
||||||
end = origin + size_ - size_/_np.array(cells,int)*.5
|
end = origin + size_ - size_/_np.array(cells,_np.int64)*.5
|
||||||
|
|
||||||
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]),
|
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]),
|
||||||
_np.linspace(start[1],end[1],cells[1]),
|
_np.linspace(start[1],end[1],cells[1]),
|
||||||
|
@ -290,7 +290,7 @@ def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray,
|
||||||
coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
|
coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
|
||||||
mincorner = _np.array(list(map(min,coords)))
|
mincorner = _np.array(list(map(min,coords)))
|
||||||
maxcorner = _np.array(list(map(max,coords)))
|
maxcorner = _np.array(list(map(max,coords)))
|
||||||
cells = _np.array(list(map(len,coords)),int)
|
cells = _np.array(list(map(len,coords)),_np.int64)
|
||||||
size = cells/_np.maximum(cells-1,1) * (maxcorner-mincorner)
|
size = cells/_np.maximum(cells-1,1) * (maxcorner-mincorner)
|
||||||
delta = size/cells
|
delta = size/cells
|
||||||
origin = mincorner - delta*.5
|
origin = mincorner - delta*.5
|
||||||
|
@ -455,7 +455,7 @@ def cellsSizeOrigin_coordinates0_node(coordinates0: _np.ndarray,
|
||||||
coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
|
coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
|
||||||
mincorner = _np.array(list(map(min,coords)))
|
mincorner = _np.array(list(map(min,coords)))
|
||||||
maxcorner = _np.array(list(map(max,coords)))
|
maxcorner = _np.array(list(map(max,coords)))
|
||||||
cells = _np.array(list(map(len,coords)),int) - 1
|
cells = _np.array(list(map(len,coords)),_np.int64) - 1
|
||||||
size = maxcorner-mincorner
|
size = maxcorner-mincorner
|
||||||
origin = mincorner
|
origin = mincorner
|
||||||
|
|
||||||
|
|
|
@ -431,7 +431,7 @@ def hybrid_IA(dist: np.ndarray,
|
||||||
|
|
||||||
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
|
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
|
||||||
while (not np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
|
while (not np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
|
||||||
repeats = np.rint(scale*dist).astype(int)
|
repeats = np.rint(scale*dist).astype(np.int64)
|
||||||
N_inv_samples = np.sum(repeats)
|
N_inv_samples = np.sum(repeats)
|
||||||
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
|
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
|
||||||
if N_inv_samples < N_opt_samples else \
|
if N_inv_samples < N_opt_samples else \
|
||||||
|
|
Loading…
Reference in New Issue