skip file if mandatory column not found in ASCIItable

This commit is contained in:
Philip Eisenlohr 2014-02-26 14:56:06 +00:00
parent ad203d32c1
commit 7f08c976c3
1 changed files with 32 additions and 23 deletions

View File

@ -1,8 +1,12 @@
#!/usr/bin/env python #!/usr/bin/env python
import os,re,sys,math,numpy,string,damask import os,re,sys,math,numpy,string,damask
from collections import defaultdict
from optparse import OptionParser, Option from optparse import OptionParser, Option
scriptID = '$Id$'
scriptName = scriptID.split()[1]
# ----------------------------- # -----------------------------
class extendableOption(Option): class extendableOption(Option):
# ----------------------------- # -----------------------------
@ -31,7 +35,7 @@ parser = OptionParser(option_class=extendableOption, usage='%prog options [file[
Add column(s) containing Cauchy stress based on given column(s) of Add column(s) containing Cauchy stress based on given column(s) of
deformation gradient and first Piola--Kirchhoff stress. deformation gradient and first Piola--Kirchhoff stress.
""" + string.replace('$Id$','\n','\\n') """ + string.replace(scriptID,'\n','\\n')
) )
@ -49,9 +53,11 @@ if options.defgrad == None or options.stress == None:
parser.error('missing data column...') parser.error('missing data column...')
datainfo = { # list of requested labels per datatype datainfo = { # list of requested labels per datatype
'defgrad': {'len':9, 'defgrad': {'mandatory': True,
'len':9,
'label':[]}, 'label':[]},
'stress': {'len':9, 'stress': {'mandatory': True,
'len':9,
'label':[]}, 'label':[]},
} }
@ -60,52 +66,55 @@ datainfo['defgrad']['label'].append(options.defgrad)
datainfo['stress']['label'].append(options.stress) datainfo['stress']['label'].append(options.stress)
# ------------------------------------------ setup file handles --------------------------------------- # ------------------------------------------ setup file handles ---------------------------------------
files = [] files = []
if filenames == []: if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout}) files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else: else:
for name in filenames: for name in filenames:
if os.path.exists(name): if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')}) files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
# ------------------------------------------ loop over input files --------------------------------------- # ------------------------------------------ loop over input files ---------------------------------------
for file in files: for file in files:
if file['name'] != 'STDIN': print file['name'] if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \ table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
'\t' + ' '.join(sys.argv[1:]))
active = {}
column = {}
head = []
active = defaultdict(list)
column = defalutdict(dict)
missingColumns = False
for datatype,info in datainfo.items(): for datatype,info in datainfo.items():
for label in info['label']: for label in info['label']:
key = {True :'1_%s', key = {True :'1_%s',
False:'%s' }[info['len']>1]%label False:'%s' }[info['len']>1]%label
if key not in table.labels: if key not in table.labels:
sys.stderr.write('column %s not found...\n'%key) file['croak'].write('column %s not found...\n'%key)
missingColumns |= info['mandatory'] # break if label is mandatory
else: else:
if datatype not in active: active[datatype] = []
if datatype not in column: column[datatype] = {}
active[datatype].append(label) active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data column[datatype][label] = table.labels.index(key) # remember columns of requested data
if missingColumns:
continue
table.labels_append(['%i_Cauchy'%(i+1) table.labels_append(['%i_Cauchy'%(i+1)
for i in xrange(datainfo['defgrad']['len'])]) # extend ASCII header with new labels for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.head_write() table.head_write()
# ------------------------------------------ process data --------------------------------------- # ------------------------------------------ process data ---------------------------------------
while table.data_read(): # read next data line of ASCII table outputAlive = True
while outoutAlive and table.data_read(): # read next data line of ASCII table
F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]: F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3) column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
@ -113,9 +122,9 @@ for file in files:
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3) column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
table.data_append(list(1.0/numpy.linalg.det(F)*numpy.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose] table.data_append(list(1.0/numpy.linalg.det(F)*numpy.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
table.data_write() # output processed line outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result --------------------------------------- # ------------------------------------------ output result ---------------------------------------
table.output_flush() # just in case of buffered ASCII table table.output_flush() # just in case of buffered ASCII table