diff --git a/src/lattice.f90 b/src/lattice.f90 index 3b1206345..935a8c161 100644 --- a/src/lattice.f90 +++ b/src/lattice.f90 @@ -405,7 +405,7 @@ module lattice contains !-------------------------------------------------------------------------------------------------- -!> @brief module initialization +!> @brief Module initialization !-------------------------------------------------------------------------------------------------- subroutine lattice_init @@ -417,7 +417,7 @@ end subroutine lattice_init !-------------------------------------------------------------------------------------------------- -!> @brief characteristic shear for twinning +!> @brief Characteristic shear for twinning !-------------------------------------------------------------------------------------------------- function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(characteristicShear) @@ -491,7 +491,7 @@ end function lattice_characteristicShear_Twin !-------------------------------------------------------------------------------------------------- -!> @brief rotated elasticity matrices for twinning in 6x6-matrix notation +!> @brief Rotated elasticity matrices for twinning in 6x6-matrix notation !-------------------------------------------------------------------------------------------------- function lattice_C66_twin(Ntwin,C66,lattice,CoverA) @@ -522,14 +522,14 @@ function lattice_C66_twin(Ntwin,C66,lattice,CoverA) do i = 1, sum(Ntwin) call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg? - lattice_C66_twin(1:6,1:6,i) = math_3333toVoigt66(R%rotTensor4(math_Voigt66to3333(C66))) + lattice_C66_twin(1:6,1:6,i) = R%rotStiffness(C66) enddo end function lattice_C66_twin !-------------------------------------------------------------------------------------------------- -!> @brief rotated elasticity matrices for transformation in 6x6-matrix notation +!> @brief Rotated elasticity matrices for transformation in 6x6-matrix notation !-------------------------------------------------------------------------------------------------- function lattice_C66_trans(Ntrans,C_parent66,lattice_target, & cOverA_trans,a_bcc,a_fcc) @@ -548,6 +548,8 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, & !-------------------------------------------------------------------------------------------------- ! elasticity matrix of the target phase in cube orientation if (lattice_target == 'hP') then + ! https://doi.org/10.1063/1.1663858 eq. (16), eq. (18), eq. (19) + ! https://doi.org/10.1016/j.actamat.2016.07.032 eq. (47), eq. (48) if (cOverA_trans < 1.0_pReal .or. cOverA_trans > 2.0_pReal) & call IO_error(131,ext_msg='lattice_C66_trans: '//trim(lattice_target)) C_bar66(1,1) = (C_parent66(1,1) + C_parent66(1,2) + 2.0_pReal*C_parent66(4,4))/2.0_pReal @@ -581,14 +583,14 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, & do i = 1,sum(Ntrans) call R%fromMatrix(Q(1:3,1:3,i)) - lattice_C66_trans(1:6,1:6,i) = math_3333toVoigt66(R%rotTensor4(math_Voigt66to3333(C_target_unrotated66))) + lattice_C66_trans(1:6,1:6,i) = R%rotStiffness(C_target_unrotated66) enddo end function lattice_C66_trans !-------------------------------------------------------------------------------------------------- -!> @brief non-Schmid projections for bcc with up to 6 coefficients +!> @brief Non-schmid projections for bcc with up to 6 coefficients ! Koester et al. 2012, Acta Materialia 60 (2012) 3894–3901, eq. (17) ! Gröger et al. 2008, Acta Materialia 56 (2008) 5412–5425, table 1 !-------------------------------------------------------------------------------------------------- @@ -635,7 +637,7 @@ end function lattice_nonSchmidMatrix !-------------------------------------------------------------------------------------------------- -!> @brief slip-slip interaction matrix +!> @brief Slip-slip interaction matrix !> details only active slip systems are considered !-------------------------------------------------------------------------------------------------- function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(interactionMatrix) @@ -884,7 +886,7 @@ end function lattice_interaction_SlipBySlip !-------------------------------------------------------------------------------------------------- -!> @brief twin-twin interaction matrix +!> @brief Twin-twin interaction matrix !> details only active twin systems are considered !-------------------------------------------------------------------------------------------------- function lattice_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(interactionMatrix) @@ -983,7 +985,7 @@ end function lattice_interaction_TwinByTwin !-------------------------------------------------------------------------------------------------- -!> @brief trans-trans interaction matrix +!> @brief Trans-trans interaction matrix !> details only active trans systems are considered !-------------------------------------------------------------------------------------------------- function lattice_interaction_TransByTrans(Ntrans,interactionValues,lattice) result(interactionMatrix) @@ -1025,7 +1027,7 @@ end function lattice_interaction_TransByTrans !-------------------------------------------------------------------------------------------------- -!> @brief slip-twin interaction matrix +!> @brief Slip-twin interaction matrix !> details only active slip and twin systems are considered !-------------------------------------------------------------------------------------------------- function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) result(interactionMatrix) @@ -1189,7 +1191,7 @@ end function lattice_interaction_SlipByTwin !-------------------------------------------------------------------------------------------------- -!> @brief slip-trans interaction matrix +!> @brief Slip-trans interaction matrix !> details only active slip and trans systems are considered !-------------------------------------------------------------------------------------------------- function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice) result(interactionMatrix) @@ -1242,7 +1244,7 @@ function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice) !-------------------------------------------------------------------------------------------------- -!> @brief twin-slip interaction matrix +!> @brief Twin-slip interaction matrix !> details only active twin and slip systems are considered !-------------------------------------------------------------------------------------------------- function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) result(interactionMatrix) @@ -1487,7 +1489,7 @@ end function lattice_SchmidMatrix_cleavage !-------------------------------------------------------------------------------------------------- -!> @brief slip direction of slip systems (|| b) +!> @brief Slip direction of slip systems (|| b) !-------------------------------------------------------------------------------------------------- function lattice_slip_direction(Nslip,lattice,cOverA) result(d) @@ -1505,7 +1507,7 @@ end function lattice_slip_direction !-------------------------------------------------------------------------------------------------- -!> @brief normal direction of slip systems (|| n) +!> @brief Normal direction of slip systems (|| n) !-------------------------------------------------------------------------------------------------- function lattice_slip_normal(Nslip,lattice,cOverA) result(n) @@ -1523,7 +1525,7 @@ end function lattice_slip_normal !-------------------------------------------------------------------------------------------------- -!> @brief transverse direction of slip systems (|| t = b x n) +!> @brief Transverse direction of slip systems (|| t = b x n) !-------------------------------------------------------------------------------------------------- function lattice_slip_transverse(Nslip,lattice,cOverA) result(t) @@ -1541,7 +1543,7 @@ end function lattice_slip_transverse !-------------------------------------------------------------------------------------------------- -!> @brief labels of slip systems +!> @brief Labels of slip systems !> details only active slip systems are considered !-------------------------------------------------------------------------------------------------- function lattice_labels_slip(Nslip,lattice) result(labels) @@ -1582,7 +1584,7 @@ end function lattice_labels_slip !-------------------------------------------------------------------------------------------------- -!> @brief return 3x3 tensor with symmetry according to given Bravais lattice +!> @brief Return 3x3 tensor with symmetry according to given Bravais lattice !-------------------------------------------------------------------------------------------------- pure function lattice_symmetrize_33(T,lattice) result(T_sym) @@ -1609,7 +1611,7 @@ end function lattice_symmetrize_33 !-------------------------------------------------------------------------------------------------- -!> @brief return stiffness matrix in 6x6 notation with symmetry according to given Bravais lattice +!> @brief Return stiffness matrix in 6x6 notation with symmetry according to given Bravais lattice !> @details J. A. Rayne and B. S. Chandrasekhar Phys. Rev. 120, 1658 Erratum Phys. Rev. 122, 1962 !-------------------------------------------------------------------------------------------------- pure function lattice_symmetrize_C66(C66,lattice) result(C66_sym) @@ -1655,7 +1657,7 @@ end function lattice_symmetrize_C66 !-------------------------------------------------------------------------------------------------- -!> @brief labels of twin systems +!> @brief Labels for twin systems !> details only active twin systems are considered !-------------------------------------------------------------------------------------------------- function lattice_labels_twin(Ntwin,lattice) result(labels) @@ -1693,7 +1695,7 @@ end function lattice_labels_twin !-------------------------------------------------------------------------------------------------- -!> @brief projection of the transverse direction onto the slip plane +!> @brief Projection of the transverse direction onto the slip plane !> @details: This projection is used to calculate forest hardening for edge dislocations !-------------------------------------------------------------------------------------------------- function slipProjection_transverse(Nslip,lattice,cOverA) result(projection) @@ -1717,7 +1719,7 @@ end function slipProjection_transverse !-------------------------------------------------------------------------------------------------- -!> @brief projection of the slip direction onto the slip plane +!> @brief Projection of the slip direction onto the slip plane !> @details: This projection is used to calculate forest hardening for screw dislocations !-------------------------------------------------------------------------------------------------- function slipProjection_direction(Nslip,lattice,cOverA) result(projection) @@ -1783,7 +1785,7 @@ end function coordinateSystem_slip !-------------------------------------------------------------------------------------------------- -!> @brief populate reduced interaction matrix +!> @brief Populate reduced interaction matrix !-------------------------------------------------------------------------------------------------- function buildInteraction(reacting_used,acting_used,reacting_max,acting_max,values,matrix) @@ -1826,7 +1828,7 @@ end function buildInteraction !-------------------------------------------------------------------------------------------------- -!> @brief build a local coordinate system on slip, twin, trans, cleavage systems +!> @brief Build a local coordinate system on slip, twin, trans, cleavage systems !> @details Order: Direction, plane (normal), and common perpendicular !-------------------------------------------------------------------------------------------------- function buildCoordinateSystem(active,potential,system,lattice,cOverA) @@ -1893,7 +1895,7 @@ end function buildCoordinateSystem !-------------------------------------------------------------------------------------------------- -!> @brief helper function to define transformation systems +!> @brief Helper function to define transformation systems ! Needed to calculate Schmid matrix and rotated stiffness matrices. ! @details: set c/a = 0.0 for fcc -> bcc transformation ! set a_Xcc = 0.0 for fcc -> hex transformation @@ -2077,7 +2079,7 @@ end function getlabels !-------------------------------------------------------------------------------------------------- -!> @brief equivalent Poisson's ratio (ν) +!> @brief Equivalent Poisson's ratio (ν) !> @details https://doi.org/10.1143/JPSJ.20.635 !-------------------------------------------------------------------------------------------------- function lattice_equivalent_nu(C,assumption) result(nu) @@ -2110,7 +2112,7 @@ end function lattice_equivalent_nu !-------------------------------------------------------------------------------------------------- -!> @brief equivalent shear modulus (μ) +!> @brief Equivalent shear modulus (μ) !> @details https://doi.org/10.1143/JPSJ.20.635 !-------------------------------------------------------------------------------------------------- function lattice_equivalent_mu(C,assumption) result(mu) @@ -2139,7 +2141,7 @@ end function lattice_equivalent_mu !-------------------------------------------------------------------------------------------------- -!> @brief check correctness of some lattice functions +!> @brief Check correctness of some lattice functions. !-------------------------------------------------------------------------------------------------- subroutine selfTest diff --git a/src/math.f90 b/src/math.f90 index 029e069cf..207a27e78 100644 --- a/src/math.f90 +++ b/src/math.f90 @@ -806,7 +806,7 @@ pure function math_sym3333to66(m3333,weighted) w = merge(NRMMANDEL,1.0_pReal,weighted) else w = NRMMANDEL - endif + end if #ifndef __INTEL_COMPILER do concurrent(i=1:6, j=1:6) @@ -841,20 +841,83 @@ pure function math_66toSym3333(m66,weighted) w = merge(INVNRMMANDEL,1.0_pReal,weighted) else w = INVNRMMANDEL - endif + end if do i=1,6; do j=1,6 math_66toSym3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j)) = w(i)*w(j)*m66(i,j) math_66toSym3333(MAPNYE(2,i),MAPNYE(1,i),MAPNYE(1,j),MAPNYE(2,j)) = w(i)*w(j)*m66(i,j) math_66toSym3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(2,j),MAPNYE(1,j)) = w(i)*w(j)*m66(i,j) math_66toSym3333(MAPNYE(2,i),MAPNYE(1,i),MAPNYE(2,j),MAPNYE(1,j)) = w(i)*w(j)*m66(i,j) - enddo; enddo + end do; end do end function math_66toSym3333 !-------------------------------------------------------------------------------------------------- -!> @brief convert 6x6 Voigt matrix into symmetric 3x3x3x3 matrix +!> @brief Convert 6 Voigt stress vector into symmetric 3x3 tensor. +!-------------------------------------------------------------------------------------------------- +pure function math_Voigt6to33_stress(sigma_tilde) result(sigma) + + real(pReal), dimension(3,3) :: sigma + real(pReal), dimension(6), intent(in) :: sigma_tilde + + + sigma = reshape([sigma_tilde(1), sigma_tilde(6), sigma_tilde(5), & + sigma_tilde(6), sigma_tilde(2), sigma_tilde(4), & + sigma_tilde(5), sigma_tilde(4), sigma_tilde(3)],[3,3]) + +end function math_Voigt6to33_stress + + +!-------------------------------------------------------------------------------------------------- +!> @brief Convert 6 Voigt strain vector into symmetric 3x3 tensor. +!-------------------------------------------------------------------------------------------------- +pure function math_Voigt6to33_strain(epsilon_tilde) result(epsilon) + + real(pReal), dimension(3,3) :: epsilon + real(pReal), dimension(6), intent(in) :: epsilon_tilde + + + epsilon = reshape([ epsilon_tilde(1), 0.5_pReal*epsilon_tilde(6), 0.5_pReal*epsilon_tilde(5), & + 0.5_pReal*epsilon_tilde(6), epsilon_tilde(2), 0.5_pReal*epsilon_tilde(4), & + 0.5_pReal*epsilon_tilde(5), 0.5_pReal*epsilon_tilde(4), epsilon_tilde(3)],[3,3]) + +end function math_Voigt6to33_strain + + +!-------------------------------------------------------------------------------------------------- +!> @brief Convert 3x3 tensor into 6 Voigt stress vector. +!-------------------------------------------------------------------------------------------------- +pure function math_33toVoigt6_stress(sigma) result(sigma_tilde) + + real(pReal), dimension(6) :: sigma_tilde + real(pReal), dimension(3,3), intent(in) :: sigma + + + sigma_tilde = [sigma(1,1), sigma(2,2), sigma(3,3), & + sigma(3,2), sigma(3,1), sigma(1,2)] + +end function math_33toVoigt6_stress + + +!-------------------------------------------------------------------------------------------------- +!> @brief Convert 3x3 tensor into 6 Voigt strain vector. +!-------------------------------------------------------------------------------------------------- +pure function math_33toVoigt6_strain(epsilon) result(epsilon_tilde) + + real(pReal), dimension(6) :: epsilon_tilde + real(pReal), dimension(3,3), intent(in) :: epsilon + + + epsilon_tilde = [ epsilon(1,1), epsilon(2,2), epsilon(3,3), & + 2.0_pReal*epsilon(3,2), 2.0_pReal*epsilon(3,1), 2.0_pReal*epsilon(1,2)] + +end function math_33toVoigt6_strain + + + +!-------------------------------------------------------------------------------------------------- +!> @brief Convert 6x6 Voigt matrix into symmetric 3x3x3x3 matrix. !-------------------------------------------------------------------------------------------------- pure function math_Voigt66to3333(m66) @@ -864,18 +927,18 @@ pure function math_Voigt66to3333(m66) integer :: i,j - do i=1,6; do j=1, 6 + do i=1,6; do j=1,6 math_Voigt66to3333(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j)) = m66(i,j) math_Voigt66to3333(MAPVOIGT(2,i),MAPVOIGT(1,i),MAPVOIGT(1,j),MAPVOIGT(2,j)) = m66(i,j) math_Voigt66to3333(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(2,j),MAPVOIGT(1,j)) = m66(i,j) math_Voigt66to3333(MAPVOIGT(2,i),MAPVOIGT(1,i),MAPVOIGT(2,j),MAPVOIGT(1,j)) = m66(i,j) - enddo; enddo + end do; end do end function math_Voigt66to3333 !-------------------------------------------------------------------------------------------------- -!> @brief convert symmetric 3x3x3x3 matrix into 6x6 Voigt matrix +!> @brief Convert symmetric 3x3x3x3 matrix into 6x6 Voigt matrix. !-------------------------------------------------------------------------------------------------- pure function math_3333toVoigt66(m3333) diff --git a/src/phase_mechanical_elastic.f90 b/src/phase_mechanical_elastic.f90 index 45abf48c1..ea113ddfb 100644 --- a/src/phase_mechanical_elastic.f90 +++ b/src/phase_mechanical_elastic.f90 @@ -193,15 +193,17 @@ module subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, & dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient real(pReal), dimension(3,3) :: E + real(pReal), dimension(6,6) :: C66 real(pReal), dimension(3,3,3,3) :: C integer :: & i, j - C = math_Voigt66to3333(phase_damage_C66(phase_homogenizedC66(ph,en),ph,en)) + C66 = phase_damage_C66(phase_homogenizedC66(ph,en),ph,en) + C = math_Voigt66to3333(C66) E = 0.5_pReal*(matmul(transpose(Fe),Fe)-math_I3) !< Green-Lagrange strain in unloaded configuration - S = math_mul3333xx33(C,matmul(matmul(transpose(Fi),E),Fi)) !< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration + S = math_Voigt6to33_stress(matmul(C66,math_33toVoigt6_strain(matmul(matmul(transpose(Fi),E),Fi))))!< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration do i =1,3; do j=1,3 dS_dFe(i,j,1:3,1:3) = matmul(Fe,matmul(matmul(Fi,C(i,j,1:3,1:3)),transpose(Fi))) !< dS_ij/dFe_kl = C_ijmn * Fi_lm * Fi_on * Fe_ko diff --git a/src/rotations.f90 b/src/rotations.f90 index 7b622577f..97e8104d5 100644 --- a/src/rotations.f90 +++ b/src/rotations.f90 @@ -75,6 +75,7 @@ module rotations procedure, public :: rotVector procedure, public :: rotTensor2 procedure, public :: rotTensor4 + procedure, public :: rotStiffness procedure, public :: misorientation procedure, public :: standardize end type rotation @@ -339,8 +340,7 @@ end function rotTensor2 !--------------------------------------------------------------------------------------------------- -!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH -!> @brief rotate a rank-4 tensor passively (default) or actively +!> @brief Rotate a rank-4 tensor passively (default) or actively. !> @details: rotation is based on rotation matrix !! ToDo: Need to check active/passive !!! !--------------------------------------------------------------------------------------------------- @@ -354,6 +354,7 @@ pure function rotTensor4(self,T,active) result(tRot) real(pReal), dimension(3,3) :: R integer :: i,j,k,l,m,n,o,p + if (present(active)) then R = merge(transpose(self%asMatrix()),self%asMatrix(),active) else @@ -371,7 +372,47 @@ end function rotTensor4 !--------------------------------------------------------------------------------------------------- -!> @brief misorientation +!> @brief Rotate a rank-4 tensor in Voigt 6x6 notation passively (default) or actively. +!> @details: https://scicomp.stackexchange.com/questions/35600 +!! ToDo: Need to check active/passive !!! +!--------------------------------------------------------------------------------------------------- +pure function rotStiffness(self,C,active) result(cRot) + + real(pReal), dimension(6,6) :: cRot + class(rotation), intent(in) :: self + real(pReal), intent(in), dimension(6,6) :: C + logical, intent(in), optional :: active + + real(pReal), dimension(3,3) :: R + real(pReal), dimension(6,6) :: M + + + if (present(active)) then + R = merge(transpose(self%asMatrix()),self%asMatrix(),active) + else + R = self%asMatrix() + endif + + M = reshape([R(1,1)**2.0_pReal, R(2,1)**2.0_pReal, R(3,1)**2.0_pReal, & + R(2,1)*R(3,1), R(1,1)*R(3,1), R(1,1)*R(2,1), & + R(1,2)**2.0_pReal, R(2,2)**2.0_pReal, R(3,2)**2.0_pReal, & + R(2,2)*R(3,2), R(1,2)*R(3,2), R(1,2)*R(2,2), & + R(1,3)**2.0_pReal, R(2,3)**2.0_pReal, R(3,3)**2.0_pReal, & + R(2,3)*R(3,3), R(1,3)*R(3,3), R(1,3)*R(2,3), & + 2.0_pReal*R(1,2)*R(1,3), 2.0_pReal*R(2,2)*R(2,3), 2.0_pReal*R(3,2)*R(3,3), & + R(2,2)*R(3,3)+R(2,3)*R(3,2), R(1,2)*R(3,3)+R(1,3)*R(3,2), R(1,2)*R(2,3)+R(1,3)*R(2,2), & + 2.0_pReal*R(1,3)*R(1,1), 2.0_pReal*R(2,3)*R(2,1), 2.0_pReal*R(3,3)*R(3,1), & + R(2,3)*R(3,1)+R(2,1)*R(3,3), R(1,3)*R(3,1)+R(1,1)*R(3,3), R(1,3)*R(2,1)+R(1,1)*R(2,3), & + 2.0_pReal*R(1,1)*R(1,2), 2.0_pReal*R(2,1)*R(2,2), 2.0_pReal*R(3,1)*R(3,2), & + R(2,1)*R(3,2)+R(2,2)*R(3,1), R(1,1)*R(3,2)+R(1,2)*R(3,1), R(1,1)*R(2,2)+R(1,2)*R(2,1)],[6,6]) + + cRot = matmul(M,matmul(C,transpose(M))) + +end function rotStiffness + + +!--------------------------------------------------------------------------------------------------- +!> @brief Misorientation. !--------------------------------------------------------------------------------------------------- pure elemental function misorientation(self,other) @@ -386,7 +427,7 @@ end function misorientation !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University -!> @brief convert unit quaternion to rotation matrix +!> @brief Convert unit quaternion to rotation matrix. !--------------------------------------------------------------------------------------------------- pure function qu2om(qu) result(om) @@ -395,8 +436,8 @@ pure function qu2om(qu) result(om) real(pReal) :: qq - qq = qu(1)**2-sum(qu(2:4)**2) + qq = qu(1)**2-sum(qu(2:4)**2) om(1,1) = qq+2.0_pReal*qu(2)**2 om(2,2) = qq+2.0_pReal*qu(3)**2 @@ -416,7 +457,7 @@ end function qu2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University -!> @brief convert unit quaternion to Euler angles +!> @brief Convert unit quaternion to Euler angles. !--------------------------------------------------------------------------------------------------- pure function qu2eu(qu) result(eu) @@ -425,6 +466,7 @@ pure function qu2eu(qu) result(eu) real(pReal) :: q12, q03, chi + q03 = qu(1)**2+qu(4)**2 q12 = qu(2)**2+qu(3)**2 chi = sqrt(q03*q12) @@ -1379,6 +1421,7 @@ subroutine selfTest() real(pReal), dimension(3) :: x, eu, ho, v3 real(pReal), dimension(3,3) :: om, t33 real(pReal), dimension(3,3,3,3) :: t3333 + real(pReal), dimension(6,6) :: C real :: A,B integer :: i @@ -1412,6 +1455,7 @@ subroutine selfTest() if(qu(1)<0.0_pReal) qu = qu * (-1.0_pReal) endif + if(.not. quaternion_equal(om2qu(qu2om(qu)),qu)) error stop 'om2qu/qu2om' if(.not. quaternion_equal(eu2qu(qu2eu(qu)),qu)) error stop 'eu2qu/qu2eu' if(.not. quaternion_equal(ax2qu(qu2ax(qu)),qu)) error stop 'ax2qu/qu2ax' @@ -1447,20 +1491,25 @@ subroutine selfTest() call R%fromMatrix(om) call random_number(v3) - if(all(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) & + if (any(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) & error stop 'rotVector' call random_number(t33) - if(all(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) & + if (any(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) & error stop 'rotTensor2' call random_number(t3333) - if(all(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) & + if (any(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) & error stop 'rotTensor4' + call random_number(C) + C = C+transpose(C) + if (any(dNeq(R%rotStiffness(C),math_3333toVoigt66(R%rotate(math_Voigt66to3333(C))),1.0e-12_pReal))) & + error stop 'rotStiffness' + call R%fromQuaternion(qu * (1.0_pReal + merge(+5.e-9_pReal,-5.e-9_pReal, mod(i,2) == 0))) ! allow reasonable tolerance for ASCII/YAML - enddo + end do contains