parent
2c06cad4d0
commit
7d05845d5d
|
@ -1,4 +1,4 @@
|
|||
!* $Id: constitutive_dislotwin.f90 412 2009-09-18 15:37:14Z MPIE\c.kords $
|
||||
!* $Id$
|
||||
!************************************
|
||||
!* Module: CONSTITUTIVE *
|
||||
!************************************
|
||||
|
@ -122,7 +122,7 @@ character(len=1024) line
|
|||
|
||||
!write(6,*)
|
||||
!write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_dislotwin_label,' init -+>>>'
|
||||
!write(6,*) '$Id: constitutive_dislotwin.f90 412 2009-09-18 15:37:14Z MPIE\c.kords $'
|
||||
!write(6,*) '$Id$'
|
||||
!write(6,*)
|
||||
|
||||
maxNinstance = count(phase_constitution == constitutive_dislotwin_label)
|
||||
|
@ -160,7 +160,6 @@ constitutive_dislotwin_slipSystemLattice = 0.0_pReal
|
|||
constitutive_dislotwin_twinSystemLattice = 0.0_pReal
|
||||
constitutive_dislotwin_totalNslip = 0_pInt
|
||||
constitutive_dislotwin_totalNtwin = 0_pInt
|
||||
|
||||
allocate(constitutive_dislotwin_CoverA(maxNinstance))
|
||||
allocate(constitutive_dislotwin_C11(maxNinstance))
|
||||
allocate(constitutive_dislotwin_C12(maxNinstance))
|
||||
|
@ -203,7 +202,6 @@ constitutive_dislotwin_Cthresholdtwin = 0.0_pReal
|
|||
constitutive_dislotwin_relevantRho = 0.0_pReal
|
||||
constitutive_dislotwin_Cslip_66 = 0.0_pReal
|
||||
constitutive_dislotwin_Cslip_3333 = 0.0_pReal
|
||||
|
||||
allocate(constitutive_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance))
|
||||
allocate(constitutive_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance))
|
||||
allocate(constitutive_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance))
|
||||
|
@ -222,7 +220,6 @@ constitutive_dislotwin_v0PerSlipFamily = 0.0_pReal
|
|||
constitutive_dislotwin_Ndot0PerTwinFamily = 0.0_pReal
|
||||
constitutive_dislotwin_twinsizePerTwinFamily = 0.0_pReal
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipFamily = 0.0_pReal
|
||||
|
||||
allocate(constitutive_dislotwin_interactionSlipSlip(lattice_maxNinteraction,maxNinstance))
|
||||
allocate(constitutive_dislotwin_interactionSlipTwin(lattice_maxNinteraction,maxNinstance))
|
||||
allocate(constitutive_dislotwin_interactionTwinSlip(lattice_maxNinteraction,maxNinstance))
|
||||
|
@ -232,6 +229,8 @@ constitutive_dislotwin_interactionSlipTwin = 0.0_pReal
|
|||
constitutive_dislotwin_interactionTwinSlip = 0.0_pReal
|
||||
constitutive_dislotwin_interactionTwinTwin = 0.0_pReal
|
||||
|
||||
|
||||
|
||||
!* Readout data from material.config file
|
||||
rewind(file)
|
||||
line = ''
|
||||
|
@ -272,27 +271,38 @@ do ! read thru sections of
|
|||
case ('c44')
|
||||
constitutive_dislotwin_C44(i) = IO_floatValue(line,positions,2)
|
||||
case ('nslip')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1+j)
|
||||
case ('ntwin')
|
||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNtwinFamily) &
|
||||
constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1+j)
|
||||
case ('rhoedge0')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('rhoedgedip0')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('slipburgers')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('twinburgers')
|
||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNtwinFamily) &
|
||||
constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('qedge')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('v0')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('ndot0')
|
||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNtwinFamily) &
|
||||
constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('twinsize')
|
||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNtwinFamily) &
|
||||
constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('clambdaslip')
|
||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
forall (j = 1:lattice_maxNslipFamily) &
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||
case ('grainsize')
|
||||
constitutive_dislotwin_GrainSize(i) = IO_floatValue(line,positions,2)
|
||||
case ('maxtwinfraction')
|
||||
|
@ -375,6 +385,7 @@ enddo
|
|||
maxTotalNslip = maxval(constitutive_dislotwin_totalNslip)
|
||||
maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin)
|
||||
|
||||
|
||||
allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance))
|
||||
allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance))
|
||||
allocate(constitutive_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance))
|
||||
|
@ -441,6 +452,7 @@ do i = 1,maxNinstance
|
|||
select case(constitutive_dislotwin_output(o,i))
|
||||
case('edge_density', &
|
||||
'dipole_density', &
|
||||
|
||||
'shear_rate_slip', &
|
||||
'mfp_slip', &
|
||||
'resolved_stress_slip', &
|
||||
|
@ -532,6 +544,7 @@ do i = 1,maxNinstance
|
|||
constitutive_dislotwin_interactionSlipSlip(lattice_interactionSlipSlip(constitutive_dislotwin_slipSystemLattice(s1,i), &
|
||||
constitutive_dislotwin_slipSystemLattice(s2,i), &
|
||||
myStructure),i)
|
||||
|
||||
enddo; enddo
|
||||
|
||||
do s1 = 1,constitutive_dislotwin_totalNslip(i)
|
||||
|
@ -577,6 +590,7 @@ function constitutive_dislotwin_stateInit(myInstance)
|
|||
!* initial microstructural state *
|
||||
!*********************************************************************
|
||||
use prec, only: pReal,pInt
|
||||
|
||||
use math, only: pi
|
||||
use lattice, only: lattice_maxNslipFamily,lattice_maxNtwinFamily
|
||||
implicit none
|
||||
|
@ -586,7 +600,12 @@ integer(pInt) :: myInstance
|
|||
real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_stateInit
|
||||
!* Local variables
|
||||
integer(pInt) s0,s1,s,t,f,ns,nt
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(myInstance)) :: rhoEdge0,rhoEdgeDip0,invLambdaSlip0,MeanFreePathSlip0,tauSlipThreshold0
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(myInstance)) :: rhoEdge0, &
|
||||
rhoEdgeDip0, &
|
||||
invLambdaSlip0, &
|
||||
MeanFreePathSlip0, &
|
||||
tauSlipThreshold0
|
||||
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(myInstance)) :: MeanFreePathTwin0,TwinVolume0
|
||||
|
||||
ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||
|
@ -594,6 +613,7 @@ nt = constitutive_dislotwin_totalNtwin(myInstance)
|
|||
constitutive_dislotwin_stateInit = 0.0_pReal
|
||||
|
||||
!* Initialize basic slip state variables
|
||||
|
||||
s1 = 0_pInt
|
||||
do f = 1,lattice_maxNslipFamily
|
||||
s0 = s1 + 1_pInt
|
||||
|
@ -603,6 +623,7 @@ do f = 1,lattice_maxNslipFamily
|
|||
rhoEdgeDip0(s) = constitutive_dislotwin_rhoEdgeDip0(f,myInstance)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
constitutive_dislotwin_stateInit(1:ns) = rhoEdge0
|
||||
constitutive_dislotwin_stateInit(ns+1:2*ns) = rhoEdgeDip0
|
||||
|
||||
|
@ -615,6 +636,7 @@ constitutive_dislotwin_stateInit(2*ns+nt+1:3*ns+nt) = invLambdaSlip0
|
|||
forall (s = 1:ns) &
|
||||
MeanFreePathSlip0(s) = &
|
||||
constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+invLambdaSlip0(s)*constitutive_dislotwin_GrainSize(myInstance))
|
||||
|
||||
constitutive_dislotwin_stateInit(4*ns+2*nt+1:5*ns+2*nt) = MeanFreePathSlip0
|
||||
|
||||
forall (s = 1:ns) &
|
||||
|
@ -623,6 +645,7 @@ constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSys
|
|||
sqrt(dot_product(rhoEdge0,constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance)))
|
||||
constitutive_dislotwin_stateInit(5*ns+3*nt+1:6*ns+3*nt) = tauSlipThreshold0
|
||||
|
||||
|
||||
!* Initialize dependent twin microstructural variables
|
||||
forall (t = 1:nt) &
|
||||
MeanFreePathTwin0(t) = constitutive_dislotwin_GrainSize(myInstance)
|
||||
|
@ -633,6 +656,7 @@ TwinVolume0(t) = &
|
|||
(pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*MeanFreePathTwin0(t)**(2.0_pReal)
|
||||
constitutive_dislotwin_stateInit(6*ns+4*nt+1:6*ns+5*nt) = TwinVolume0
|
||||
|
||||
|
||||
!write(6,*) '#STATEINIT#'
|
||||
!write(6,*)
|
||||
!write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',rhoEdge0
|
||||
|
@ -691,12 +715,14 @@ ns = constitutive_dislotwin_totalNslip(myInstance)
|
|||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
|
||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||
|
||||
!* Homogenized elasticity matrix
|
||||
constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*constitutive_dislotwin_Cslip_66(:,:,myInstance)
|
||||
do i=1,nt
|
||||
constitutive_dislotwin_homogenizedC = &
|
||||
|
||||
constitutive_dislotwin_homogenizedC + state(g,ip,el)%p(2*ns+i)*constitutive_dislotwin_Ctwin_66(:,:,i,myInstance)
|
||||
enddo
|
||||
|
||||
|
@ -736,6 +762,7 @@ myStructure = constitutive_dislotwin_structure(myInstance)
|
|||
ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||
!* State: 1 : ns rho_edge
|
||||
|
||||
!* State: ns+1 : 2*ns rho_dipole
|
||||
!* State: 2*ns+1 : 2*ns+nt f
|
||||
!* State: 2*ns+nt+1 : 3*ns+nt 1/lambda_slip
|
||||
|
@ -747,10 +774,14 @@ nt = constitutive_dislotwin_totalNtwin(myInstance)
|
|||
!* State: 6*ns+3*nt+1 : 6*ns+4*nt threshold_stress_twin
|
||||
!* State: 6*ns+4*nt+1 : 6*ns+5*nt twin volume
|
||||
|
||||
|
||||
!* Total twin volume fraction
|
||||
|
||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||
|
||||
|
||||
!* Stacking fault energy
|
||||
|
||||
sfe = 0.0002_pReal*Temperature-0.0396_pReal
|
||||
|
||||
!* rescaled twin volume fraction for topology
|
||||
|
@ -761,19 +792,22 @@ state(g,ip,el)%p(2*ns+t)/constitutive_dislotwin_twinsizePerTwinSystem(t,myInstan
|
|||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1:ns) &
|
||||
state(g,ip,el)%p(2*ns+nt+s) = &
|
||||
sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1:2*ns)),constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ &
|
||||
sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1:2*ns)),&
|
||||
constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ &
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,myInstance)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = 0.0_pReal
|
||||
if (nt > 0_pInt) state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = &
|
||||
if (nt > 0_pInt) &
|
||||
state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = &
|
||||
matmul(constitutive_dislotwin_interactionMatrixSlipTwin(1:ns,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (nt > 0_pInt) state(g,ip,el)%p((4*ns+nt+1):(4*ns+2*nt)) = &
|
||||
if (nt > 0_pInt) &
|
||||
state(g,ip,el)%p((4*ns+nt+1):(4*ns+2*nt)) = &
|
||||
matmul(constitutive_dislotwin_interactionMatrixTwinTwin(1:nt,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
|
@ -802,6 +836,7 @@ state(g,ip,el)%p(5*ns+3*nt+s) = &
|
|||
constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(s,myInstance)*&
|
||||
sqrt(dot_product(state(g,ip,el)%p(1:ns),constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance)))
|
||||
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1:nt) &
|
||||
state(g,ip,el)%p(6*ns+3*nt+t) = &
|
||||
|
@ -815,6 +850,7 @@ forall (t = 1:nt) &
|
|||
state(g,ip,el)%p(6*ns+4*nt+t) = &
|
||||
(pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*state(g,ip,el)%p(5*ns+2*nt+t)**(2.0_pReal)
|
||||
|
||||
|
||||
!if ((ip==1).and.(el==1)) then
|
||||
! write(6,*) '#MICROSTRUCTURE#'
|
||||
! write(6,*)
|
||||
|
@ -823,6 +859,7 @@ state(g,ip,el)%p(6*ns+4*nt+t) = &
|
|||
! write(6,'(a,/,4(3(f10.4,x)/))') 'Fraction',state(g,ip,el)%p(2*ns+1:2*ns+nt)
|
||||
!endif
|
||||
|
||||
|
||||
return
|
||||
end subroutine
|
||||
|
||||
|
@ -872,6 +909,7 @@ ns = constitutive_dislotwin_totalNslip(myInstance)
|
|||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
|
||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||
|
||||
Lp = 0.0_pReal
|
||||
|
@ -888,9 +926,9 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
|||
j = j+1_pInt
|
||||
|
||||
!* Calculation of Lp
|
||||
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||
|
||||
!* Stress ratios
|
||||
StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
||||
StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
||||
|
@ -898,7 +936,8 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
|||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*&
|
||||
constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau_slip(j))
|
||||
|
@ -931,8 +970,8 @@ do f = 1,lattice_maxNtwinFamily ! loop over all
|
|||
j = j+1_pInt
|
||||
|
||||
!* Calculation of Lp
|
||||
|
||||
!* Resolved shear stress on twin system
|
||||
|
||||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
||||
!* Stress ratios
|
||||
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance)
|
||||
|
@ -942,10 +981,10 @@ do f = 1,lattice_maxNtwinFamily ! loop over all
|
|||
gdot_twin(j) = &
|
||||
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*lattice_shearTwin(index_myFamily+i,myStructure)*&
|
||||
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
||||
|
||||
dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_r(myInstance))/tau_twin(j))*StressRatio_r
|
||||
endif
|
||||
|
||||
|
||||
!* Plastic velocity gradient for mechanical twinning
|
||||
Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,myStructure)
|
||||
|
||||
|
@ -960,6 +999,7 @@ enddo
|
|||
|
||||
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
|
||||
|
||||
|
||||
!if ((ip==1).and.(el==1)) then
|
||||
! write(6,*) '#MICROSTRUCTURE#'
|
||||
! write(6,*)
|
||||
|
@ -967,6 +1007,7 @@ dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
|
|||
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdgeDip',state(g,ip,el)%p(13:24)
|
||||
!endif
|
||||
|
||||
|
||||
return
|
||||
end subroutine
|
||||
|
||||
|
@ -985,6 +1026,7 @@ function constitutive_dislotwin_dotState(Tstar_v,Temperature,state,g,ip,el)
|
|||
!* - constitutive_dotState : evolution of state variable *
|
||||
!*********************************************************************
|
||||
use prec, only: pReal,pInt,p_vec
|
||||
|
||||
use math, only: pi
|
||||
use mesh, only: mesh_NcpElems,mesh_maxNips
|
||||
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
||||
|
@ -996,14 +1038,17 @@ implicit none
|
|||
integer(pInt), intent(in) :: g,ip,el
|
||||
real(pReal), intent(in) :: Temperature
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v
|
||||
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
|
||||
real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
constitutive_dislotwin_dotState
|
||||
!* Local variables
|
||||
integer(pInt) MyInstance,MyStructure,ns,nt,f,i,j,k,index_myFamily
|
||||
real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r
|
||||
real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,&
|
||||
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,&
|
||||
|
||||
ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_constitutionInstance(material_phase(g,ip,el)))) :: gdot_twin,tau_twin
|
||||
|
||||
|
@ -1014,6 +1059,7 @@ ns = constitutive_dislotwin_totalNslip(myInstance)
|
|||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
|
||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||
|
||||
constitutive_dislotwin_dotState = 0.0_pReal
|
||||
|
@ -1026,6 +1072,7 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
|||
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
||||
j = j+1_pInt
|
||||
|
||||
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||
!* Stress ratios
|
||||
|
@ -1035,15 +1082,19 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
|||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*&
|
||||
constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau_slip(j))
|
||||
|
||||
|
||||
!* Multiplication
|
||||
DotRhoMultiplication(j) = abs(gdot_slip(j))/(constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*state(g,ip,el)%p(4*ns+2*nt+j))
|
||||
DotRhoMultiplication(j) = abs(gdot_slip(j))/&
|
||||
(constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*state(g,ip,el)%p(4*ns+2*nt+j))
|
||||
|
||||
!* Dipole formation
|
||||
|
||||
if (tau_slip(j) == 0.0_pReal) then
|
||||
DotRhoDipFormation(j) = 0.0_pReal
|
||||
else
|
||||
|
@ -1070,6 +1121,7 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
|||
!* Dislocation dipole climb
|
||||
AtomicVolume = &
|
||||
constitutive_dislotwin_CAtomicVolume(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)**(3.0_pReal)
|
||||
|
||||
VacancyDiffusion = &
|
||||
constitutive_dislotwin_D0(myInstance)*exp(-constitutive_dislotwin_Qsd(myInstance)/(kB*Temperature))
|
||||
ClimbVelocity(j) = &
|
||||
|
@ -1082,6 +1134,7 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
|||
constitutive_dislotwin_dotState(j) = &
|
||||
DotRhoMultiplication(j)-DotRhoDipFormation(j)-DotRhoEdgeEdgeAnnihilation(j)
|
||||
|
||||
|
||||
!* Edge dislocation dipole density rate of change
|
||||
constitutive_dislotwin_dotState(ns+j) = &
|
||||
DotRhoDipFormation(j)-DotRhoEdgeDipAnnihilation(j)-DotRhoEdgeDipClimb(j)
|
||||
|
@ -1108,9 +1161,11 @@ do f = 1,lattice_maxNtwinFamily ! loop over all
|
|||
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*&
|
||||
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
!if ((ip==1).and.(el==1)) then
|
||||
! write(6,*) '#DOTSTATE#'
|
||||
! write(6,*)
|
||||
|
@ -1125,6 +1180,8 @@ enddo
|
|||
! write(6,'(a,/,4(3(f30.20,x)/))') 'DipClimb',DotRhoEdgeDipClimb
|
||||
!endif
|
||||
|
||||
|
||||
|
||||
return
|
||||
end function
|
||||
|
||||
|
@ -1206,11 +1263,9 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
|||
case ('edge_density')
|
||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(1:ns)
|
||||
c = c + ns
|
||||
|
||||
case ('dipole_density')
|
||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(ns+1:2*ns)
|
||||
c = c + ns
|
||||
|
||||
case ('shear_rate_slip')
|
||||
j = 0_pInt
|
||||
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
||||
|
@ -1227,18 +1282,17 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
|||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
constitutive_dislotwin_postResults(c+j) = &
|
||||
DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau)
|
||||
enddo ; enddo
|
||||
c = c + ns
|
||||
|
||||
case ('mfp_slip')
|
||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((4*ns+2*nt+1):(5*ns+2*nt))
|
||||
c = c + ns
|
||||
|
||||
case ('resolved_stress_slip')
|
||||
j = 0_pInt
|
||||
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
||||
|
@ -1248,15 +1302,12 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
|||
constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||
enddo; enddo
|
||||
c = c + ns
|
||||
|
||||
case ('threshold_stress_slip')
|
||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((5*ns+3*nt+1):(6*ns+3*nt))
|
||||
c = c + ns
|
||||
|
||||
case ('twin_fraction')
|
||||
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((2*ns+1):(2*ns+nt))
|
||||
c = c + nt
|
||||
|
||||
case ('shear_rate_twin')
|
||||
if (nt > 0_pInt) then
|
||||
j = 0_pInt
|
||||
|
@ -1276,14 +1327,13 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
|||
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*&
|
||||
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
endif
|
||||
c = c + nt
|
||||
|
||||
case ('mfp_twin')
|
||||
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((5*ns+2*nt+1):(5*ns+3*nt))
|
||||
c = c + nt
|
||||
|
||||
case ('resolved_stress_twin')
|
||||
if (nt > 0_pInt) then
|
||||
j = 0_pInt
|
||||
|
@ -1295,11 +1345,9 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
|||
enddo; enddo
|
||||
endif
|
||||
c = c + nt
|
||||
|
||||
case ('threshold_stress_twin')
|
||||
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((6*ns+3*nt+1):(6*ns+4*nt))
|
||||
c = c + nt
|
||||
|
||||
end select
|
||||
enddo
|
||||
|
||||
|
|
Loading…
Reference in New Issue