parent
2c06cad4d0
commit
7d05845d5d
|
@ -1,4 +1,4 @@
|
||||||
!* $Id: constitutive_dislotwin.f90 412 2009-09-18 15:37:14Z MPIE\c.kords $
|
!* $Id$
|
||||||
!************************************
|
!************************************
|
||||||
!* Module: CONSTITUTIVE *
|
!* Module: CONSTITUTIVE *
|
||||||
!************************************
|
!************************************
|
||||||
|
@ -12,16 +12,16 @@ implicit none
|
||||||
!* Lists of states and physical parameters
|
!* Lists of states and physical parameters
|
||||||
character(len=*), parameter :: constitutive_dislotwin_label = 'dislotwin'
|
character(len=*), parameter :: constitutive_dislotwin_label = 'dislotwin'
|
||||||
character(len=18), dimension(2), parameter:: constitutive_dislotwin_listBasicSlipStates = (/'rhoEdge ', &
|
character(len=18), dimension(2), parameter:: constitutive_dislotwin_listBasicSlipStates = (/'rhoEdge ', &
|
||||||
'rhoEdgeDip'/)
|
'rhoEdgeDip'/)
|
||||||
character(len=18), dimension(1), parameter:: constitutive_dislotwin_listBasicTwinStates = (/'twinFraction'/)
|
character(len=18), dimension(1), parameter:: constitutive_dislotwin_listBasicTwinStates = (/'twinFraction'/)
|
||||||
character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentSlipStates =(/'invLambdaSlip ', &
|
character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentSlipStates =(/'invLambdaSlip ', &
|
||||||
'invLambdaSlipTwin', &
|
'invLambdaSlipTwin', &
|
||||||
'meanFreePathSlip ', &
|
'meanFreePathSlip ', &
|
||||||
'tauSlipThreshold '/)
|
'tauSlipThreshold '/)
|
||||||
character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentTwinStates =(/'invLambdaTwin ', &
|
character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentTwinStates =(/'invLambdaTwin ', &
|
||||||
'meanFreePathTwin', &
|
'meanFreePathTwin', &
|
||||||
'tauTwinThreshold', &
|
'tauTwinThreshold', &
|
||||||
'twinVolume '/)
|
'twinVolume '/)
|
||||||
real(pReal), parameter :: kB = 1.38e-23_pReal ! Boltzmann constant in J/Kelvin
|
real(pReal), parameter :: kB = 1.38e-23_pReal ! Boltzmann constant in J/Kelvin
|
||||||
|
|
||||||
!* Definition of global variables
|
!* Definition of global variables
|
||||||
|
@ -78,8 +78,8 @@ real(pReal), dimension(:,:), allocatable :: constitutive_dislotwin
|
||||||
constitutive_dislotwin_twinsizePerTwinFamily, & ! twin thickness [m] for each twin family and instance
|
constitutive_dislotwin_twinsizePerTwinFamily, & ! twin thickness [m] for each twin family and instance
|
||||||
constitutive_dislotwin_twinsizePerTwinSystem, & ! twin thickness [m] for each twin system and instance
|
constitutive_dislotwin_twinsizePerTwinSystem, & ! twin thickness [m] for each twin system and instance
|
||||||
constitutive_dislotwin_CLambdaSlipPerSlipFamily, & ! Adj. parameter for distance between 2 forest dislocations for each slip family and instance
|
constitutive_dislotwin_CLambdaSlipPerSlipFamily, & ! Adj. parameter for distance between 2 forest dislocations for each slip family and instance
|
||||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem, & ! Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
constitutive_dislotwin_CLambdaSlipPerSlipSystem, & ! Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
||||||
constitutive_dislotwin_interactionSlipSlip, & ! coefficients for slip-slip interaction for each interaction type and instance
|
constitutive_dislotwin_interactionSlipSlip, & ! coefficients for slip-slip interaction for each interaction type and instance
|
||||||
constitutive_dislotwin_interactionSlipTwin, & ! coefficients for slip-twin interaction for each interaction type and instance
|
constitutive_dislotwin_interactionSlipTwin, & ! coefficients for slip-twin interaction for each interaction type and instance
|
||||||
constitutive_dislotwin_interactionTwinSlip, & ! coefficients for twin-slip interaction for each interaction type and instance
|
constitutive_dislotwin_interactionTwinSlip, & ! coefficients for twin-slip interaction for each interaction type and instance
|
||||||
constitutive_dislotwin_interactionTwinTwin ! coefficients for twin-twin interaction for each interaction type and instance
|
constitutive_dislotwin_interactionTwinTwin ! coefficients for twin-twin interaction for each interaction type and instance
|
||||||
|
@ -87,7 +87,7 @@ real(pReal), dimension(:,:,:), allocatable :: constitutive_dislotwin
|
||||||
constitutive_dislotwin_interactionMatrixSlipTwin, & ! interaction matrix of slip systems with twin systems for each instance
|
constitutive_dislotwin_interactionMatrixSlipTwin, & ! interaction matrix of slip systems with twin systems for each instance
|
||||||
constitutive_dislotwin_interactionMatrixTwinSlip, & ! interaction matrix of twin systems with slip systems for each instance
|
constitutive_dislotwin_interactionMatrixTwinSlip, & ! interaction matrix of twin systems with slip systems for each instance
|
||||||
constitutive_dislotwin_interactionMatrixTwinTwin, & ! interaction matrix of the different twin systems for each instance
|
constitutive_dislotwin_interactionMatrixTwinTwin, & ! interaction matrix of the different twin systems for each instance
|
||||||
constitutive_dislotwin_forestProjectionEdge ! matrix of forest projections of edge dislocations for each instance
|
constitutive_dislotwin_forestProjectionEdge ! matrix of forest projections of edge dislocations for each instance
|
||||||
CONTAINS
|
CONTAINS
|
||||||
!****************************************
|
!****************************************
|
||||||
!* - constitutive_dislotwin_init
|
!* - constitutive_dislotwin_init
|
||||||
|
@ -122,7 +122,7 @@ character(len=1024) line
|
||||||
|
|
||||||
!write(6,*)
|
!write(6,*)
|
||||||
!write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_dislotwin_label,' init -+>>>'
|
!write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_dislotwin_label,' init -+>>>'
|
||||||
!write(6,*) '$Id: constitutive_dislotwin.f90 412 2009-09-18 15:37:14Z MPIE\c.kords $'
|
!write(6,*) '$Id$'
|
||||||
!write(6,*)
|
!write(6,*)
|
||||||
|
|
||||||
maxNinstance = count(phase_constitution == constitutive_dislotwin_label)
|
maxNinstance = count(phase_constitution == constitutive_dislotwin_label)
|
||||||
|
@ -160,7 +160,6 @@ constitutive_dislotwin_slipSystemLattice = 0.0_pReal
|
||||||
constitutive_dislotwin_twinSystemLattice = 0.0_pReal
|
constitutive_dislotwin_twinSystemLattice = 0.0_pReal
|
||||||
constitutive_dislotwin_totalNslip = 0_pInt
|
constitutive_dislotwin_totalNslip = 0_pInt
|
||||||
constitutive_dislotwin_totalNtwin = 0_pInt
|
constitutive_dislotwin_totalNtwin = 0_pInt
|
||||||
|
|
||||||
allocate(constitutive_dislotwin_CoverA(maxNinstance))
|
allocate(constitutive_dislotwin_CoverA(maxNinstance))
|
||||||
allocate(constitutive_dislotwin_C11(maxNinstance))
|
allocate(constitutive_dislotwin_C11(maxNinstance))
|
||||||
allocate(constitutive_dislotwin_C12(maxNinstance))
|
allocate(constitutive_dislotwin_C12(maxNinstance))
|
||||||
|
@ -203,7 +202,6 @@ constitutive_dislotwin_Cthresholdtwin = 0.0_pReal
|
||||||
constitutive_dislotwin_relevantRho = 0.0_pReal
|
constitutive_dislotwin_relevantRho = 0.0_pReal
|
||||||
constitutive_dislotwin_Cslip_66 = 0.0_pReal
|
constitutive_dislotwin_Cslip_66 = 0.0_pReal
|
||||||
constitutive_dislotwin_Cslip_3333 = 0.0_pReal
|
constitutive_dislotwin_Cslip_3333 = 0.0_pReal
|
||||||
|
|
||||||
allocate(constitutive_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance))
|
allocate(constitutive_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance))
|
||||||
allocate(constitutive_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance))
|
allocate(constitutive_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance))
|
||||||
allocate(constitutive_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance))
|
allocate(constitutive_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance))
|
||||||
|
@ -222,7 +220,6 @@ constitutive_dislotwin_v0PerSlipFamily = 0.0_pReal
|
||||||
constitutive_dislotwin_Ndot0PerTwinFamily = 0.0_pReal
|
constitutive_dislotwin_Ndot0PerTwinFamily = 0.0_pReal
|
||||||
constitutive_dislotwin_twinsizePerTwinFamily = 0.0_pReal
|
constitutive_dislotwin_twinsizePerTwinFamily = 0.0_pReal
|
||||||
constitutive_dislotwin_CLambdaSlipPerSlipFamily = 0.0_pReal
|
constitutive_dislotwin_CLambdaSlipPerSlipFamily = 0.0_pReal
|
||||||
|
|
||||||
allocate(constitutive_dislotwin_interactionSlipSlip(lattice_maxNinteraction,maxNinstance))
|
allocate(constitutive_dislotwin_interactionSlipSlip(lattice_maxNinteraction,maxNinstance))
|
||||||
allocate(constitutive_dislotwin_interactionSlipTwin(lattice_maxNinteraction,maxNinstance))
|
allocate(constitutive_dislotwin_interactionSlipTwin(lattice_maxNinteraction,maxNinstance))
|
||||||
allocate(constitutive_dislotwin_interactionTwinSlip(lattice_maxNinteraction,maxNinstance))
|
allocate(constitutive_dislotwin_interactionTwinSlip(lattice_maxNinteraction,maxNinstance))
|
||||||
|
@ -232,6 +229,8 @@ constitutive_dislotwin_interactionSlipTwin = 0.0_pReal
|
||||||
constitutive_dislotwin_interactionTwinSlip = 0.0_pReal
|
constitutive_dislotwin_interactionTwinSlip = 0.0_pReal
|
||||||
constitutive_dislotwin_interactionTwinTwin = 0.0_pReal
|
constitutive_dislotwin_interactionTwinTwin = 0.0_pReal
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
!* Readout data from material.config file
|
!* Readout data from material.config file
|
||||||
rewind(file)
|
rewind(file)
|
||||||
line = ''
|
line = ''
|
||||||
|
@ -272,28 +271,39 @@ do ! read thru sections of
|
||||||
case ('c44')
|
case ('c44')
|
||||||
constitutive_dislotwin_C44(i) = IO_floatValue(line,positions,2)
|
constitutive_dislotwin_C44(i) = IO_floatValue(line,positions,2)
|
||||||
case ('nslip')
|
case ('nslip')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
|
constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1+j)
|
||||||
case ('ntwin')
|
case ('ntwin')
|
||||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNtwinFamily) &
|
||||||
|
constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1+j)
|
||||||
case ('rhoedge0')
|
case ('rhoedge0')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
|
constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('rhoedgedip0')
|
case ('rhoedgedip0')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
|
constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('slipburgers')
|
case ('slipburgers')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
|
constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('twinburgers')
|
case ('twinburgers')
|
||||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNtwinFamily) &
|
||||||
|
constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('qedge')
|
case ('qedge')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
|
constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('v0')
|
case ('v0')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
|
constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('ndot0')
|
case ('ndot0')
|
||||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNtwinFamily) &
|
||||||
|
constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('twinsize')
|
case ('twinsize')
|
||||||
forall (j = 1:lattice_maxNtwinFamily) constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNtwinFamily) &
|
||||||
|
constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('clambdaslip')
|
case ('clambdaslip')
|
||||||
forall (j = 1:lattice_maxNslipFamily) constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
forall (j = 1:lattice_maxNslipFamily) &
|
||||||
case ('grainsize')
|
constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
|
case ('grainsize')
|
||||||
constitutive_dislotwin_GrainSize(i) = IO_floatValue(line,positions,2)
|
constitutive_dislotwin_GrainSize(i) = IO_floatValue(line,positions,2)
|
||||||
case ('maxtwinfraction')
|
case ('maxtwinfraction')
|
||||||
constitutive_dislotwin_MaxTwinFraction(i) = IO_floatValue(line,positions,2)
|
constitutive_dislotwin_MaxTwinFraction(i) = IO_floatValue(line,positions,2)
|
||||||
|
@ -319,7 +329,7 @@ do ! read thru sections of
|
||||||
constitutive_dislotwin_CAtomicVolume(i) = IO_floatValue(line,positions,2)
|
constitutive_dislotwin_CAtomicVolume(i) = IO_floatValue(line,positions,2)
|
||||||
case ('interactionslipslip')
|
case ('interactionslipslip')
|
||||||
forall (j = 1:lattice_maxNinteraction) &
|
forall (j = 1:lattice_maxNinteraction) &
|
||||||
constitutive_dislotwin_interactionSlipSlip(j,i) = IO_floatValue(line,positions,1+j)
|
constitutive_dislotwin_interactionSlipSlip(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
case ('interactionsliptwin')
|
case ('interactionsliptwin')
|
||||||
forall (j = 1:lattice_maxNinteraction) &
|
forall (j = 1:lattice_maxNinteraction) &
|
||||||
constitutive_dislotwin_interactionSlipTwin(j,i) = IO_floatValue(line,positions,1+j)
|
constitutive_dislotwin_interactionSlipTwin(j,i) = IO_floatValue(line,positions,1+j)
|
||||||
|
@ -345,16 +355,16 @@ enddo
|
||||||
if (sum(constitutive_dislotwin_Ntwin(:,i)) < 0_pInt) call IO_error(225) !***
|
if (sum(constitutive_dislotwin_Ntwin(:,i)) < 0_pInt) call IO_error(225) !***
|
||||||
do f = 1,lattice_maxNslipFamily
|
do f = 1,lattice_maxNslipFamily
|
||||||
if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then
|
if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then
|
||||||
if (constitutive_dislotwin_rhoEdge0(f,i) < 0.0_pReal) call IO_error(220)
|
if (constitutive_dislotwin_rhoEdge0(f,i) < 0.0_pReal) call IO_error(220)
|
||||||
if (constitutive_dislotwin_rhoEdgeDip0(f,i) < 0.0_pReal) call IO_error(220)
|
if (constitutive_dislotwin_rhoEdgeDip0(f,i) < 0.0_pReal) call IO_error(220)
|
||||||
if (constitutive_dislotwin_burgersPerSlipFamily(f,i) <= 0.0_pReal) call IO_error(221)
|
if (constitutive_dislotwin_burgersPerSlipFamily(f,i) <= 0.0_pReal) call IO_error(221)
|
||||||
if (constitutive_dislotwin_v0PerSlipFamily(f,i) <= 0.0_pReal) call IO_error(226)
|
if (constitutive_dislotwin_v0PerSlipFamily(f,i) <= 0.0_pReal) call IO_error(226)
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
do f = 1,lattice_maxNtwinFamily
|
do f = 1,lattice_maxNtwinFamily
|
||||||
if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then
|
if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then
|
||||||
if (constitutive_dislotwin_burgersPerTwinFamily(f,i) <= 0.0_pReal) call IO_error(221) !***
|
if (constitutive_dislotwin_burgersPerTwinFamily(f,i) <= 0.0_pReal) call IO_error(221) !***
|
||||||
if (constitutive_dislotwin_Ndot0PerTwinFamily(f,i) < 0.0_pReal) call IO_error(226) !***
|
if (constitutive_dislotwin_Ndot0PerTwinFamily(f,i) < 0.0_pReal) call IO_error(226) !***
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
! if (any(constitutive_dislotwin_interactionSlipSlip(1:maxval(lattice_interactionSlipSlip(:,:,myStructure)),i) < 1.0_pReal)) call IO_error(229)
|
! if (any(constitutive_dislotwin_interactionSlipSlip(1:maxval(lattice_interactionSlipSlip(:,:,myStructure)),i) < 1.0_pReal)) call IO_error(229)
|
||||||
|
@ -375,6 +385,7 @@ enddo
|
||||||
maxTotalNslip = maxval(constitutive_dislotwin_totalNslip)
|
maxTotalNslip = maxval(constitutive_dislotwin_totalNslip)
|
||||||
maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin)
|
maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin)
|
||||||
|
|
||||||
|
|
||||||
allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance))
|
allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance))
|
||||||
allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance))
|
allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance))
|
||||||
allocate(constitutive_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance))
|
allocate(constitutive_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance))
|
||||||
|
@ -439,29 +450,30 @@ do i = 1,maxNinstance
|
||||||
!* Determine size of postResults array
|
!* Determine size of postResults array
|
||||||
do o = 1,maxval(phase_Noutput)
|
do o = 1,maxval(phase_Noutput)
|
||||||
select case(constitutive_dislotwin_output(o,i))
|
select case(constitutive_dislotwin_output(o,i))
|
||||||
case('edge_density', &
|
case('edge_density', &
|
||||||
'dipole_density', &
|
'dipole_density', &
|
||||||
'shear_rate_slip', &
|
|
||||||
'mfp_slip', &
|
'shear_rate_slip', &
|
||||||
'resolved_stress_slip', &
|
'mfp_slip', &
|
||||||
'threshold_stress_slip' &
|
'resolved_stress_slip', &
|
||||||
)
|
'threshold_stress_slip' &
|
||||||
mySize = constitutive_dislotwin_totalNslip(i)
|
)
|
||||||
case('twin_fraction', &
|
mySize = constitutive_dislotwin_totalNslip(i)
|
||||||
'shear_rate_twin', &
|
case('twin_fraction', &
|
||||||
'mfp_twin', &
|
'shear_rate_twin', &
|
||||||
'resolved_stress_twin', &
|
'mfp_twin', &
|
||||||
'threshold_stress_twin' &
|
'resolved_stress_twin', &
|
||||||
)
|
'threshold_stress_twin' &
|
||||||
mySize = constitutive_dislotwin_totalNtwin(i)
|
)
|
||||||
case default
|
mySize = constitutive_dislotwin_totalNtwin(i)
|
||||||
mySize = 0_pInt
|
case default
|
||||||
|
mySize = 0_pInt
|
||||||
end select
|
end select
|
||||||
|
|
||||||
if (mySize > 0_pInt) then ! any meaningful output found
|
if (mySize > 0_pInt) then ! any meaningful output found
|
||||||
constitutive_dislotwin_sizePostResult(o,i) = mySize
|
constitutive_dislotwin_sizePostResult(o,i) = mySize
|
||||||
constitutive_dislotwin_sizePostResults(i) = constitutive_dislotwin_sizePostResults(i) + mySize
|
constitutive_dislotwin_sizePostResults(i) = constitutive_dislotwin_sizePostResults(i) + mySize
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
!* Elasticity matrix and shear modulus according to material.config
|
!* Elasticity matrix and shear modulus according to material.config
|
||||||
|
@ -496,16 +508,16 @@ do i = 1,maxNinstance
|
||||||
do j=1,lattice_maxNtwinFamily
|
do j=1,lattice_maxNtwinFamily
|
||||||
do k=1,constitutive_dislotwin_Ntwin(j,i)
|
do k=1,constitutive_dislotwin_Ntwin(j,i)
|
||||||
do l=1,3 ; do m=1,3 ; do n=1,3 ; do o=1,3 ; do p=1,3 ; do q=1,3 ; do r=1,3 ; do s=1,3
|
do l=1,3 ; do m=1,3 ; do n=1,3 ; do o=1,3 ; do p=1,3 ; do q=1,3 ; do r=1,3 ; do s=1,3
|
||||||
constitutive_dislotwin_Ctwin_3333(l,m,n,o,sum(constitutive_dislotwin_Nslip(1:j-1,i))+k,i) = &
|
constitutive_dislotwin_Ctwin_3333(l,m,n,o,sum(constitutive_dislotwin_Nslip(1:j-1,i))+k,i) = &
|
||||||
constitutive_dislotwin_Ctwin_3333(l,m,n,o,sum(constitutive_dislotwin_Nslip(1:j-1,i))+k,i) + &
|
constitutive_dislotwin_Ctwin_3333(l,m,n,o,sum(constitutive_dislotwin_Nslip(1:j-1,i))+k,i) + &
|
||||||
constitutive_dislotwin_Cslip_3333(p,q,r,s,i)*&
|
constitutive_dislotwin_Cslip_3333(p,q,r,s,i)*&
|
||||||
lattice_Qtwin(l,p,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* &
|
lattice_Qtwin(l,p,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* &
|
||||||
lattice_Qtwin(m,q,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* &
|
lattice_Qtwin(m,q,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* &
|
||||||
lattice_Qtwin(n,r,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* &
|
lattice_Qtwin(n,r,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)* &
|
||||||
lattice_Qtwin(o,s,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)
|
lattice_Qtwin(o,s,sum(lattice_NslipSystem(1:j-1,myStructure))+k,myStructure)
|
||||||
enddo ; enddo ; enddo ; enddo ; enddo ; enddo ; enddo ; enddo
|
enddo ; enddo ; enddo ; enddo ; enddo ; enddo ; enddo ; enddo
|
||||||
constitutive_dislotwin_Ctwin_66(:,:,k,i) = math_Mandel3333to66(constitutive_dislotwin_Ctwin_3333(:,:,:,:,k,i))
|
constitutive_dislotwin_Ctwin_66(:,:,k,i) = math_Mandel3333to66(constitutive_dislotwin_Ctwin_3333(:,:,:,:,k,i))
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
!* Burgers vector, dislocation velocity prefactor, mean free path prefactor and minimum dipole distance for each slip system
|
!* Burgers vector, dislocation velocity prefactor, mean free path prefactor and minimum dipole distance for each slip system
|
||||||
|
@ -514,7 +526,7 @@ do i = 1,maxNinstance
|
||||||
constitutive_dislotwin_burgersPerSlipSystem(s,i) = constitutive_dislotwin_burgersPerSlipFamily(f,i)
|
constitutive_dislotwin_burgersPerSlipSystem(s,i) = constitutive_dislotwin_burgersPerSlipFamily(f,i)
|
||||||
constitutive_dislotwin_QedgePerSlipSystem(s,i) = constitutive_dislotwin_QedgePerSlipFamily(f,i)
|
constitutive_dislotwin_QedgePerSlipSystem(s,i) = constitutive_dislotwin_QedgePerSlipFamily(f,i)
|
||||||
constitutive_dislotwin_v0PerSlipSystem(s,i) = constitutive_dislotwin_v0PerSlipFamily(f,i)
|
constitutive_dislotwin_v0PerSlipSystem(s,i) = constitutive_dislotwin_v0PerSlipFamily(f,i)
|
||||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,i) = constitutive_dislotwin_CLambdaSlipPerSlipFamily(f,i)
|
constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,i) = constitutive_dislotwin_CLambdaSlipPerSlipFamily(f,i)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
!* Burgers vector, nucleation rate prefactor and twin size for each twin system
|
!* Burgers vector, nucleation rate prefactor and twin size for each twin system
|
||||||
|
@ -532,6 +544,7 @@ do i = 1,maxNinstance
|
||||||
constitutive_dislotwin_interactionSlipSlip(lattice_interactionSlipSlip(constitutive_dislotwin_slipSystemLattice(s1,i), &
|
constitutive_dislotwin_interactionSlipSlip(lattice_interactionSlipSlip(constitutive_dislotwin_slipSystemLattice(s1,i), &
|
||||||
constitutive_dislotwin_slipSystemLattice(s2,i), &
|
constitutive_dislotwin_slipSystemLattice(s2,i), &
|
||||||
myStructure),i)
|
myStructure),i)
|
||||||
|
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
|
|
||||||
do s1 = 1,constitutive_dislotwin_totalNslip(i)
|
do s1 = 1,constitutive_dislotwin_totalNslip(i)
|
||||||
|
@ -577,6 +590,7 @@ function constitutive_dislotwin_stateInit(myInstance)
|
||||||
!* initial microstructural state *
|
!* initial microstructural state *
|
||||||
!*********************************************************************
|
!*********************************************************************
|
||||||
use prec, only: pReal,pInt
|
use prec, only: pReal,pInt
|
||||||
|
|
||||||
use math, only: pi
|
use math, only: pi
|
||||||
use lattice, only: lattice_maxNslipFamily,lattice_maxNtwinFamily
|
use lattice, only: lattice_maxNslipFamily,lattice_maxNtwinFamily
|
||||||
implicit none
|
implicit none
|
||||||
|
@ -586,7 +600,12 @@ integer(pInt) :: myInstance
|
||||||
real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_stateInit
|
real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_stateInit
|
||||||
!* Local variables
|
!* Local variables
|
||||||
integer(pInt) s0,s1,s,t,f,ns,nt
|
integer(pInt) s0,s1,s,t,f,ns,nt
|
||||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(myInstance)) :: rhoEdge0,rhoEdgeDip0,invLambdaSlip0,MeanFreePathSlip0,tauSlipThreshold0
|
real(pReal), dimension(constitutive_dislotwin_totalNslip(myInstance)) :: rhoEdge0, &
|
||||||
|
rhoEdgeDip0, &
|
||||||
|
invLambdaSlip0, &
|
||||||
|
MeanFreePathSlip0, &
|
||||||
|
tauSlipThreshold0
|
||||||
|
|
||||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(myInstance)) :: MeanFreePathTwin0,TwinVolume0
|
real(pReal), dimension(constitutive_dislotwin_totalNtwin(myInstance)) :: MeanFreePathTwin0,TwinVolume0
|
||||||
|
|
||||||
ns = constitutive_dislotwin_totalNslip(myInstance)
|
ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||||
|
@ -594,6 +613,7 @@ nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||||
constitutive_dislotwin_stateInit = 0.0_pReal
|
constitutive_dislotwin_stateInit = 0.0_pReal
|
||||||
|
|
||||||
!* Initialize basic slip state variables
|
!* Initialize basic slip state variables
|
||||||
|
|
||||||
s1 = 0_pInt
|
s1 = 0_pInt
|
||||||
do f = 1,lattice_maxNslipFamily
|
do f = 1,lattice_maxNslipFamily
|
||||||
s0 = s1 + 1_pInt
|
s0 = s1 + 1_pInt
|
||||||
|
@ -603,6 +623,7 @@ do f = 1,lattice_maxNslipFamily
|
||||||
rhoEdgeDip0(s) = constitutive_dislotwin_rhoEdgeDip0(f,myInstance)
|
rhoEdgeDip0(s) = constitutive_dislotwin_rhoEdgeDip0(f,myInstance)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
constitutive_dislotwin_stateInit(1:ns) = rhoEdge0
|
constitutive_dislotwin_stateInit(1:ns) = rhoEdge0
|
||||||
constitutive_dislotwin_stateInit(ns+1:2*ns) = rhoEdgeDip0
|
constitutive_dislotwin_stateInit(ns+1:2*ns) = rhoEdgeDip0
|
||||||
|
|
||||||
|
@ -615,6 +636,7 @@ constitutive_dislotwin_stateInit(2*ns+nt+1:3*ns+nt) = invLambdaSlip0
|
||||||
forall (s = 1:ns) &
|
forall (s = 1:ns) &
|
||||||
MeanFreePathSlip0(s) = &
|
MeanFreePathSlip0(s) = &
|
||||||
constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+invLambdaSlip0(s)*constitutive_dislotwin_GrainSize(myInstance))
|
constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+invLambdaSlip0(s)*constitutive_dislotwin_GrainSize(myInstance))
|
||||||
|
|
||||||
constitutive_dislotwin_stateInit(4*ns+2*nt+1:5*ns+2*nt) = MeanFreePathSlip0
|
constitutive_dislotwin_stateInit(4*ns+2*nt+1:5*ns+2*nt) = MeanFreePathSlip0
|
||||||
|
|
||||||
forall (s = 1:ns) &
|
forall (s = 1:ns) &
|
||||||
|
@ -623,6 +645,7 @@ constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSys
|
||||||
sqrt(dot_product(rhoEdge0,constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance)))
|
sqrt(dot_product(rhoEdge0,constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance)))
|
||||||
constitutive_dislotwin_stateInit(5*ns+3*nt+1:6*ns+3*nt) = tauSlipThreshold0
|
constitutive_dislotwin_stateInit(5*ns+3*nt+1:6*ns+3*nt) = tauSlipThreshold0
|
||||||
|
|
||||||
|
|
||||||
!* Initialize dependent twin microstructural variables
|
!* Initialize dependent twin microstructural variables
|
||||||
forall (t = 1:nt) &
|
forall (t = 1:nt) &
|
||||||
MeanFreePathTwin0(t) = constitutive_dislotwin_GrainSize(myInstance)
|
MeanFreePathTwin0(t) = constitutive_dislotwin_GrainSize(myInstance)
|
||||||
|
@ -633,6 +656,7 @@ TwinVolume0(t) = &
|
||||||
(pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*MeanFreePathTwin0(t)**(2.0_pReal)
|
(pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*MeanFreePathTwin0(t)**(2.0_pReal)
|
||||||
constitutive_dislotwin_stateInit(6*ns+4*nt+1:6*ns+5*nt) = TwinVolume0
|
constitutive_dislotwin_stateInit(6*ns+4*nt+1:6*ns+5*nt) = TwinVolume0
|
||||||
|
|
||||||
|
|
||||||
!write(6,*) '#STATEINIT#'
|
!write(6,*) '#STATEINIT#'
|
||||||
!write(6,*)
|
!write(6,*)
|
||||||
!write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',rhoEdge0
|
!write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',rhoEdge0
|
||||||
|
@ -691,12 +715,14 @@ ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||||
|
|
||||||
!* Total twin volume fraction
|
!* Total twin volume fraction
|
||||||
|
|
||||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||||
|
|
||||||
!* Homogenized elasticity matrix
|
!* Homogenized elasticity matrix
|
||||||
constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*constitutive_dislotwin_Cslip_66(:,:,myInstance)
|
constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*constitutive_dislotwin_Cslip_66(:,:,myInstance)
|
||||||
do i=1,nt
|
do i=1,nt
|
||||||
constitutive_dislotwin_homogenizedC = &
|
constitutive_dislotwin_homogenizedC = &
|
||||||
|
|
||||||
constitutive_dislotwin_homogenizedC + state(g,ip,el)%p(2*ns+i)*constitutive_dislotwin_Ctwin_66(:,:,i,myInstance)
|
constitutive_dislotwin_homogenizedC + state(g,ip,el)%p(2*ns+i)*constitutive_dislotwin_Ctwin_66(:,:,i,myInstance)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -736,6 +762,7 @@ myStructure = constitutive_dislotwin_structure(myInstance)
|
||||||
ns = constitutive_dislotwin_totalNslip(myInstance)
|
ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||||
!* State: 1 : ns rho_edge
|
!* State: 1 : ns rho_edge
|
||||||
|
|
||||||
!* State: ns+1 : 2*ns rho_dipole
|
!* State: ns+1 : 2*ns rho_dipole
|
||||||
!* State: 2*ns+1 : 2*ns+nt f
|
!* State: 2*ns+1 : 2*ns+nt f
|
||||||
!* State: 2*ns+nt+1 : 3*ns+nt 1/lambda_slip
|
!* State: 2*ns+nt+1 : 3*ns+nt 1/lambda_slip
|
||||||
|
@ -747,82 +774,92 @@ nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||||
!* State: 6*ns+3*nt+1 : 6*ns+4*nt threshold_stress_twin
|
!* State: 6*ns+3*nt+1 : 6*ns+4*nt threshold_stress_twin
|
||||||
!* State: 6*ns+4*nt+1 : 6*ns+5*nt twin volume
|
!* State: 6*ns+4*nt+1 : 6*ns+5*nt twin volume
|
||||||
|
|
||||||
|
|
||||||
!* Total twin volume fraction
|
!* Total twin volume fraction
|
||||||
|
|
||||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||||
|
|
||||||
|
|
||||||
!* Stacking fault energy
|
!* Stacking fault energy
|
||||||
|
|
||||||
sfe = 0.0002_pReal*Temperature-0.0396_pReal
|
sfe = 0.0002_pReal*Temperature-0.0396_pReal
|
||||||
|
|
||||||
!* rescaled twin volume fraction for topology
|
!* rescaled twin volume fraction for topology
|
||||||
forall (t = 1:nt) &
|
forall (t = 1:nt) &
|
||||||
fOverStacksize(t) = &
|
fOverStacksize(t) = &
|
||||||
state(g,ip,el)%p(2*ns+t)/constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)
|
state(g,ip,el)%p(2*ns+t)/constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)
|
||||||
|
|
||||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||||
forall (s = 1:ns) &
|
forall (s = 1:ns) &
|
||||||
state(g,ip,el)%p(2*ns+nt+s) = &
|
state(g,ip,el)%p(2*ns+nt+s) = &
|
||||||
sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1:2*ns)),constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ &
|
sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1:2*ns)),&
|
||||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,myInstance)
|
constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ &
|
||||||
|
constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,myInstance)
|
||||||
|
|
||||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||||
!$OMP CRITICAL (evilmatmul)
|
!$OMP CRITICAL (evilmatmul)
|
||||||
state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = 0.0_pReal
|
state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = 0.0_pReal
|
||||||
if (nt > 0_pInt) state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = &
|
if (nt > 0_pInt) &
|
||||||
matmul(constitutive_dislotwin_interactionMatrixSlipTwin(1:ns,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
state(g,ip,el)%p((3*ns+nt+1):(4*ns+nt)) = &
|
||||||
|
matmul(constitutive_dislotwin_interactionMatrixSlipTwin(1:ns,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||||
!$OMP END CRITICAL (evilmatmul)
|
!$OMP END CRITICAL (evilmatmul)
|
||||||
|
|
||||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||||
!$OMP CRITICAL (evilmatmul)
|
!$OMP CRITICAL (evilmatmul)
|
||||||
if (nt > 0_pInt) state(g,ip,el)%p((4*ns+nt+1):(4*ns+2*nt)) = &
|
if (nt > 0_pInt) &
|
||||||
matmul(constitutive_dislotwin_interactionMatrixTwinTwin(1:nt,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
state(g,ip,el)%p((4*ns+nt+1):(4*ns+2*nt)) = &
|
||||||
|
matmul(constitutive_dislotwin_interactionMatrixTwinTwin(1:nt,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||||
!$OMP END CRITICAL (evilmatmul)
|
!$OMP END CRITICAL (evilmatmul)
|
||||||
|
|
||||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||||
do s = 1,ns
|
do s = 1,ns
|
||||||
if (nt > 0_pInt) then
|
if (nt > 0_pInt) then
|
||||||
state(g,ip,el)%p(4*ns+2*nt+s) = &
|
state(g,ip,el)%p(4*ns+2*nt+s) = &
|
||||||
constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*&
|
constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*&
|
||||||
(state(g,ip,el)%p(2*ns+nt+s)+state(g,ip,el)%p(3*ns+nt+s)))
|
(state(g,ip,el)%p(2*ns+nt+s)+state(g,ip,el)%p(3*ns+nt+s)))
|
||||||
else
|
else
|
||||||
state(g,ip,el)%p(4*ns+s) = &
|
state(g,ip,el)%p(4*ns+s) = &
|
||||||
constitutive_dislotwin_GrainSize(myInstance)/&
|
constitutive_dislotwin_GrainSize(myInstance)/&
|
||||||
(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*(state(g,ip,el)%p(2*ns+s)))
|
(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*(state(g,ip,el)%p(2*ns+s)))
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
!* mean free path between 2 obstacles seen by a growing twin
|
!* mean free path between 2 obstacles seen by a growing twin
|
||||||
forall (t = 1:nt) &
|
forall (t = 1:nt) &
|
||||||
state(g,ip,el)%p(5*ns+2*nt+t) = &
|
state(g,ip,el)%p(5*ns+2*nt+t) = &
|
||||||
(constitutive_dislotwin_Cmfptwin(myInstance)*constitutive_dislotwin_GrainSize(myInstance))/&
|
(constitutive_dislotwin_Cmfptwin(myInstance)*constitutive_dislotwin_GrainSize(myInstance))/&
|
||||||
(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*state(g,ip,el)%p(4*ns+nt+t))
|
(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*state(g,ip,el)%p(4*ns+nt+t))
|
||||||
|
|
||||||
!* threshold stress for dislocation motion
|
!* threshold stress for dislocation motion
|
||||||
forall (s = 1:ns) &
|
forall (s = 1:ns) &
|
||||||
state(g,ip,el)%p(5*ns+3*nt+s) = &
|
state(g,ip,el)%p(5*ns+3*nt+s) = &
|
||||||
constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(s,myInstance)*&
|
constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(s,myInstance)*&
|
||||||
sqrt(dot_product(state(g,ip,el)%p(1:ns),constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance)))
|
sqrt(dot_product(state(g,ip,el)%p(1:ns),constitutive_dislotwin_interactionMatrixSlipSlip(1:ns,s,myInstance)))
|
||||||
|
|
||||||
|
|
||||||
!* threshold stress for growing twin
|
!* threshold stress for growing twin
|
||||||
forall (t = 1:nt) &
|
forall (t = 1:nt) &
|
||||||
state(g,ip,el)%p(6*ns+3*nt+t) = &
|
state(g,ip,el)%p(6*ns+3*nt+t) = &
|
||||||
constitutive_dislotwin_Cthresholdtwin(myInstance)*&
|
constitutive_dislotwin_Cthresholdtwin(myInstance)*&
|
||||||
(sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,myInstance))+&
|
(sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,myInstance))+&
|
||||||
(constitutive_dislotwin_burgersPerTwinSystem(t,myInstance)*constitutive_dislotwin_Gmod(myInstance))/&
|
(constitutive_dislotwin_burgersPerTwinSystem(t,myInstance)*constitutive_dislotwin_Gmod(myInstance))/&
|
||||||
state(g,ip,el)%p(5*ns+2*nt+t))
|
state(g,ip,el)%p(5*ns+2*nt+t))
|
||||||
|
|
||||||
!* final twin volume after growth
|
!* final twin volume after growth
|
||||||
forall (t = 1:nt) &
|
forall (t = 1:nt) &
|
||||||
state(g,ip,el)%p(6*ns+4*nt+t) = &
|
state(g,ip,el)%p(6*ns+4*nt+t) = &
|
||||||
(pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*state(g,ip,el)%p(5*ns+2*nt+t)**(2.0_pReal)
|
(pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*state(g,ip,el)%p(5*ns+2*nt+t)**(2.0_pReal)
|
||||||
|
|
||||||
|
|
||||||
!if ((ip==1).and.(el==1)) then
|
!if ((ip==1).and.(el==1)) then
|
||||||
! write(6,*) '#MICROSTRUCTURE#'
|
! write(6,*) '#MICROSTRUCTURE#'
|
||||||
! write(6,*)
|
! write(6,*)
|
||||||
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdge',state(g,ip,el)%p(1:ns)/1e9
|
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdge',state(g,ip,el)%p(1:ns)/1e9
|
||||||
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdgeDip',state(g,ip,el)%p(ns+1:2*ns)/1e9
|
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdgeDip',state(g,ip,el)%p(ns+1:2*ns)/1e9
|
||||||
! write(6,'(a,/,4(3(f10.4,x)/))') 'Fraction',state(g,ip,el)%p(2*ns+1:2*ns+nt)
|
! write(6,'(a,/,4(3(f10.4,x)/))') 'Fraction',state(g,ip,el)%p(2*ns+1:2*ns+nt)
|
||||||
!endif
|
!endif
|
||||||
|
|
||||||
|
|
||||||
return
|
return
|
||||||
end subroutine
|
end subroutine
|
||||||
|
|
||||||
|
@ -846,7 +883,7 @@ use math, only: math_Plain3333to99
|
||||||
use mesh, only: mesh_NcpElems,mesh_maxNips
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
||||||
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance
|
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance
|
||||||
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, &
|
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, &
|
||||||
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
|
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
|
||||||
implicit none
|
implicit none
|
||||||
|
|
||||||
!* Input-Output variables
|
!* Input-Output variables
|
||||||
|
@ -872,6 +909,7 @@ ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||||
|
|
||||||
!* Total twin volume fraction
|
!* Total twin volume fraction
|
||||||
|
|
||||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||||
|
|
||||||
Lp = 0.0_pReal
|
Lp = 0.0_pReal
|
||||||
|
@ -888,36 +926,37 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
||||||
j = j+1_pInt
|
j = j+1_pInt
|
||||||
|
|
||||||
!* Calculation of Lp
|
!* Calculation of Lp
|
||||||
|
!* Resolved shear stress on slip system
|
||||||
!* Resolved shear stress on slip system
|
|
||||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||||
!* Stress ratios
|
|
||||||
StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
|
||||||
StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
|
||||||
!* Boltzmann ratio
|
|
||||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
|
||||||
!* Initial shear rates
|
|
||||||
DotGamma0 = &
|
|
||||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
|
||||||
|
|
||||||
!* Shear rates due to slip
|
!* Stress ratios
|
||||||
|
StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
||||||
|
StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
||||||
|
!* Boltzmann ratio
|
||||||
|
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
||||||
|
!* Initial shear rates
|
||||||
|
DotGamma0 = &
|
||||||
|
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*&
|
||||||
|
constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||||
|
|
||||||
|
!* Shear rates due to slip
|
||||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau_slip(j))
|
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau_slip(j))
|
||||||
|
|
||||||
!* Derivatives of shear rates
|
!* Derivatives of shear rates
|
||||||
dgdot_dtauslip(j) = &
|
dgdot_dtauslip(j) = &
|
||||||
((gdot_slip(j)*BoltzmannRatio*&
|
((gdot_slip(j)*BoltzmannRatio*&
|
||||||
constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/state(g,ip,el)%p(5*ns+3*nt+j))*&
|
constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/state(g,ip,el)%p(5*ns+3*nt+j))*&
|
||||||
StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal)
|
StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal)
|
||||||
|
|
||||||
!* Plastic velocity gradient for dislocation glide
|
!* Plastic velocity gradient for dislocation glide
|
||||||
Lp = Lp + (1.0_pReal - sumf)*gdot_slip(j)*lattice_Sslip(:,:,index_myFamily+i,myStructure)
|
Lp = Lp + (1.0_pReal - sumf)*gdot_slip(j)*lattice_Sslip(:,:,index_myFamily+i,myStructure)
|
||||||
|
|
||||||
!* Calculation of the tangent of Lp
|
!* Calculation of the tangent of Lp
|
||||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||||
dLp_dTstar3333(k,l,m,n) = &
|
dLp_dTstar3333(k,l,m,n) = &
|
||||||
dLp_dTstar3333(k,l,m,n) + dgdot_dtauslip(j)*&
|
dLp_dTstar3333(k,l,m,n) + dgdot_dtauslip(j)*&
|
||||||
lattice_Sslip(k,l,index_myFamily+i,myStructure)*&
|
lattice_Sslip(k,l,index_myFamily+i,myStructure)*&
|
||||||
lattice_Sslip(m,n,index_myFamily+i,myStructure)
|
lattice_Sslip(m,n,index_myFamily+i,myStructure)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -931,42 +970,44 @@ do f = 1,lattice_maxNtwinFamily ! loop over all
|
||||||
j = j+1_pInt
|
j = j+1_pInt
|
||||||
|
|
||||||
!* Calculation of Lp
|
!* Calculation of Lp
|
||||||
|
!* Resolved shear stress on twin system
|
||||||
|
|
||||||
!* Resolved shear stress on twin system
|
|
||||||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
||||||
!* Stress ratios
|
!* Stress ratios
|
||||||
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance)
|
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance)
|
||||||
|
|
||||||
!* Shear rates and their derivatives due to twin
|
!* Shear rates and their derivatives due to twin
|
||||||
if ( tau_twin(j) > 0.0_pReal ) then
|
if ( tau_twin(j) > 0.0_pReal ) then
|
||||||
gdot_twin(j) = &
|
gdot_twin(j) = &
|
||||||
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*lattice_shearTwin(index_myFamily+i,myStructure)*&
|
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*lattice_shearTwin(index_myFamily+i,myStructure)*&
|
||||||
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
||||||
|
dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_r(myInstance))/tau_twin(j))*StressRatio_r
|
||||||
dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_r(myInstance))/tau_twin(j))*StressRatio_r
|
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
|
||||||
!* Plastic velocity gradient for mechanical twinning
|
!* Plastic velocity gradient for mechanical twinning
|
||||||
Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,myStructure)
|
Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,myStructure)
|
||||||
|
|
||||||
!* Calculation of the tangent of Lp
|
!* Calculation of the tangent of Lp
|
||||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||||
dLp_dTstar3333(k,l,m,n) = &
|
dLp_dTstar3333(k,l,m,n) = &
|
||||||
dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin(j)*&
|
dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin(j)*&
|
||||||
lattice_Stwin(k,l,index_myFamily+i,myStructure)*&
|
lattice_Stwin(k,l,index_myFamily+i,myStructure)*&
|
||||||
lattice_Stwin(m,n,index_myFamily+i,myStructure)
|
lattice_Stwin(m,n,index_myFamily+i,myStructure)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
|
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
|
||||||
|
|
||||||
|
|
||||||
!if ((ip==1).and.(el==1)) then
|
!if ((ip==1).and.(el==1)) then
|
||||||
! write(6,*) '#MICROSTRUCTURE#'
|
! write(6,*) '#MICROSTRUCTURE#'
|
||||||
! write(6,*)
|
! write(6,*)
|
||||||
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdge',state(g,ip,el)%p(1:12)
|
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdge',state(g,ip,el)%p(1:12)
|
||||||
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdgeDip',state(g,ip,el)%p(13:24)
|
! write(6,'(a,/,4(3(f10.4,x)/))') 'rhoEdgeDip',state(g,ip,el)%p(13:24)
|
||||||
!endif
|
!endif
|
||||||
|
|
||||||
|
|
||||||
return
|
return
|
||||||
end subroutine
|
end subroutine
|
||||||
|
|
||||||
|
@ -985,6 +1026,7 @@ function constitutive_dislotwin_dotState(Tstar_v,Temperature,state,g,ip,el)
|
||||||
!* - constitutive_dotState : evolution of state variable *
|
!* - constitutive_dotState : evolution of state variable *
|
||||||
!*********************************************************************
|
!*********************************************************************
|
||||||
use prec, only: pReal,pInt,p_vec
|
use prec, only: pReal,pInt,p_vec
|
||||||
|
|
||||||
use math, only: pi
|
use math, only: pi
|
||||||
use mesh, only: mesh_NcpElems,mesh_maxNips
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
||||||
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
||||||
|
@ -996,14 +1038,17 @@ implicit none
|
||||||
integer(pInt), intent(in) :: g,ip,el
|
integer(pInt), intent(in) :: g,ip,el
|
||||||
real(pReal), intent(in) :: Temperature
|
real(pReal), intent(in) :: Temperature
|
||||||
real(pReal), dimension(6), intent(in) :: Tstar_v
|
real(pReal), dimension(6), intent(in) :: Tstar_v
|
||||||
|
|
||||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
|
||||||
real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||||
constitutive_dislotwin_dotState
|
constitutive_dislotwin_dotState
|
||||||
!* Local variables
|
!* Local variables
|
||||||
integer(pInt) MyInstance,MyStructure,ns,nt,f,i,j,k,index_myFamily
|
integer(pInt) MyInstance,MyStructure,ns,nt,f,i,j,k,index_myFamily
|
||||||
real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r
|
real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,&
|
||||||
|
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r
|
||||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||||
gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,&
|
gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,&
|
||||||
|
|
||||||
ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation
|
ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation
|
||||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_constitutionInstance(material_phase(g,ip,el)))) :: gdot_twin,tau_twin
|
real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_constitutionInstance(material_phase(g,ip,el)))) :: gdot_twin,tau_twin
|
||||||
|
|
||||||
|
@ -1014,6 +1059,7 @@ ns = constitutive_dislotwin_totalNslip(myInstance)
|
||||||
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
nt = constitutive_dislotwin_totalNtwin(myInstance)
|
||||||
|
|
||||||
!* Total twin volume fraction
|
!* Total twin volume fraction
|
||||||
|
|
||||||
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0
|
||||||
|
|
||||||
constitutive_dislotwin_dotState = 0.0_pReal
|
constitutive_dislotwin_dotState = 0.0_pReal
|
||||||
|
@ -1026,65 +1072,72 @@ do f = 1,lattice_maxNslipFamily ! loop over all
|
||||||
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
||||||
j = j+1_pInt
|
j = j+1_pInt
|
||||||
|
|
||||||
!* Resolved shear stress on slip system
|
|
||||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
|
||||||
!* Stress ratios
|
|
||||||
StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
|
||||||
StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
|
||||||
!* Boltzmann ratio
|
|
||||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
|
||||||
!* Initial shear rates
|
|
||||||
DotGamma0 = &
|
|
||||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
|
||||||
|
|
||||||
!* Shear rates due to slip
|
!* Resolved shear stress on slip system
|
||||||
|
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||||
|
!* Stress ratios
|
||||||
|
StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
||||||
|
StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
||||||
|
!* Boltzmann ratio
|
||||||
|
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
||||||
|
!* Initial shear rates
|
||||||
|
DotGamma0 = &
|
||||||
|
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*&
|
||||||
|
constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||||
|
|
||||||
|
!* Shear rates due to slip
|
||||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau_slip(j))
|
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau_slip(j))
|
||||||
|
|
||||||
|
|
||||||
!* Multiplication
|
!* Multiplication
|
||||||
DotRhoMultiplication(j) = abs(gdot_slip(j))/(constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*state(g,ip,el)%p(4*ns+2*nt+j))
|
DotRhoMultiplication(j) = abs(gdot_slip(j))/&
|
||||||
|
(constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*state(g,ip,el)%p(4*ns+2*nt+j))
|
||||||
|
|
||||||
!* Dipole formation
|
!* Dipole formation
|
||||||
if (tau_slip(j) == 0.0_pReal) then
|
|
||||||
|
if (tau_slip(j) == 0.0_pReal) then
|
||||||
DotRhoDipFormation(j) = 0.0_pReal
|
DotRhoDipFormation(j) = 0.0_pReal
|
||||||
else
|
else
|
||||||
EdgeDipDistance(j) = &
|
EdgeDipDistance(j) = &
|
||||||
(3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))/&
|
(3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))/&
|
||||||
(16.0_pReal*pi*abs(tau_slip(j)))
|
(16.0_pReal*pi*abs(tau_slip(j)))
|
||||||
DotRhoDipFormation(j) = &
|
DotRhoDipFormation(j) = &
|
||||||
((2.0_pReal*EdgeDipDistance(j))/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*&
|
((2.0_pReal*EdgeDipDistance(j))/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*&
|
||||||
state(g,ip,el)%p(j)*abs(gdot_slip(j))
|
state(g,ip,el)%p(j)*abs(gdot_slip(j))
|
||||||
endif
|
endif
|
||||||
|
|
||||||
!* Spontaneous annihilation of 2 single edge dislocations
|
!* Spontaneous annihilation of 2 single edge dislocations
|
||||||
EdgeDipMinDistance = &
|
EdgeDipMinDistance = &
|
||||||
constitutive_dislotwin_CEdgeDipMinDistance(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)
|
constitutive_dislotwin_CEdgeDipMinDistance(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)
|
||||||
DotRhoEdgeEdgeAnnihilation(j) = &
|
DotRhoEdgeEdgeAnnihilation(j) = &
|
||||||
((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*&
|
((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*&
|
||||||
state(g,ip,el)%p(j)*abs(gdot_slip(j))
|
state(g,ip,el)%p(j)*abs(gdot_slip(j))
|
||||||
|
|
||||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||||
DotRhoEdgeDipAnnihilation(j) = &
|
DotRhoEdgeDipAnnihilation(j) = &
|
||||||
((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*&
|
((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))*&
|
||||||
state(g,ip,el)%p(ns+j)*abs(gdot_slip(j))
|
state(g,ip,el)%p(ns+j)*abs(gdot_slip(j))
|
||||||
|
|
||||||
!* Dislocation dipole climb
|
!* Dislocation dipole climb
|
||||||
AtomicVolume = &
|
AtomicVolume = &
|
||||||
constitutive_dislotwin_CAtomicVolume(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)**(3.0_pReal)
|
constitutive_dislotwin_CAtomicVolume(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)**(3.0_pReal)
|
||||||
VacancyDiffusion = &
|
|
||||||
constitutive_dislotwin_D0(myInstance)*exp(-constitutive_dislotwin_Qsd(myInstance)/(kB*Temperature))
|
|
||||||
ClimbVelocity(j) = &
|
|
||||||
((3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*&
|
|
||||||
(1/(EdgeDipDistance(j)+EdgeDipMinDistance))
|
|
||||||
DotRhoEdgeDipClimb(j) = &
|
|
||||||
(4.0_pReal*ClimbVelocity(j)*state(g,ip,el)%p(ns+j))/(EdgeDipDistance(j)+EdgeDipMinDistance)
|
|
||||||
|
|
||||||
!* Edge dislocation density rate of change
|
VacancyDiffusion = &
|
||||||
constitutive_dislotwin_dotState(j) = &
|
constitutive_dislotwin_D0(myInstance)*exp(-constitutive_dislotwin_Qsd(myInstance)/(kB*Temperature))
|
||||||
DotRhoMultiplication(j)-DotRhoDipFormation(j)-DotRhoEdgeEdgeAnnihilation(j)
|
ClimbVelocity(j) = &
|
||||||
|
((3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*&
|
||||||
|
(1/(EdgeDipDistance(j)+EdgeDipMinDistance))
|
||||||
|
DotRhoEdgeDipClimb(j) = &
|
||||||
|
(4.0_pReal*ClimbVelocity(j)*state(g,ip,el)%p(ns+j))/(EdgeDipDistance(j)+EdgeDipMinDistance)
|
||||||
|
|
||||||
!* Edge dislocation dipole density rate of change
|
!* Edge dislocation density rate of change
|
||||||
constitutive_dislotwin_dotState(ns+j) = &
|
constitutive_dislotwin_dotState(j) = &
|
||||||
DotRhoDipFormation(j)-DotRhoEdgeDipAnnihilation(j)-DotRhoEdgeDipClimb(j)
|
DotRhoMultiplication(j)-DotRhoDipFormation(j)-DotRhoEdgeEdgeAnnihilation(j)
|
||||||
|
|
||||||
|
|
||||||
|
!* Edge dislocation dipole density rate of change
|
||||||
|
constitutive_dislotwin_dotState(ns+j) = &
|
||||||
|
DotRhoDipFormation(j)-DotRhoEdgeDipAnnihilation(j)-DotRhoEdgeDipClimb(j)
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
@ -1097,34 +1150,38 @@ do f = 1,lattice_maxNtwinFamily ! loop over all
|
||||||
do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family
|
do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family
|
||||||
j = j+1_pInt
|
j = j+1_pInt
|
||||||
|
|
||||||
!* Resolved shear stress on twin system
|
!* Resolved shear stress on twin system
|
||||||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
||||||
!* Stress ratios
|
!* Stress ratios
|
||||||
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance)
|
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance)
|
||||||
|
|
||||||
!* Shear rates and their derivatives due to twin
|
!* Shear rates and their derivatives due to twin
|
||||||
if ( tau_twin(j) > 0.0_pReal ) then
|
if ( tau_twin(j) > 0.0_pReal ) then
|
||||||
gdot_twin(j) = &
|
gdot_twin(j) = &
|
||||||
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*&
|
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*&
|
||||||
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
|
||||||
!if ((ip==1).and.(el==1)) then
|
!if ((ip==1).and.(el==1)) then
|
||||||
! write(6,*) '#DOTSTATE#'
|
! write(6,*) '#DOTSTATE#'
|
||||||
! write(6,*)
|
! write(6,*)
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'tau slip',tau_slip
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'tau slip',tau_slip
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'gamma slip',gdot_slip
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'gamma slip',gdot_slip
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',state(g,ip,el)%p(1:ns)
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'RhoEdge',state(g,ip,el)%p(1:ns)
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'Threshold Slip', state(g,ip,el)%p(5*ns+3*nt+1:6*ns+3*nt)
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'Threshold Slip', state(g,ip,el)%p(5*ns+3*nt+1:6*ns+3*nt)
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'Multiplication',DotRhoMultiplication
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'Multiplication',DotRhoMultiplication
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'DipFormation',DotRhoDipFormation
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'DipFormation',DotRhoDipFormation
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'SingleSingle',DotRhoEdgeEdgeAnnihilation
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'SingleSingle',DotRhoEdgeEdgeAnnihilation
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'SingleDipole',DotRhoEdgeDipAnnihilation
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'SingleDipole',DotRhoEdgeDipAnnihilation
|
||||||
! write(6,'(a,/,4(3(f30.20,x)/))') 'DipClimb',DotRhoEdgeDipClimb
|
! write(6,'(a,/,4(3(f30.20,x)/))') 'DipClimb',DotRhoEdgeDipClimb
|
||||||
!endif
|
!endif
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
return
|
return
|
||||||
end function
|
end function
|
||||||
|
|
||||||
|
@ -1174,7 +1231,7 @@ use prec, only: pReal,pInt,p_vec
|
||||||
use mesh, only: mesh_NcpElems,mesh_maxNips
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
||||||
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance,phase_Noutput
|
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance,phase_Noutput
|
||||||
use lattice, only: lattice_Sslip_v,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, &
|
use lattice, only: lattice_Sslip_v,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, &
|
||||||
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
|
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
|
||||||
implicit none
|
implicit none
|
||||||
|
|
||||||
!* Definition of variables
|
!* Definition of variables
|
||||||
|
@ -1206,11 +1263,9 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
||||||
case ('edge_density')
|
case ('edge_density')
|
||||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(1:ns)
|
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(1:ns)
|
||||||
c = c + ns
|
c = c + ns
|
||||||
|
|
||||||
case ('dipole_density')
|
case ('dipole_density')
|
||||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(ns+1:2*ns)
|
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p(ns+1:2*ns)
|
||||||
c = c + ns
|
c = c + ns
|
||||||
|
|
||||||
case ('shear_rate_slip')
|
case ('shear_rate_slip')
|
||||||
j = 0_pInt
|
j = 0_pInt
|
||||||
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
||||||
|
@ -1218,27 +1273,26 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
||||||
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
||||||
j = j + 1_pInt
|
j = j + 1_pInt
|
||||||
|
|
||||||
!* Resolved shear stress on slip system
|
!* Resolved shear stress on slip system
|
||||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||||
!* Stress ratios
|
!* Stress ratios
|
||||||
StressRatio_p = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
StressRatio_p = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance)
|
||||||
StressRatio_pminus1 = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
StressRatio_pminus1 = (abs(tau)/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal)
|
||||||
!* Boltzmann ratio
|
!* Boltzmann ratio
|
||||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature)
|
||||||
!* Initial shear rates
|
!* Initial shear rates
|
||||||
DotGamma0 = &
|
DotGamma0 = &
|
||||||
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)* &
|
||||||
|
constitutive_dislotwin_v0PerSlipSystem(f,myInstance)
|
||||||
|
|
||||||
!* Shear rates due to slip
|
!* Shear rates due to slip
|
||||||
constitutive_dislotwin_postResults(c+j) = &
|
constitutive_dislotwin_postResults(c+j) = &
|
||||||
DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau)
|
DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau)
|
||||||
enddo ; enddo
|
enddo ; enddo
|
||||||
c = c + ns
|
c = c + ns
|
||||||
|
|
||||||
case ('mfp_slip')
|
case ('mfp_slip')
|
||||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((4*ns+2*nt+1):(5*ns+2*nt))
|
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((4*ns+2*nt+1):(5*ns+2*nt))
|
||||||
c = c + ns
|
c = c + ns
|
||||||
|
|
||||||
case ('resolved_stress_slip')
|
case ('resolved_stress_slip')
|
||||||
j = 0_pInt
|
j = 0_pInt
|
||||||
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
||||||
|
@ -1246,60 +1300,54 @@ do o = 1,phase_Noutput(material_phase(g,ip,el))
|
||||||
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
do i = 1,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family
|
||||||
j = j + 1_pInt
|
j = j + 1_pInt
|
||||||
constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure))
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
c = c + ns
|
c = c + ns
|
||||||
|
|
||||||
case ('threshold_stress_slip')
|
case ('threshold_stress_slip')
|
||||||
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((5*ns+3*nt+1):(6*ns+3*nt))
|
constitutive_dislotwin_postResults(c+1:c+ns) = state(g,ip,el)%p((5*ns+3*nt+1):(6*ns+3*nt))
|
||||||
c = c + ns
|
c = c + ns
|
||||||
|
|
||||||
case ('twin_fraction')
|
case ('twin_fraction')
|
||||||
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((2*ns+1):(2*ns+nt))
|
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((2*ns+1):(2*ns+nt))
|
||||||
c = c + nt
|
c = c + nt
|
||||||
|
|
||||||
case ('shear_rate_twin')
|
case ('shear_rate_twin')
|
||||||
if (nt > 0_pInt) then
|
if (nt > 0_pInt) then
|
||||||
j = 0_pInt
|
j = 0_pInt
|
||||||
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
||||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family
|
||||||
do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family
|
do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family
|
||||||
j = j + 1_pInt
|
j = j + 1_pInt
|
||||||
|
|
||||||
!* Resolved shear stress on twin system
|
!* Resolved shear stress on twin system
|
||||||
tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
||||||
!* Stress ratios
|
!* Stress ratios
|
||||||
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau)**constitutive_dislotwin_r(myInstance)
|
StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau)**constitutive_dislotwin_r(myInstance)
|
||||||
|
|
||||||
!* Shear rates and their derivatives due to twin
|
!* Shear rates and their derivatives due to twin
|
||||||
if ( tau > 0.0_pReal ) then
|
if ( tau > 0.0_pReal ) then
|
||||||
constitutive_dislotwin_postResults(c+j) = &
|
constitutive_dislotwin_postResults(c+j) = &
|
||||||
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*&
|
(constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*&
|
||||||
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r)
|
||||||
endif
|
endif
|
||||||
enddo ; enddo
|
|
||||||
endif
|
|
||||||
c = c + nt
|
|
||||||
|
|
||||||
|
enddo ; enddo
|
||||||
|
endif
|
||||||
|
c = c + nt
|
||||||
case ('mfp_twin')
|
case ('mfp_twin')
|
||||||
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((5*ns+2*nt+1):(5*ns+3*nt))
|
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((5*ns+2*nt+1):(5*ns+3*nt))
|
||||||
c = c + nt
|
c = c + nt
|
||||||
|
|
||||||
case ('resolved_stress_twin')
|
case ('resolved_stress_twin')
|
||||||
if (nt > 0_pInt) then
|
if (nt > 0_pInt) then
|
||||||
j = 0_pInt
|
j = 0_pInt
|
||||||
do f = 1,lattice_maxNtwinFamily ! loop over all slip families
|
do f = 1,lattice_maxNtwinFamily ! loop over all slip families
|
||||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,myStructure)) ! at which index starts my family
|
||||||
do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) slip system in family
|
do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) slip system in family
|
||||||
j = j + 1_pInt
|
j = j + 1_pInt
|
||||||
constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure))
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
endif
|
endif
|
||||||
c = c + nt
|
c = c + nt
|
||||||
|
|
||||||
case ('threshold_stress_twin')
|
case ('threshold_stress_twin')
|
||||||
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((6*ns+3*nt+1):(6*ns+4*nt))
|
constitutive_dislotwin_postResults(c+1:c+nt) = state(g,ip,el)%p((6*ns+3*nt+1):(6*ns+4*nt))
|
||||||
c = c + nt
|
c = c + nt
|
||||||
|
|
||||||
end select
|
end select
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue