not needed for python-based workflow

This commit is contained in:
Martin Diehl 2019-12-18 20:06:44 +01:00
parent 4b6388fbb2
commit 7ccf836379
2 changed files with 0 additions and 274 deletions

View File

@ -1,147 +0,0 @@
#!/usr/bin/env python3
import os
import argparse
import re
import h5py
import numpy as np
import vtk
from vtk.util import numpy_support
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = argparse.ArgumentParser()
#ToDo: We need to decide on a way of handling arguments of variable lentght
#https://stackoverflow.com/questions/15459997/passing-integer-lists-to-python
#parser.add_argument('--version', action='version', version='%(prog)s {}'.format(scriptID))
parser.add_argument('filenames', nargs='+',
help='DADF5 files')
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
help='name of subdirectory relative to the location of the DADF5 file to hold output')
parser.add_argument('--mat', nargs='+',
help='labels for materialpoint',dest='mat')
parser.add_argument('--con', nargs='+',
help='labels for constituent',dest='con')
options = parser.parse_args()
if options.mat is None: options.mat=[]
if options.con is None: options.con=[]
# --- loop over input files ------------------------------------------------------------------------
for filename in options.filenames:
results = damask.DADF5(filename)
if results.structured: # for grid solvers use rectilinear grid
grid = vtk.vtkRectilinearGrid()
coordArray = [vtk.vtkDoubleArray(),
vtk.vtkDoubleArray(),
vtk.vtkDoubleArray(),
]
grid.SetDimensions(*(results.grid+1))
for dim in [0,1,2]:
for c in np.linspace(0,results.size[dim],1+results.grid[dim]):
coordArray[dim].InsertNextValue(c)
grid.SetXCoordinates(coordArray[0])
grid.SetYCoordinates(coordArray[1])
grid.SetZCoordinates(coordArray[2])
else:
nodes = vtk.vtkPoints()
with h5py.File(filename) as f:
nodes.SetData(numpy_support.numpy_to_vtk(f['/geometry/x_n'][()],deep=True))
grid = vtk.vtkUnstructuredGrid()
grid.SetPoints(nodes)
grid.Allocate(f['/geometry/T_c'].shape[0])
for i in f['/geometry/T_c']:
grid.InsertNextCell(vtk.VTK_HEXAHEDRON,8,i-1)
N_digits = int(np.floor(np.log10(int(results.increments[-1][3:]))))+1
for i,inc in enumerate(results.iter_visible('increments')):
print('Output step {}/{}'.format(i+1,len(results.increments)))
vtk_data = []
results.set_visible('materialpoints',False)
results.set_visible('constituents', True)
for label in options.con:
for p in results.iter_visible('con_physics'):
if p != 'generic':
for c in results.iter_visible('constituents'):
x = results.get_dataset_location(label)
if len(x) == 0:
continue
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
vtk_data[-1].SetName('1_'+x[0].split('/',1)[1])
grid.GetCellData().AddArray(vtk_data[-1])
else:
x = results.get_dataset_location(label)
if len(x) == 0:
continue
ph_name = re.compile(r'(?<=(constituent\/))(.*?)(?=(generic))') #looking for phase name in dataset name
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
dset_name = '1_' + re.sub(ph_name,r'',x[0].split('/',1)[1]) #removing phase name from generic dataset
vtk_data[-1].SetName(dset_name)
grid.GetCellData().AddArray(vtk_data[-1])
results.set_visible('constituents', False)
results.set_visible('materialpoints',True)
for label in options.mat:
for p in results.iter_visible('mat_physics'):
if p != 'generic':
for m in results.iter_visible('materialpoints'):
x = results.get_dataset_location(label)
if len(x) == 0:
continue
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
vtk_data[-1].SetName('1_'+x[0].split('/',1)[1])
grid.GetCellData().AddArray(vtk_data[-1])
else:
x = results.get_dataset_location(label)
if len(x) == 0:
continue
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
vtk_data[-1].SetName('1_'+x[0].split('/',1)[1])
grid.GetCellData().AddArray(vtk_data[-1])
writer = vtk.vtkXMLRectilinearGridWriter() if results.structured else \
vtk.vtkXMLUnstructuredGridWriter()
results.set_visible('constituents', False)
results.set_visible('materialpoints',False)
x = results.get_dataset_location('u_n')
vtk_data.append(numpy_support.numpy_to_vtk(num_array=results.read_dataset(x,0),deep=True,array_type=vtk.VTK_DOUBLE))
vtk_data[-1].SetName('u')
grid.GetPointData().AddArray(vtk_data[-1])
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
if not os.path.isdir(dirname):
os.mkdir(dirname,0o755)
file_out = '{}_inc{}.{}'.format(os.path.splitext(os.path.split(filename)[-1])[0],
inc[3:].zfill(N_digits),
writer.GetDefaultFileExtension())
writer.SetCompressorTypeToZLib()
writer.SetDataModeToBinary()
writer.SetFileName(os.path.join(dirname,file_out))
writer.SetInputData(grid)
writer.Write()

View File

@ -1,127 +0,0 @@
#!/usr/bin/env python3
import os
import argparse
import re
import numpy as np
import vtk
from vtk.util import numpy_support
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = argparse.ArgumentParser()
#ToDo: We need to decide on a way of handling arguments of variable lentght
#https://stackoverflow.com/questions/15459997/passing-integer-lists-to-python
#parser.add_argument('--version', action='version', version='%(prog)s {}'.format(scriptID))
parser.add_argument('filenames', nargs='+',
help='DADF5 files')
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
help='name of subdirectory relative to the location of the DADF5 file to hold output')
parser.add_argument('--mat', nargs='+',
help='labels for materialpoint',dest='mat')
parser.add_argument('--con', nargs='+',
help='labels for constituent',dest='con')
options = parser.parse_args()
if options.mat is None: options.mat=[]
if options.con is None: options.con=[]
# --- loop over input files ------------------------------------------------------------------------
for filename in options.filenames:
results = damask.DADF5(filename)
Points = vtk.vtkPoints()
Vertices = vtk.vtkCellArray()
for c in results.cell_coordinates():
pointID = Points.InsertNextPoint(c)
Vertices.InsertNextCell(1)
Vertices.InsertCellPoint(pointID)
Polydata = vtk.vtkPolyData()
Polydata.SetPoints(Points)
Polydata.SetVerts(Vertices)
Polydata.Modified()
N_digits = int(np.floor(np.log10(int(results.increments[-1][3:]))))+1
for i,inc in enumerate(results.iter_visible('increments')):
print('Output step {}/{}'.format(i+1,len(results.increments)))
vtk_data = []
results.set_visible('materialpoints',False)
results.set_visible('constituents', True)
for label in options.con:
for p in results.iter_visible('con_physics'):
if p != 'generic':
for c in results.iter_visible('constituents'):
x = results.get_dataset_location(label)
if len(x) == 0:
continue
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
vtk_data[-1].SetName('1_'+x[0].split('/',1)[1])
Polydata.GetCellData().AddArray(vtk_data[-1])
else:
x = results.get_dataset_location(label)
if len(x) == 0:
continue
ph_name = re.compile(r'(?<=(constituent\/))(.*?)(?=(generic))') #looking for phase name in dataset name
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
dset_name = '1_' + re.sub(ph_name,r'',x[0].split('/',1)[1]) #removing phase name from generic dataset
vtk_data[-1].SetName(dset_name)
Polydata.GetCellData().AddArray(vtk_data[-1])
results.set_visible('constituents', False)
results.set_visible('materialpoints',True)
for label in options.mat:
for p in results.iter_visible('mat_physics'):
if p != 'generic':
for m in results.iter_visible('materialpoints'):
x = results.get_dataset_location(label)
if len(x) == 0:
continue
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
vtk_data[-1].SetName('1_'+x[0].split('/',1)[1])
Polydata.GetCellData().AddArray(vtk_data[-1])
else:
x = results.get_dataset_location(label)
if len(x) == 0:
continue
array = results.read_dataset(x,0)
shape = [array.shape[0],np.product(array.shape[1:])]
vtk_data.append(numpy_support.numpy_to_vtk(num_array=array.reshape(shape),deep=True,array_type= vtk.VTK_DOUBLE))
vtk_data[-1].SetName('1_'+x[0].split('/',1)[1])
Polydata.GetCellData().AddArray(vtk_data[-1])
writer = vtk.vtkXMLPolyDataWriter()
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
if not os.path.isdir(dirname):
os.mkdir(dirname,0o755)
file_out = '{}_inc{}.{}'.format(os.path.splitext(os.path.split(filename)[-1])[0],
inc[3:].zfill(N_digits),
writer.GetDefaultFileExtension())
writer.SetCompressorTypeToZLib()
writer.SetDataModeToBinary()
writer.SetFileName(os.path.join(dirname,file_out))
writer.SetInputData(Polydata)
writer.Write()