modified constitutive description in line with other dislocation density based models
This commit is contained in:
parent
1195fe3b09
commit
7b27606000
|
@ -840,18 +840,10 @@ function constitutive_dislotwin_stateInit(instance,phase)
|
|||
constitutive_dislotwin_stateInit(5_pInt*ns+3_pInt*nt+1:6_pInt*ns+3_pInt*nt) = MeanFreePathSlip0
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
tauSlipThreshold0(i) = constitutive_dislotwin_SolidSolutionStrength(instance) + &
|
||||
tauSlipThreshold0(i) = &
|
||||
lattice_mu(phase)*constitutive_dislotwin_burgersPerSlipSystem(i,instance) * &
|
||||
sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
||||
if (lattice_structure(phase) == lattice_bcc_ID) then
|
||||
j = 0_pInt
|
||||
slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily
|
||||
slipSystemsLoop: do i = 1_pInt,constitutive_dislotwin_Nslip(f,instance)
|
||||
j = j+1_pInt
|
||||
tauSlipThreshold0(j) = tauSlipThreshold0(j) + constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)
|
||||
enddo slipSystemsLoop
|
||||
enddo slipFamiliesLoop
|
||||
endif
|
||||
|
||||
constitutive_dislotwin_stateInit(6_pInt*ns+4_pInt*nt+1:7_pInt*ns+4_pInt*nt) = tauSlipThreshold0
|
||||
|
||||
|
||||
|
@ -970,7 +962,8 @@ subroutine constitutive_dislotwin_microstructure(temperature,state,ipc,ip,el)
|
|||
lattice_structure, &
|
||||
lattice_mu, &
|
||||
lattice_nu, &
|
||||
lattice_bcc_ID
|
||||
lattice_bcc_ID, &
|
||||
lattice_maxNslipFamily
|
||||
|
||||
|
||||
implicit none
|
||||
|
@ -1063,13 +1056,11 @@ subroutine constitutive_dislotwin_microstructure(temperature,state,ipc,ip,el)
|
|||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*state%p(5_pInt*ns+2_pInt*nt+t))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
if(lattice_structure(phase) /= LATTICE_BCC_ID) then ! bcc value remains constant
|
||||
forall (s = 1_pInt:ns) &
|
||||
state%p(6_pInt*ns+4_pInt*nt+s) = constitutive_dislotwin_SolidSolutionStrength(instance)+ &
|
||||
lattice_mu(phase)*constitutive_dislotwin_burgersPerSlipSystem(s,instance)*&
|
||||
sqrt(dot_product((state%p(1:ns)+state%p(ns+1_pInt:2_pInt*ns)),&
|
||||
constitutive_dislotwin_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
endif
|
||||
forall (s = 1_pInt:ns) &
|
||||
state%p(6_pInt*ns+4_pInt*nt+s) = &
|
||||
lattice_mu(phase)*constitutive_dislotwin_burgersPerSlipSystem(s,instance)*&
|
||||
sqrt(dot_product((state%p(1:ns)+state%p(ns+1_pInt:2_pInt*ns)),&
|
||||
constitutive_dislotwin_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
|
@ -1196,34 +1187,34 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
!* Calculation of Lp
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,phase))
|
||||
|
||||
|
||||
if((abs(tau_slip(j))-state%p(6*ns+4*nt+j)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
if (abs(tau_slip(j)) < tol_math_check) then
|
||||
StressRatio_p = 0.0_pReal
|
||||
StressRatio_pminus1 = 0.0_pReal
|
||||
else
|
||||
StressRatio_p = (abs(tau_slip(j))/state%p(6*ns+4*nt+j))&
|
||||
StressRatio_p = ((abs(tau_slip(j))-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = (abs(tau_slip(j))/state%p(6*ns+4*nt+j))&
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
endif
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = (1.0_pReal - sumf) * DotGamma0 &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** constitutive_dislotwin_qPerSlipFamily(f,instance)) &
|
||||
* sign(1.0_pReal,tau_slip(j))
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = (1.0_pReal - sumf) * DotGamma0 &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** constitutive_dislotwin_qPerSlipFamily(f,instance)) &
|
||||
* sign(1.0_pReal,tau_slip(j))
|
||||
|
||||
!* Derivatives of shear rates
|
||||
dgdot_dtauslip(j) = &
|
||||
((abs(gdot_slip(j))*BoltzmannRatio*constitutive_dislotwin_pPerSlipFamily(f,instance)&
|
||||
*constitutive_dislotwin_qPerSlipFamily(f,instance))/state%p(6*ns+4*nt+j))*&
|
||||
StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_qPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Derivatives of shear rates
|
||||
dgdot_dtauslip(j) = &
|
||||
abs(gdot_slip(j))*BoltzmannRatio*constitutive_dislotwin_pPerSlipFamily(f,instance)&
|
||||
*constitutive_dislotwin_qPerSlipFamily(f,instance)/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance))*&
|
||||
StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_qPerSlipFamily(f,instance)-1.0_pReal)
|
||||
endif
|
||||
|
||||
!* Plastic velocity gradient for dislocation glide
|
||||
Lp = Lp + gdot_slip(j)*lattice_Sslip(:,:,1,index_myFamily+i,phase)
|
||||
|
@ -1425,25 +1416,25 @@ pure function constitutive_dislotwin_dotState(Tstar_v,Temperature,state,ipc,ip,e
|
|||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,phase))
|
||||
|
||||
if (abs(tau_slip(j)) < tol_math_check) then
|
||||
StressRatio_p = 0.0_pReal
|
||||
StressRatio_pminus1 = 0.0_pReal
|
||||
else
|
||||
StressRatio_p = (abs(tau_slip(j))/state%p(6_pInt*ns+4_pInt*nt+j))**&
|
||||
constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = (abs(tau_slip(j))/state%p(6_pInt*ns+4_pInt*nt+j))**&
|
||||
(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
endif
|
||||
if((abs(tau_slip(j))-state%p(6*ns+4*nt+j)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip(j))-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
|
||||
constitutive_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau_slip(j))
|
||||
endif
|
||||
|
||||
!* Multiplication
|
||||
DotRhoMultiplication(j) = abs(gdot_slip(j))/&
|
||||
|
@ -1641,26 +1632,31 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,state,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,phase))
|
||||
!* Stress ratios
|
||||
if (abs(tau) < tol_math_check) then
|
||||
StressRatio_p = 0.0_pReal
|
||||
StressRatio_pminus1 = 0.0_pReal
|
||||
else
|
||||
StressRatio_p = (abs(tau)/state%p(6_pInt*ns+4_pInt*nt+j))**&
|
||||
constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = (abs(tau)/state%p(6_pInt*ns+4_pInt*nt+j))**&
|
||||
(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
endif
|
||||
if((abs(tau)-state%p(6*ns+4*nt+j)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
constitutive_dislotwin_postResults(c+j) = &
|
||||
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
constitutive_dislotwin_postResults(c+j) = &
|
||||
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
constitutive_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||||
else
|
||||
constitutive_dislotwin_postResults(c+j) = 0.0_pReal
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
c = c + ns
|
||||
case (accumulated_shear_slip_ID)
|
||||
|
@ -1742,25 +1738,29 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,state,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,phase))
|
||||
!* Stress ratios
|
||||
if (abs(tau) < tol_math_check) then
|
||||
StressRatio_p = 0.0_pReal
|
||||
StressRatio_pminus1 = 0.0_pReal
|
||||
else
|
||||
StressRatio_p = (abs(tau)/state%p(5_pInt*ns+3_pInt*nt+j))**&
|
||||
constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = (abs(tau)/state%p(5_pInt*ns+3_pInt*nt+j))**&
|
||||
(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
endif
|
||||
if((abs(tau)-state%p(6*ns+4*nt+j)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
constitutive_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
constitutive_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||||
else
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
endif
|
||||
enddo;enddo
|
||||
|
||||
j = 0_pInt
|
||||
|
@ -1830,32 +1830,39 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,state,ipc,ip,el)
|
|||
|
||||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,phase))
|
||||
if (abs(tau) < tol_math_check) then
|
||||
StressRatio_p = 0.0_pReal
|
||||
StressRatio_pminus1 = 0.0_pReal
|
||||
else
|
||||
StressRatio_p = (abs(tau)/state%p(6_pInt*ns+4_pInt*nt+j))**&
|
||||
constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = (abs(tau)/state%p(6_pInt*ns+4_pInt*nt+j))**&
|
||||
(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
endif
|
||||
if((abs(tau)-state%p(6*ns+4*nt+j)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-state%p(6*ns+4*nt+j))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
DotGamma0 = &
|
||||
state%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
constitutive_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||||
|
||||
!* Derivatives of shear rates
|
||||
dgdot_dtauslip = &
|
||||
((abs(gdot_slip(j))*BoltzmannRatio*&
|
||||
constitutive_dislotwin_pPerSlipFamily(f,instance)*constitutive_dislotwin_qPerSlipFamily(f,instance))/&
|
||||
state%p(6*ns+4*nt+j))*StressRatio_pminus1*(1_pInt-StressRatio_p)**&
|
||||
(constitutive_dislotwin_qPerSlipFamily(f,instance)-1.0_pReal)
|
||||
dgdot_dtauslip = &
|
||||
abs(gdot_slip(j))*BoltzmannRatio*constitutive_dislotwin_pPerSlipFamily(f,instance)&
|
||||
*constitutive_dislotwin_qPerSlipFamily(f,instance)/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance))*&
|
||||
StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_qPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
||||
else
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
dgdot_dtauslip = 0.0_pReal
|
||||
endif
|
||||
|
||||
!* Stress exponent
|
||||
if (gdot_slip(j)==0.0_pReal) then
|
||||
|
|
Loading…
Reference in New Issue