cleaning for release

This commit is contained in:
Martin Diehl 2020-06-15 15:31:09 +02:00
parent 0e11d6f049
commit 7a74a9ed10
5 changed files with 1 additions and 144 deletions

@ -1 +1 @@
Subproject commit a6109acd264c683fd335b1d1f69934fc4a4078e3 Subproject commit 8318aa6b9b1ef2c59c1f6fa946ede92640baf93c

View File

@ -1,143 +0,0 @@
#!/usr/bin/env python3
import os
import sys
from io import StringIO
from optparse import OptionParser
import numpy as np
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
Produces a binned grid of two columns from an ASCIItable, i.e. a two-dimensional probability density map.
""", version = scriptID)
parser.add_option('-d','--data',
dest = 'data',
type = 'string', nargs = 2, metavar = 'string string',
help = 'column labels containing x and y ')
parser.add_option('-w','--weight',
dest = 'weight',
type = 'string', metavar = 'string',
help = 'column label containing weight of (x,y) point')
parser.add_option('-b','--bins',
dest = 'bins',
type = 'int', nargs = 2, metavar = 'int int',
help = 'number of bins in x and y direction [%default]')
parser.add_option('-t','--type',
dest = 'type',
type = 'string', nargs = 3, metavar = 'string string string',
help = 'type (linear/log) of x, y, and z axis [%default]')
parser.add_option('-x','--xrange',
dest = 'xrange',
type = 'float', nargs = 2, metavar = 'float float',
help = 'min max limits in x direction (optional)')
parser.add_option('-y','--yrange',
dest = 'yrange',
type = 'float', nargs = 2, metavar = 'float float',
help = 'min max limits in y direction (optional)')
parser.add_option('-z','--zrange',
dest = 'zrange',
type = 'float', nargs = 2, metavar = 'float float',
help = 'min max limits in z direction (optional)')
parser.add_option('-i','--invert',
dest = 'invert',
action = 'store_true',
help = 'invert probability density')
parser.add_option('-r','--rownormalize',
dest = 'normRow',
action = 'store_true',
help = 'normalize probability density in each row')
parser.add_option('-c','--colnormalize',
dest = 'normCol',
action = 'store_true',
help = 'normalize probability density in each column')
parser.set_defaults(bins = (10,10),
type = ('linear','linear','linear'),
xrange = (0.0,0.0),
yrange = (0.0,0.0),
zrange = (0.0,0.0),
)
(options,filenames) = parser.parse_args()
if filenames == []: filenames = [None]
minmax = np.array([options.xrange,options.yrange,options.zrange])
result = np.empty((options.bins[0],options.bins[1],3),'f')
if options.data is None: parser.error('no data columns specified.')
for name in filenames:
damask.util.report(scriptName,name)
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
data = np.hstack((table.get(options.data[0]),table.get(options.data[1])))
for c in (0,1): # check data minmax for x and y (i = 0 and 1)
if (minmax[c] == 0.0).all(): minmax[c] = [data[:,c].min(),data[:,c].max()]
if options.type[c].lower() == 'log': # if log scale
data[:,c] = np.log(data[:,c]) # change x,y coordinates to log
minmax[c] = np.log(minmax[c]) # change minmax to log, too
delta = minmax[:,1]-minmax[:,0]
(grid,xedges,yedges) = np.histogram2d(data[:,0],data[:,1],
bins=options.bins,
range=minmax[:2],
weights=table.get(options.weight) if options.weight else None)
if options.normCol:
for x in range(options.bins[0]):
sum = np.sum(grid[x,:])
if sum > 0.0:
grid[x,:] /= sum
if options.normRow:
for y in range(options.bins[1]):
sum = np.sum(grid[:,y])
if sum > 0.0:
grid[:,y] /= sum
if (minmax[2] == 0.0).all(): minmax[2] = [grid.min(),grid.max()] # auto scale from data
if minmax[2,0] == minmax[2,1]:
minmax[2,0] -= 1.
minmax[2,1] += 1.
if (minmax[2] == 0.0).all(): # no data in grid?
damask.util.croak('no data found on grid...')
minmax[2,:] = np.array([0.0,1.0]) # making up arbitrary z minmax
if options.type[2].lower() == 'log':
grid = np.log(grid)
minmax[2] = np.log(minmax[2])
delta[2] = minmax[2,1]-minmax[2,0]
for x in range(options.bins[0]):
for y in range(options.bins[1]):
result[x,y,:] = [minmax[0,0]+delta[0]/options.bins[0]*(x+0.5),
minmax[1,0]+delta[1]/options.bins[1]*(y+0.5),
np.clip((grid[x,y]-minmax[2,0])/delta[2],0.0,1.0)]
for c in (0,1):
if options.type[c].lower() == 'log': result[:,:,c] = np.exp(result[:,:,c])
if options.invert: result[:,:,2] = 1.0 - result[:,:,2]
comments = scriptID + '\t' + ' '.join(sys.argv[1:])
shapes = {'bin_%s'%options.data[0]:(1,),'bin_%s'%options.data[1]:(1,),'z':(1,)}
table = damask.Table(result.reshape(options.bins[0]*options.bins[1],3),shapes,[comments])
if name:
outname = os.path.join(os.path.dirname(name),'binned-{}-{}_'.format(*options.data) +
('weighted-{}_'.format(options.weight) if options.weight else '') +
os.path.basename(name))
table.to_ASCII(outname)
else:
table.to_ASCII(sys.stdout)