added call to DAMASK spectral
This commit is contained in:
parent
a48b4cfc95
commit
7a478d646a
|
@ -4,8 +4,19 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.optimize import curve_fit
|
from scipy.optimize import curve_fit
|
||||||
from scipy.linalg import svd
|
from scipy.linalg import svd
|
||||||
import threading
|
import threading,time,os,subprocess,shlex
|
||||||
import time
|
import damask
|
||||||
|
|
||||||
|
def execute(cmd,dir='./'):
|
||||||
|
|
||||||
|
initialPath=os.getcwd()
|
||||||
|
out = ''
|
||||||
|
line = True
|
||||||
|
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.STDOUT)
|
||||||
|
while line:
|
||||||
|
line = process.stdout.readline()
|
||||||
|
out += line
|
||||||
|
os.chdir(initialPath)
|
||||||
|
|
||||||
def asFullTensor(voigt):
|
def asFullTensor(voigt):
|
||||||
return np.array([[voigt[0],voigt[3],voigt[5]],\
|
return np.array([[voigt[0],voigt[3],voigt[5]],\
|
||||||
|
@ -18,8 +29,13 @@ def Hill48(x, F,G,H,L,M,N):
|
||||||
return a.ravel()
|
return a.ravel()
|
||||||
|
|
||||||
def vonMises(x, S_y):
|
def vonMises(x, S_y):
|
||||||
p = svd(asFullTensor(x))
|
sv=np.zeros(0,'d')
|
||||||
return (s[2]-s[1])**2+(s[1]-s[0])**2+(s[0]-s[2])**2-2*S_y**2
|
for i in xrange(np.shape(x)[1]):
|
||||||
|
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
|
||||||
|
sv = np.append(sv,l)
|
||||||
|
sv = sv.reshape(3,np.shape(x)[1])
|
||||||
|
ooo= (sv[2,:]-sv[1,:])**2+(sv[1,:]-sv[0,:])**2+(sv[0,:]-sv[2,:])**2-2*S_y**2
|
||||||
|
return ooo
|
||||||
|
|
||||||
#---------------------------------------------------------------------------------------------------
|
#---------------------------------------------------------------------------------------------------
|
||||||
class Loadcase():
|
class Loadcase():
|
||||||
|
@ -39,15 +55,17 @@ class Loadcase():
|
||||||
|
|
||||||
main=np.array([0,4,8])
|
main=np.array([0,4,8])
|
||||||
np.random.shuffle(main)
|
np.random.shuffle(main)
|
||||||
for i in main[:2]:
|
for i in main[:2]: # fill 2 out of 3 main entries
|
||||||
defgrad[i]=1.+values[i]
|
defgrad[i]=1.+values[i]
|
||||||
stress[i]='*'
|
stress[i]='*'
|
||||||
for off in [[1,3,0],[2,6,0],[5,7,0]]:
|
for off in [[1,3,0],[2,6,0],[5,7,0]]: # fill 3 off-diagonal pairs of defgrad (1 or 2 entries)
|
||||||
off=np.array(off)
|
off=np.array(off)
|
||||||
np.random.shuffle(off)
|
np.random.shuffle(off)
|
||||||
if off[0] != 0:
|
for i in off[0:2]:
|
||||||
defgrad[off[0]]=values[off[0]]
|
if i != 0:
|
||||||
stress[off[0]]='*'
|
defgrad[i]=values[i]
|
||||||
|
stress[i]='*'
|
||||||
|
|
||||||
return 'f '+' '.join(str(c) for c in defgrad)+\
|
return 'f '+' '.join(str(c) for c in defgrad)+\
|
||||||
' p '+' '.join(str(c) for c in stress)+\
|
' p '+' '.join(str(c) for c in stress)+\
|
||||||
' incs %s'%incs+\
|
' incs %s'%incs+\
|
||||||
|
@ -66,17 +84,14 @@ class Criterion(object):
|
||||||
self.popt = 0.0
|
self.popt = 0.0
|
||||||
|
|
||||||
def fit(self,stress):
|
def fit(self,stress):
|
||||||
if self.name == 'hill48':
|
|
||||||
try:
|
try:
|
||||||
self.popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
|
popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
|
||||||
print self.popt
|
print 'Hill 48', popt
|
||||||
except:
|
except Exception as detail:
|
||||||
pass
|
print detail
|
||||||
elif self.name == 'vonmises':
|
|
||||||
try:
|
|
||||||
self.popt, pcov = curve_fit(vonMises, stress.transpose(), np.shape(stress)[1])
|
|
||||||
except:
|
|
||||||
pass
|
pass
|
||||||
|
popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]))
|
||||||
|
print 'von Mises', popt
|
||||||
|
|
||||||
|
|
||||||
#---------------------------------------------------------------------------------------------------
|
#---------------------------------------------------------------------------------------------------
|
||||||
|
@ -100,23 +115,43 @@ class myThread (threading.Thread):
|
||||||
s.release()
|
s.release()
|
||||||
|
|
||||||
def doSim(delay,thread):
|
def doSim(delay,thread):
|
||||||
|
|
||||||
s.acquire()
|
s.acquire()
|
||||||
me=getLoadcase()
|
me=getLoadcase()
|
||||||
print('starting sim %i from %s'%(me,thread))
|
print('generating loadcase for sim %i from %s'%(me,thread))
|
||||||
f=open('%s.load'%me,'w')
|
f=open('%s.load'%me,'w')
|
||||||
f.write(myLoad.getNext(me))
|
f.write(myLoad.getNext(me))
|
||||||
f.close()
|
f.close()
|
||||||
#dummy
|
|
||||||
print('doing postprocessing sim %i from %s'%(me,thread))
|
print('starting simulation %i from %s'%(me,thread))
|
||||||
voigt = np.random.random_sample(6)*90e6
|
s.release()
|
||||||
|
|
||||||
|
execute('DAMASK_spectral -l %i -g 20grains16x16x16'%me)
|
||||||
|
|
||||||
|
s.acquire()
|
||||||
|
print('startin post processing for sim %i from %s'%(me,thread))
|
||||||
|
s.release()
|
||||||
|
execute('postResults --cr f,p 20grains16x16x16_%i.spectralOut'%me)
|
||||||
|
execute('addCauchy ./postProc/20grains16x16x16_%i.txt'%me)
|
||||||
|
execute('addStrainTensors -l -v ./postProc/20grains16x16x16_%i.txt'%me)
|
||||||
|
execute('addMises -s Cauchy -e ln(V) ./postProc/20grains16x16x16_%i.txt'%me)
|
||||||
|
|
||||||
|
refFile = open('./postProc/20grains16x16x16_%i.txt'%me)
|
||||||
|
table = damask.ASCIItable(refFile)
|
||||||
|
table.head_read()
|
||||||
|
for l in ['Mises(ln(V))','1_Cauchy']:
|
||||||
|
if l not in table.labels: print '%s not found'%l
|
||||||
|
while table.data_read():
|
||||||
|
if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002:
|
||||||
|
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d').reshape(3,3)
|
||||||
|
|
||||||
|
s.acquire()
|
||||||
|
print('startin fitting for sim %i from %s'%(me,thread))
|
||||||
global stressAll
|
global stressAll
|
||||||
stressAll=np.append(stressAll,asFullTensor(voigt).reshape(9))
|
stressAll=np.append(stressAll,yieldStress.reshape(9))
|
||||||
stressAll=stressAll.reshape(9,len(stressAll)//9)
|
stressAll=stressAll.reshape(9,len(stressAll)//9)
|
||||||
myFit.fit(stressAll)
|
myFit.fit(stressAll)
|
||||||
s.release()
|
s.release()
|
||||||
time.sleep(delay)
|
|
||||||
s.acquire()
|
|
||||||
s.release()
|
|
||||||
|
|
||||||
def getLoadcase():
|
def getLoadcase():
|
||||||
global N_simulations
|
global N_simulations
|
||||||
|
@ -134,7 +169,7 @@ def converged():
|
||||||
# main
|
# main
|
||||||
|
|
||||||
minN_simulations=20
|
minN_simulations=20
|
||||||
maxN_simulations=10
|
maxN_simulations=20
|
||||||
N_simulations=0
|
N_simulations=0
|
||||||
s=threading.Semaphore(1)
|
s=threading.Semaphore(1)
|
||||||
scale = 0.02
|
scale = 0.02
|
||||||
|
|
Loading…
Reference in New Issue