added call to DAMASK spectral

This commit is contained in:
Martin Diehl 2014-07-07 14:17:44 +00:00
parent a48b4cfc95
commit 7a478d646a
1 changed files with 66 additions and 31 deletions

View File

@ -4,13 +4,24 @@
import numpy as np
from scipy.optimize import curve_fit
from scipy.linalg import svd
import threading
import time
import threading,time,os,subprocess,shlex
import damask
def execute(cmd,dir='./'):
initialPath=os.getcwd()
out = ''
line = True
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.STDOUT)
while line:
line = process.stdout.readline()
out += line
os.chdir(initialPath)
def asFullTensor(voigt):
return np.array([[voigt[0],voigt[3],voigt[5]],\
[voigt[3],voigt[1],voigt[4]],\
[voigt[5],voigt[4],voigt[2]]])
[voigt[3],voigt[1],voigt[4]],\
[voigt[5],voigt[4],voigt[2]]])
def Hill48(x, F,G,H,L,M,N):
a= F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
@ -18,8 +29,13 @@ def Hill48(x, F,G,H,L,M,N):
return a.ravel()
def vonMises(x, S_y):
p = svd(asFullTensor(x))
return (s[2]-s[1])**2+(s[1]-s[0])**2+(s[0]-s[2])**2-2*S_y**2
sv=np.zeros(0,'d')
for i in xrange(np.shape(x)[1]):
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
sv = np.append(sv,l)
sv = sv.reshape(3,np.shape(x)[1])
ooo= (sv[2,:]-sv[1,:])**2+(sv[1,:]-sv[0,:])**2+(sv[0,:]-sv[2,:])**2-2*S_y**2
return ooo
#---------------------------------------------------------------------------------------------------
class Loadcase():
@ -39,15 +55,17 @@ class Loadcase():
main=np.array([0,4,8])
np.random.shuffle(main)
for i in main[:2]:
for i in main[:2]: # fill 2 out of 3 main entries
defgrad[i]=1.+values[i]
stress[i]='*'
for off in [[1,3,0],[2,6,0],[5,7,0]]:
for off in [[1,3,0],[2,6,0],[5,7,0]]: # fill 3 off-diagonal pairs of defgrad (1 or 2 entries)
off=np.array(off)
np.random.shuffle(off)
if off[0] != 0:
defgrad[off[0]]=values[off[0]]
stress[off[0]]='*'
for i in off[0:2]:
if i != 0:
defgrad[i]=values[i]
stress[i]='*'
return 'f '+' '.join(str(c) for c in defgrad)+\
' p '+' '.join(str(c) for c in stress)+\
' incs %s'%incs+\
@ -66,17 +84,14 @@ class Criterion(object):
self.popt = 0.0
def fit(self,stress):
if self.name == 'hill48':
try:
self.popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
print self.popt
except:
pass
elif self.name == 'vonmises':
try:
self.popt, pcov = curve_fit(vonMises, stress.transpose(), np.shape(stress)[1])
except:
pass
try:
popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
print 'Hill 48', popt
except Exception as detail:
print detail
pass
popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]))
print 'von Mises', popt
#---------------------------------------------------------------------------------------------------
@ -100,23 +115,43 @@ class myThread (threading.Thread):
s.release()
def doSim(delay,thread):
s.acquire()
me=getLoadcase()
print('starting sim %i from %s'%(me,thread))
print('generating loadcase for sim %i from %s'%(me,thread))
f=open('%s.load'%me,'w')
f.write(myLoad.getNext(me))
f.close()
#dummy
print('doing postprocessing sim %i from %s'%(me,thread))
voigt = np.random.random_sample(6)*90e6
print('starting simulation %i from %s'%(me,thread))
s.release()
execute('DAMASK_spectral -l %i -g 20grains16x16x16'%me)
s.acquire()
print('startin post processing for sim %i from %s'%(me,thread))
s.release()
execute('postResults --cr f,p 20grains16x16x16_%i.spectralOut'%me)
execute('addCauchy ./postProc/20grains16x16x16_%i.txt'%me)
execute('addStrainTensors -l -v ./postProc/20grains16x16x16_%i.txt'%me)
execute('addMises -s Cauchy -e ln(V) ./postProc/20grains16x16x16_%i.txt'%me)
refFile = open('./postProc/20grains16x16x16_%i.txt'%me)
table = damask.ASCIItable(refFile)
table.head_read()
for l in ['Mises(ln(V))','1_Cauchy']:
if l not in table.labels: print '%s not found'%l
while table.data_read():
if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002:
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d').reshape(3,3)
s.acquire()
print('startin fitting for sim %i from %s'%(me,thread))
global stressAll
stressAll=np.append(stressAll,asFullTensor(voigt).reshape(9))
stressAll=np.append(stressAll,yieldStress.reshape(9))
stressAll=stressAll.reshape(9,len(stressAll)//9)
myFit.fit(stressAll)
s.release()
time.sleep(delay)
s.acquire()
s.release()
def getLoadcase():
global N_simulations
@ -134,7 +169,7 @@ def converged():
# main
minN_simulations=20
maxN_simulations=10
maxN_simulations=20
N_simulations=0
s=threading.Semaphore(1)
scale = 0.02