R not needed
This commit is contained in:
parent
49b3cd2145
commit
79d2432c6c
|
@ -136,9 +136,9 @@ for name in filenames:
|
|||
for column in items['tensor']['column']: # loop over all requested defgrads
|
||||
F = np.array(list(map(float,table.data[column:column+items['tensor']['dim']])),'d').reshape(items['tensor']['shape'])
|
||||
(U,S,Vh) = np.linalg.svd(F) # singular value decomposition
|
||||
R = np.dot(U,Vh) # rotation of polar decomposition
|
||||
stretch['U'] = np.dot(R.T,F) # F = RU
|
||||
stretch['V'] = np.dot(F,R.T) # F = VR
|
||||
R_inv = np.dot(U,Vh).T # rotation of polar decomposition
|
||||
stretch['U'] = np.dot(R_inv,F) # F = RU
|
||||
stretch['V'] = np.dot(F,R_inv) # F = VR
|
||||
|
||||
for theStretch in stretches:
|
||||
stretch[theStretch] = np.where(abs(stretch[theStretch]) < 1e-12, 0, stretch[theStretch]) # kill nasty noisy data
|
||||
|
|
Loading…
Reference in New Issue