eigenvalues is more specific name than principal components

This commit is contained in:
Martin Diehl 2020-02-15 13:56:15 +01:00
parent a8e2ee0a86
commit 79533b075e
2 changed files with 107 additions and 54 deletions

View File

@ -3,9 +3,9 @@ import numpy as np
def Cauchy(F,P):
"""
Return Cauchy stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
Parameters
----------
F : numpy.array of shape (:,3,3) or (3,3)
@ -24,7 +24,7 @@ def Cauchy(F,P):
def PK2(F,P):
"""
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
Parameters
----------
F : numpy.array of shape (:,3,3) or (3,3)
@ -37,16 +37,16 @@ def PK2(F,P):
S = np.dot(np.linalg.inv(F),P)
else:
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
return S
return symmetric(S)
def strain_tensor(F,t,m):
"""
Return strain tensor calculated from deformation gradient.
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
https://de.wikipedia.org/wiki/Verzerrungstensor
Parameters
----------
F : numpy.array of shape (:,3,3) or (3,3)
@ -64,16 +64,16 @@ def strain_tensor(F,t,m):
elif t == 'U':
C = np.matmul(transpose(F_),F_)
w,n = np.linalg.eigh(C)
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
- np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
elif m < 0.0:
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
+ np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
else:
eps = np.matmul(n,np.einsum('ij,ikj->ijk',0.5*np.log(w),n))
return eps.reshape((3,3)) if np.shape(F) == (3,3) else \
eps
@ -81,7 +81,7 @@ def strain_tensor(F,t,m):
def deviatoric_part(x):
"""
Return deviatoric part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -89,13 +89,13 @@ def deviatoric_part(x):
"""
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
def spherical_part(x,tensor=False):
"""
Return spherical (hydrostatic) part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -113,12 +113,12 @@ def spherical_part(x,tensor=False):
return sph
else:
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
def Mises_stress(sigma):
"""
Return the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.array of shape (:,3,3) or (3,3)
@ -128,12 +128,12 @@ def Mises_stress(sigma):
s = deviatoric_part(sigma)
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
def Mises_strain(epsilon):
"""
Return the Mises equivalent of a strain tensor.
Parameters
----------
epsilon : numpy.array of shape (:,3,3) or (3,3)
@ -148,7 +148,7 @@ def Mises_strain(epsilon):
def symmetric(x):
"""
Return the symmetrized tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -161,40 +161,54 @@ def symmetric(x):
def maximum_shear(x):
"""
Return the maximum shear component of a symmetric tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the maximum shear is computed.
"""
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
return (w[2] - w[0])*0.5 if np.shape(x) == (3,3) else \
(w[:,2] - w[:,0])*0.5
def principal_components(x):
w = eigenvalues(x)
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
(w[:,0] - w[:,2])*0.5
def eigenvalues(x):
"""
Return the principal components of a symmetric tensor.
The principal components (eigenvalues) are sorted in descending order, each repeated according to
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
The eigenvalues are sorted in ascending order, each repeated according to
its multiplicity.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the principal compontents are computed.
Symmetric tensor of which the eigenvalues are computed.
"""
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
return w[::-1] if np.shape(x) == (3,3) else \
w[:,::-1]
return np.linalg.eigvalsh(symmetric(x))
def eigenvectors(x):
"""
Return eigenvectors of a symmetric tensor.
The eigenvalues are sorted in ascending order of their associated eigenvalues.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvectors are computed.
"""
(u,v) = np.linalg.eigh(symmetric(x))
return v
def transpose(x):
"""
Return the transpose of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -208,7 +222,7 @@ def transpose(x):
def rotational_part(x):
"""
Return the rotational part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -221,7 +235,7 @@ def rotational_part(x):
def left_stretch(x):
"""
Return the left stretch of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -229,12 +243,12 @@ def left_stretch(x):
"""
return __polar_decomposition(x,'V')[0]
def right_stretch(x):
"""
Return the right stretch of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
@ -247,20 +261,20 @@ def right_stretch(x):
def __polar_decomposition(x,requested):
"""
Singular value decomposition.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the singular values are computed.
requested : iterable of str
Requested outputs: R for the rotation tensor,
Requested outputs: R for the rotation tensor,
V for left stretch tensor and U for right stretch tensor.
"""
u, s, vh = np.linalg.svd(x)
R = np.dot(u,vh) if np.shape(x) == (3,3) else \
np.einsum('ijk,ikl->ijl',u,vh)
output = []
if 'R' in requested:
output.append(R)
@ -268,5 +282,5 @@ def __polar_decomposition(x,requested):
output.append(np.dot(x,R.T) if np.shape(x) == (3,3) else np.einsum('ijk,ilk->ijl',x,R))
if 'U' in requested:
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
return tuple(output)

View File

@ -2,10 +2,10 @@ import numpy as np
from damask import mechanics
class TestMechanics:
n = 1000
c = np.random.randint(n)
def test_vectorize_Cauchy(self):
P = np.random.random((self.n,3,3))
@ -58,10 +58,23 @@ class TestMechanics:
mechanics.maximum_shear(x[self.c]))
def test_vectorize_principal_components(self):
def test_vectorize_eigenvalues(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.principal_components(x)[self.c],
mechanics.principal_components(x[self.c]))
assert np.allclose(mechanics.eigenvalues(x)[self.c],
mechanics.eigenvalues(x[self.c]))
def test_vectorize_eigenvectors(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.eigenvectors(x)[self.c],
mechanics.eigenvectors(x[self.c]))
def test_vectorize_PK2(self):
F = np.random.random((self.n,3,3))
P = np.random.random((self.n,3,3))
assert np.allclose(mechanics.PK2(F,P)[self.c],
mechanics.PK2(F[self.c],P[self.c]))
def test_vectorize_transpose(self):
@ -102,7 +115,14 @@ class TestMechanics:
U = mechanics.right_stretch(F)
assert np.allclose(np.matmul(R,U),
np.matmul(V,R))
def test_PK2(self):
"""Ensure 2. Piola-Kirchhoff stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
P = np.random.random((self.n,3,3))
assert np.allclose(mechanics.PK2(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
mechanics.symmetric(P))
def test_strain_tensor_no_rotation(self):
"""Ensure that left and right stretch give same results for no rotation."""
@ -110,7 +130,7 @@ class TestMechanics:
m = np.random.random()*20.0-10.0
assert np.allclose(mechanics.strain_tensor(F,'U',m),
mechanics.strain_tensor(F,'V',m))
def test_strain_tensor_rotation_equivalence(self):
"""Ensure that left and right strain differ only by a rotation."""
F = np.broadcast_to(np.eye(3),[self.n,3,3]) + (np.random.random((self.n,3,3))*0.5 - 0.25)
@ -125,7 +145,7 @@ class TestMechanics:
m = np.random.random()*2.0 - 1.0
assert np.allclose(mechanics.strain_tensor(F,t,m),
0.0)
def test_rotation_determinant(self):
"""
Ensure that the determinant of the rotational part is +- 1.
@ -186,3 +206,22 @@ class TestMechanics:
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
1.5)
def test_eigenvalues(self):
"""Ensure that the characteristic polynomial can be solved."""
A = mechanics.symmetric(np.random.random((self.n,3,3)))
lambd = mechanics.eigenvalues(A)
s = np.random.randint(self.n)
for i in range(3):
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
def test_eigenvalues_and_vectors(self):
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
A = mechanics.symmetric(np.random.random((self.n,3,3)))
lambd = mechanics.eigenvalues(A)
x = mechanics.eigenvectors(A)
s = np.random.randint(self.n)
for i in range(3):
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)