eigenvalues is more specific name than principal components
This commit is contained in:
parent
a8e2ee0a86
commit
79533b075e
|
@ -3,9 +3,9 @@ import numpy as np
|
|||
def Cauchy(F,P):
|
||||
"""
|
||||
Return Cauchy stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
|
||||
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -24,7 +24,7 @@ def Cauchy(F,P):
|
|||
def PK2(F,P):
|
||||
"""
|
||||
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -37,16 +37,16 @@ def PK2(F,P):
|
|||
S = np.dot(np.linalg.inv(F),P)
|
||||
else:
|
||||
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
|
||||
return S
|
||||
return symmetric(S)
|
||||
|
||||
|
||||
def strain_tensor(F,t,m):
|
||||
"""
|
||||
Return strain tensor calculated from deformation gradient.
|
||||
|
||||
|
||||
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
|
||||
https://de.wikipedia.org/wiki/Verzerrungstensor
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
F : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -64,16 +64,16 @@ def strain_tensor(F,t,m):
|
|||
elif t == 'U':
|
||||
C = np.matmul(transpose(F_),F_)
|
||||
w,n = np.linalg.eigh(C)
|
||||
|
||||
|
||||
if m > 0.0:
|
||||
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
|
||||
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
|
||||
- np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
|
||||
elif m < 0.0:
|
||||
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
|
||||
+ np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
|
||||
else:
|
||||
eps = np.matmul(n,np.einsum('ij,ikj->ijk',0.5*np.log(w),n))
|
||||
|
||||
|
||||
return eps.reshape((3,3)) if np.shape(F) == (3,3) else \
|
||||
eps
|
||||
|
||||
|
@ -81,7 +81,7 @@ def strain_tensor(F,t,m):
|
|||
def deviatoric_part(x):
|
||||
"""
|
||||
Return deviatoric part of a tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -89,13 +89,13 @@ def deviatoric_part(x):
|
|||
|
||||
"""
|
||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
|
||||
|
||||
def spherical_part(x,tensor=False):
|
||||
"""
|
||||
Return spherical (hydrostatic) part of a tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -113,12 +113,12 @@ def spherical_part(x,tensor=False):
|
|||
return sph
|
||||
else:
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||
|
||||
|
||||
|
||||
|
||||
def Mises_stress(sigma):
|
||||
"""
|
||||
Return the Mises equivalent of a stress tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -128,12 +128,12 @@ def Mises_stress(sigma):
|
|||
s = deviatoric_part(sigma)
|
||||
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
|
||||
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
|
||||
|
||||
|
||||
|
||||
|
||||
def Mises_strain(epsilon):
|
||||
"""
|
||||
Return the Mises equivalent of a strain tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -148,7 +148,7 @@ def Mises_strain(epsilon):
|
|||
def symmetric(x):
|
||||
"""
|
||||
Return the symmetrized tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -161,40 +161,54 @@ def symmetric(x):
|
|||
def maximum_shear(x):
|
||||
"""
|
||||
Return the maximum shear component of a symmetric tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||
return (w[2] - w[0])*0.5 if np.shape(x) == (3,3) else \
|
||||
(w[:,2] - w[:,0])*0.5
|
||||
|
||||
|
||||
def principal_components(x):
|
||||
w = eigenvalues(x)
|
||||
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
|
||||
(w[:,0] - w[:,2])*0.5
|
||||
|
||||
|
||||
def eigenvalues(x):
|
||||
"""
|
||||
Return the principal components of a symmetric tensor.
|
||||
|
||||
The principal components (eigenvalues) are sorted in descending order, each repeated according to
|
||||
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||
|
||||
The eigenvalues are sorted in ascending order, each repeated according to
|
||||
its multiplicity.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the principal compontents are computed.
|
||||
Symmetric tensor of which the eigenvalues are computed.
|
||||
|
||||
"""
|
||||
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
|
||||
return w[::-1] if np.shape(x) == (3,3) else \
|
||||
w[:,::-1]
|
||||
|
||||
|
||||
return np.linalg.eigvalsh(symmetric(x))
|
||||
|
||||
|
||||
def eigenvectors(x):
|
||||
"""
|
||||
Return eigenvectors of a symmetric tensor.
|
||||
|
||||
The eigenvalues are sorted in ascending order of their associated eigenvalues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvectors are computed.
|
||||
|
||||
"""
|
||||
(u,v) = np.linalg.eigh(symmetric(x))
|
||||
return v
|
||||
|
||||
|
||||
def transpose(x):
|
||||
"""
|
||||
Return the transpose of a tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -208,7 +222,7 @@ def transpose(x):
|
|||
def rotational_part(x):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -221,7 +235,7 @@ def rotational_part(x):
|
|||
def left_stretch(x):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -229,12 +243,12 @@ def left_stretch(x):
|
|||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')[0]
|
||||
|
||||
|
||||
|
||||
|
||||
def right_stretch(x):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
|
@ -247,20 +261,20 @@ def right_stretch(x):
|
|||
def __polar_decomposition(x,requested):
|
||||
"""
|
||||
Singular value decomposition.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the singular values are computed.
|
||||
requested : iterable of str
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
|
||||
"""
|
||||
u, s, vh = np.linalg.svd(x)
|
||||
R = np.dot(u,vh) if np.shape(x) == (3,3) else \
|
||||
np.einsum('ijk,ikl->ijl',u,vh)
|
||||
|
||||
|
||||
output = []
|
||||
if 'R' in requested:
|
||||
output.append(R)
|
||||
|
@ -268,5 +282,5 @@ def __polar_decomposition(x,requested):
|
|||
output.append(np.dot(x,R.T) if np.shape(x) == (3,3) else np.einsum('ijk,ilk->ijl',x,R))
|
||||
if 'U' in requested:
|
||||
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
||||
|
||||
|
||||
return tuple(output)
|
||||
|
|
|
@ -2,10 +2,10 @@ import numpy as np
|
|||
from damask import mechanics
|
||||
|
||||
class TestMechanics:
|
||||
|
||||
|
||||
n = 1000
|
||||
c = np.random.randint(n)
|
||||
|
||||
|
||||
|
||||
def test_vectorize_Cauchy(self):
|
||||
P = np.random.random((self.n,3,3))
|
||||
|
@ -58,10 +58,23 @@ class TestMechanics:
|
|||
mechanics.maximum_shear(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_principal_components(self):
|
||||
def test_vectorize_eigenvalues(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.principal_components(x)[self.c],
|
||||
mechanics.principal_components(x[self.c]))
|
||||
assert np.allclose(mechanics.eigenvalues(x)[self.c],
|
||||
mechanics.eigenvalues(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_eigenvectors(self):
|
||||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.eigenvectors(x)[self.c],
|
||||
mechanics.eigenvectors(x[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_PK2(self):
|
||||
F = np.random.random((self.n,3,3))
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.PK2(F,P)[self.c],
|
||||
mechanics.PK2(F[self.c],P[self.c]))
|
||||
|
||||
|
||||
def test_vectorize_transpose(self):
|
||||
|
@ -102,7 +115,14 @@ class TestMechanics:
|
|||
U = mechanics.right_stretch(F)
|
||||
assert np.allclose(np.matmul(R,U),
|
||||
np.matmul(V,R))
|
||||
|
||||
|
||||
|
||||
def test_PK2(self):
|
||||
"""Ensure 2. Piola-Kirchhoff stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||
P = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.PK2(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
|
||||
mechanics.symmetric(P))
|
||||
|
||||
|
||||
def test_strain_tensor_no_rotation(self):
|
||||
"""Ensure that left and right stretch give same results for no rotation."""
|
||||
|
@ -110,7 +130,7 @@ class TestMechanics:
|
|||
m = np.random.random()*20.0-10.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,'U',m),
|
||||
mechanics.strain_tensor(F,'V',m))
|
||||
|
||||
|
||||
def test_strain_tensor_rotation_equivalence(self):
|
||||
"""Ensure that left and right strain differ only by a rotation."""
|
||||
F = np.broadcast_to(np.eye(3),[self.n,3,3]) + (np.random.random((self.n,3,3))*0.5 - 0.25)
|
||||
|
@ -125,7 +145,7 @@ class TestMechanics:
|
|||
m = np.random.random()*2.0 - 1.0
|
||||
assert np.allclose(mechanics.strain_tensor(F,t,m),
|
||||
0.0)
|
||||
|
||||
|
||||
def test_rotation_determinant(self):
|
||||
"""
|
||||
Ensure that the determinant of the rotational part is +- 1.
|
||||
|
@ -186,3 +206,22 @@ class TestMechanics:
|
|||
x = np.random.random((self.n,3,3))
|
||||
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
|
||||
1.5)
|
||||
|
||||
|
||||
def test_eigenvalues(self):
|
||||
"""Ensure that the characteristic polynomial can be solved."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
lambd = mechanics.eigenvalues(A)
|
||||
s = np.random.randint(self.n)
|
||||
for i in range(3):
|
||||
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
|
||||
|
||||
|
||||
def test_eigenvalues_and_vectors(self):
|
||||
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
|
||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||
lambd = mechanics.eigenvalues(A)
|
||||
x = mechanics.eigenvectors(A)
|
||||
s = np.random.randint(self.n)
|
||||
for i in range(3):
|
||||
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
|
||||
|
|
Loading…
Reference in New Issue