1. fix up Banabic-Balan-Comsa 2003 (BBC2003) yield criterion;

2. add the calculation Jacobian of BBC2003; 
3. Now BBC2003 yield criterion takes effect
This commit is contained in:
Haiming Zhang 2015-02-12 20:48:03 +00:00
parent 69af205721
commit 77cffd8040
1 changed files with 60 additions and 16 deletions

View File

@ -3,7 +3,6 @@
import threading,time,os,subprocess,shlex,string import threading,time,os,subprocess,shlex,string
import numpy as np import numpy as np
from scipy.optimize import curve_fit
from scipy.linalg import svd from scipy.linalg import svd
from optparse import OptionParser from optparse import OptionParser
import damask import damask
@ -183,6 +182,15 @@ class Barlat1991aniso(object):
def jac(self, (sigma0, a,b,c,f,g,h, m), ydata, sigmas): def jac(self, (sigma0, a,b,c,f,g,h, m), ydata, sigmas):
return Barlat1991Basis(sigma0, a,b,c,f,g,h, m, sigmas, Jac=True, nParas=8) return Barlat1991Basis(sigma0, a,b,c,f,g,h, m, sigmas, Jac=True, nParas=8)
class BBC2003(object):
'''
residuum of anisotropic Barlat 1991 yield criterion (eq. 2.37)
'''
def fun(self, (sigma0, a,b,c, d,e,f,g, k), ydata, sigmas):
return BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, ydata, sigmas)
def jac(self, (sigma0, a,b,c, d,e,f,g, k), ydata, sigmas):
return BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, ydata, sigmas, Jac=True)
def Cazacu_Barlat3D(sigma0,a1,a2,a3,a4,a5,a6, b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, c, def Cazacu_Barlat3D(sigma0,a1,a2,a3,a4,a5,a6, b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, c,
ydata, sigmas): ydata, sigmas):
''' '''
@ -223,21 +231,6 @@ def Cazacu_Barlat2D(sigma0,a1,a2,a3,a6, b1,b2,b3,b4,b5,b10, c,
r = f0/k2 - 1.0 r = f0/k2 - 1.0
return r.ravel() return r.ravel()
def BBC2003(sigma0, a,b,c, d,e,f,g, k, ydata, sigmas):
'''
residuum of the BBC2003 yield criterion for plain stress
'''
s11 = sigmas[0]; s22 = sigmas[1]; s12 = sigmas[3]
k2 = 2.0*k
Gamma = s11*(d+e) + s22*(e+f)
Psi = ( ( s11*(d-e)/2.0 + s22*(e-f)/2.0 )**2 + (g*s12)**2 )**0.5
sBar = ( a*(b*Gamma + c*Psi)**k2 + a*(b*Gamma - c*Psi)**k2 +
(1-a)*(2.0*c*Psi)**k2 )**(1.0/k2)
r = sBar/sigma0 - 1.0
return r.ravel()
def DruckerBasis(sigma0, C_D, p, sigmas, Jac=False, nParas=2): def DruckerBasis(sigma0, C_D, p, sigmas, Jac=False, nParas=2):
s11 = sigmas[0]; s22 = sigmas[1]; s33 = sigmas[2] s11 = sigmas[0]; s22 = sigmas[1]; s33 = sigmas[2]
s12 = sigmas[3]; s23 = sigmas[4]; s31 = sigmas[5] s12 = sigmas[3]; s23 = sigmas[4]; s31 = sigmas[5]
@ -368,6 +361,57 @@ def Barlat1991Basis(sigma0, a, b, c, f, g, h, m, sigmas, Jac=False, nParas=2):
jaco.append([j1,j2,j3,j4,j5,j6,j7,j8]) jaco.append([j1,j2,j3,j4,j5,j6,j7,j8])
return np.array(jaco) return np.array(jaco)
def BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, ydata, sigmas, Jac=False):
'''
residuum of the BBC2003 yield criterion for plain stress
'''
s11 = sigmas[0]; s22 = sigmas[1]; s12 = sigmas[3]
k2 = 2.0*k
M = d+e; N = e+f; P = (d-e)/2.0; Q = (e-f)/2.0; R = g**2
Gamma = M*s11 + N*s22
Psi = ( ( P*s11 + Q*s22 )**2 + s12**2*R )**0.5
l1 = b*Gamma + c*Psi; l2 = b*Gamma - c*Psi; l3 = 2.0*c*Psi
l1s = l1**2; l2s = l2**2; l3s = l3**2
left = a*l1s**k + a*l2s**k + (1-a)*l3s**k
sBar = left**(1.0/k2); r = sBar/sigma0 - 1.0
if not Jac:
return r.ravel()
else:
temp = (P*s11 + Q*s22)/Psi
dPsidP = temp*s11; dPsidQ = temp*s22; dPsidR = 0.5*s12**2/Psi
ln = lambda x : np.log(x + 1.0e-32)
jaco = []
expo = 0.5/k; k1 = k-1.0
dsBardl = expo*sBar/left/sigma0
dsBarde = sBar*ln(left); dedk = expo/(-k)
dldl1 = a *k*(l1s**k1)*(2.0*l1)
dldl2 = a *k*(l2s**k1)*(2.0*l2)
dldl3 = (1-a)*k*(l3s**k1)*(2.0*l3)
dldGama = (dldl1 + dldl2)*b
dldPsi = (dldl1 - dldl2 + 2.0*dldl3)*c
dlda = l1s**k + l2s**k - l3s**k
dldb = dldl1*Gamma + dldl2*Gamma
dldc = dldl1*Psi - dldl2*Psi + dldl3*2.0*Psi
dldk = a*ln(l1s)*l1s**k + a*ln(l2s)*l2s**k + (1-a)*ln(l3s)*l3s**k
js = -(r + 1.0)/sigma0
ja = dsBardl * dlda
jb = dsBardl * dldb
jc = dsBardl * dldc
jd = dsBardl *(dldGama*s11 + dldPsi*dPsidP*0.5)
je = dsBardl *(dldGama*(s11+s22) + dldPsi*(dPsidP*(-0.5) + dPsidQ*0.5) )
jf = dsBardl *(dldGama*s22 + dldPsi*dPsidQ*(-0.5))
jg = dsBardl * dldPsi * dPsidR * 2.0*g
jk = dsBardl * dldk + dsBarde * dedk
for j1,j2,j3,j4,j5,j6,j7,j8,j9 in zip(js,ja,jb,jc,jd, je, jf,jg,jk):
jaco.append([j1,j2,j3,j4,j5,j6,j7,j8,j9])
return np.array(jaco)
fittingCriteria = { fittingCriteria = {
'tresca' :{'func' : Tresca, 'tresca' :{'func' : Tresca,