standard way to report

This commit is contained in:
Martin Diehl 2022-11-25 07:00:15 +01:00
parent f8844285d7
commit 77be2c0d4c
1 changed files with 10 additions and 4 deletions

View File

@ -416,7 +416,7 @@ def project_equal_area(vector: _np.ndarray,
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
def hybrid_IA(dist: _np.ndarray,
def hybrid_IA(dist: _FloatSequence,
N: int,
rng_seed: _NumpyRngSeed = None) -> _np.ndarray:
"""
@ -425,19 +425,25 @@ def hybrid_IA(dist: _np.ndarray,
Parameters
----------
dist : numpy.ndarray
Distribution to be approximated
Distribution to be approximated.
N : int
Number of samples to draw.
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
Returns
-------
hist : numpy.ndarray, shape (N)
Integer approximation of the distribution.
"""
N_opt_samples,N_inv_samples = (max(_np.count_nonzero(dist),N),0) # random subsampling if too little samples requested
N_opt_samples = max(_np.count_nonzero(dist),N) # random subsampling if too little samples requested
N_inv_samples = 0
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
while (not _np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
repeats = _np.rint(scale*dist).astype(_np.int64)
repeats = _np.rint(scale*_np.array(dist)).astype(_np.int64)
N_inv_samples = _np.sum(repeats)
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
if N_inv_samples < N_opt_samples else \