correct calculation of tangent.
thanks to Seyedamirhossein Motaman (RWTH Aachen) for reporting
This commit is contained in:
parent
e678b231d9
commit
770cf33667
|
@ -17,8 +17,8 @@ submodule(phase:plastic) dislotwin
|
|||
p_sb = 1.0_pReal, & !< p-exponent in shear band velocity
|
||||
q_sb = 1.0_pReal, & !< q-exponent in shear band velocity
|
||||
i_tw = 1.0_pReal, & !< adjustment parameter to calculate MFP for twinning
|
||||
L_tw = 1.0_pReal, & !< Length of twin nuclei in Burgers vectors
|
||||
L_tr = 1.0_pReal, & !< Length of trans nuclei in Burgers vectors
|
||||
L_tw = 1.0_pReal, & !< length of twin nuclei in Burgers vectors: TODO unit should be meters
|
||||
L_tr = 1.0_pReal, & !< length of trans nuclei in Burgers vectors: TODO unit should be meters
|
||||
x_c_tw = 1.0_pReal, & !< critical distance for formation of twin nucleus
|
||||
x_c_tr = 1.0_pReal, & !< critical distance for formation of trans nucleus
|
||||
V_cs = 1.0_pReal, & !< cross slip volume
|
||||
|
@ -731,8 +731,6 @@ module subroutine dislotwin_dependentState(T,ph,en)
|
|||
real(pReal), dimension(param(ph)%sum_N_tr) :: &
|
||||
inv_lambda_tr_tr, & !< 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite
|
||||
f_over_t_tr
|
||||
real(pReal), dimension(:), allocatable :: &
|
||||
x0
|
||||
real(pReal) :: &
|
||||
mu, &
|
||||
nu
|
||||
|
@ -941,16 +939,15 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
|
|||
real(pReal), dimension(param(ph)%sum_N_tw), optional, intent(out) :: &
|
||||
ddot_gamma_dtau_tw
|
||||
|
||||
real, dimension(param(ph)%sum_N_tw) :: &
|
||||
tau, &
|
||||
dot_N_0, &
|
||||
ratio_tau_r, &
|
||||
ddot_gamma_dtau
|
||||
real :: &
|
||||
ratio_tau_s, &
|
||||
tau, tau_r, &
|
||||
dot_N_0, &
|
||||
x0, &
|
||||
tau_r, &
|
||||
Gamma, &
|
||||
mu, nu
|
||||
mu, nu, &
|
||||
P_ncs, dP_ncs_dtau, &
|
||||
P, dP_dtau
|
||||
integer, dimension(2) :: &
|
||||
s
|
||||
integer :: i
|
||||
|
@ -958,41 +955,53 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
|
|||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
isFCC: if (prm%fccTwinTransNucleation) then
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
Gamma = prm%Gamma_sf(1) + prm%Gamma_sf(2) * (T-prm%T_ref)
|
||||
|
||||
do i = 1, prm%sum_N_tw
|
||||
tau(i) = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
|
||||
isFCC: if (prm%fccTwinTransNucleation) then
|
||||
x0 = mu*prm%b_tw(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, this is the Burgers vector for slip
|
||||
tau = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
|
||||
x0 = mu*prm%b_tw(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, the Burgers vector for slip is used
|
||||
tau_r = mu*prm%b_tw(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(PI/3.0_pReal)/x0)
|
||||
if (tau(i) < tau_r) then ! ToDo: correct?
|
||||
|
||||
if (tau > tol_math_check .and. tau < tau_r) then
|
||||
ratio_tau_s = (dst%tau_hat_tw(i,en)/tau)**prm%r(i)
|
||||
P = exp(-ratio_tau_s)
|
||||
dP_dTau = prm%r(i) * ratio_tau_s/tau * P
|
||||
|
||||
s=prm%fcc_twinNucleationSlipPair(1:2,i)
|
||||
dot_N_0(i)=(abs(dot_gamma_sl(s(1)))*(stt%rho_mob(s(2),en)+stt%rho_dip(s(2),en))+&
|
||||
abs(dot_gamma_sl(s(2)))*(stt%rho_mob(s(1),en)+stt%rho_dip(s(1),en)))/&
|
||||
(prm%L_tw*prm%b_sl(i))*(1.0_pReal-exp(-prm%V_cs/(K_B*T)*(tau_r-tau(i))))
|
||||
dot_N_0=(abs(dot_gamma_sl(s(1)))*(stt%rho_mob(s(2),en)+stt%rho_dip(s(2),en))+&
|
||||
abs(dot_gamma_sl(s(2)))*(stt%rho_mob(s(1),en)+stt%rho_dip(s(1),en)))/(prm%L_tw*prm%b_sl(i))
|
||||
|
||||
P_ncs = 1.0_pReal-exp(-prm%V_cs/(K_B*T)*(tau_r-tau))
|
||||
dP_ncs_dtau = prm%V_cs / (K_B * T) * (P_ncs - 1.0_pReal)
|
||||
|
||||
dot_gamma_tw(i) = dst%V_tw(i,en)*dot_N_0*P_ncs*P
|
||||
if (present(ddot_gamma_dtau_tw)) &
|
||||
ddot_gamma_dtau_tw(i) = dst%V_tw(i,en)*dot_N_0*(P*dP_ncs_dtau + P_ncs*dP_dtau)
|
||||
else
|
||||
dot_N_0(i)=0.0_pReal
|
||||
dot_gamma_tw(i) = 0.0_pReal
|
||||
if (present(ddot_gamma_dtau_tw)) ddot_gamma_dtau_tw(i) = 0.0_pReal
|
||||
end if
|
||||
else isFCC
|
||||
dot_N_0(i)=prm%dot_N_0_tw(i)
|
||||
end if isFCC
|
||||
end do
|
||||
|
||||
significantStress: where(tau > tol_math_check)
|
||||
ratio_tau_r = (dst%tau_hat_tw(:,en)/tau)**prm%r
|
||||
dot_gamma_tw = prm%gamma_char * dst%V_tw(:,en) * dot_N_0*exp(-ratio_tau_r)
|
||||
ddot_gamma_dtau = (dot_gamma_tw*prm%r/tau)*ratio_tau_r
|
||||
else where significantStress
|
||||
dot_gamma_tw = 0.0_pReal
|
||||
ddot_gamma_dtau = 0.0_pReal
|
||||
end where significantStress
|
||||
else isFCC
|
||||
do i = 1, prm%sum_N_tw
|
||||
error stop 'not implemented'
|
||||
tau = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
|
||||
if (tau > tol_math_check) then
|
||||
dot_gamma_tw(i) = 0.0_pReal
|
||||
if (present(ddot_gamma_dtau_tw)) ddot_gamma_dtau_tw(i) = 0.0_pReal
|
||||
else
|
||||
dot_gamma_tw(i) = 0.0_pReal
|
||||
if (present(ddot_gamma_dtau_tw)) ddot_gamma_dtau_tw(i) = 0.0_pReal
|
||||
end if
|
||||
end do
|
||||
end if isFCC
|
||||
|
||||
end associate
|
||||
|
||||
if (present(ddot_gamma_dtau_tw)) ddot_gamma_dtau_tw = ddot_gamma_dtau
|
||||
|
||||
end subroutine kinetics_tw
|
||||
|
||||
|
||||
|
@ -1021,15 +1030,15 @@ pure subroutine kinetics_tr(Mp,T,dot_gamma_sl,ph,en,&
|
|||
real(pReal), dimension(param(ph)%sum_N_tr), optional, intent(out) :: &
|
||||
ddot_gamma_dtau_tr
|
||||
|
||||
real, dimension(param(ph)%sum_N_tr) :: &
|
||||
ddot_gamma_dtau
|
||||
real :: &
|
||||
ratio_tau_s, &
|
||||
tau, tau_r, &
|
||||
dot_N_0, &
|
||||
x0, &
|
||||
Gamma, &
|
||||
mu, nu
|
||||
mu, nu, &
|
||||
P_ncs, dP_ncs_dtau, &
|
||||
P, dP_dtau
|
||||
integer, dimension(2) :: &
|
||||
s
|
||||
integer :: i
|
||||
|
@ -1043,29 +1052,32 @@ pure subroutine kinetics_tr(Mp,T,dot_gamma_sl,ph,en,&
|
|||
|
||||
do i = 1, prm%sum_N_tr
|
||||
tau = math_tensordot(Mp,prm%P_tr(1:3,1:3,i))
|
||||
x0 = mu*prm%b_tr(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, this is the Burgers vector for slip
|
||||
x0 = mu*prm%b_tr(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, the Burgers vector for slip is used
|
||||
tau_r = mu*prm%b_tr(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(PI/3.0_pReal)/x0)
|
||||
if (tau > tol_math_check .and. tau < tau_r) then
|
||||
|
||||
if (tau > tol_math_check .and. tau < tau_r) then
|
||||
ratio_tau_s = (dst%tau_hat_tr(i,en)/tau)**prm%s(i)
|
||||
P = exp(-ratio_tau_s)
|
||||
dP_dTau = prm%s(i) * ratio_tau_s/tau * P
|
||||
|
||||
s=prm%fcc_twinNucleationSlipPair(1:2,i)
|
||||
dot_N_0=(abs(dot_gamma_sl(s(1)))*(stt%rho_mob(s(2),en)+stt%rho_dip(s(2),en))+&
|
||||
abs(dot_gamma_sl(s(2)))*(stt%rho_mob(s(1),en)+stt%rho_dip(s(1),en)))/&
|
||||
(prm%L_tr*prm%b_sl(i))*(1.0_pReal-exp(-prm%V_cs/(K_B*T)*(tau_r-tau)))
|
||||
abs(dot_gamma_sl(s(2)))*(stt%rho_mob(s(1),en)+stt%rho_dip(s(1),en)))/(prm%L_tr*prm%b_sl(i))
|
||||
|
||||
dot_gamma_tr(i) = dst%V_tr(i,en) * dot_N_0*exp(-ratio_tau_s)
|
||||
ddot_gamma_dtau(i) = (dot_gamma_tr(i)*prm%s(i)/tau)*ratio_tau_s
|
||||
P_ncs = 1.0_pReal-exp(-prm%V_cs/(K_B*T)*(tau_r-tau))
|
||||
dP_ncs_dtau = prm%V_cs / (K_B * T) * (P_ncs - 1.0_pReal)
|
||||
|
||||
dot_gamma_tr(i) = dst%V_tr(i,en)*dot_N_0*P_ncs*P
|
||||
if (present(ddot_gamma_dtau_tr)) &
|
||||
ddot_gamma_dtau_tr(i) = dst%V_tr(i,en)*dot_N_0*(P*dP_ncs_dtau + P_ncs*dP_dtau)
|
||||
else
|
||||
dot_gamma_tr(i) = 0.0_pReal
|
||||
ddot_gamma_dtau(i) = 0.0_pReal
|
||||
if (present(ddot_gamma_dtau_tr)) ddot_gamma_dtau_tr(i) = 0.0_pReal
|
||||
end if
|
||||
end do
|
||||
|
||||
end associate
|
||||
|
||||
if (present(ddot_gamma_dtau_tr)) ddot_gamma_dtau_tr = ddot_gamma_dtau
|
||||
|
||||
end subroutine kinetics_tr
|
||||
|
||||
end submodule dislotwin
|
||||
|
|
Loading…
Reference in New Issue