adopted orientation conventions and mathematics from Rowenhorst -- tests should now pass...
This commit is contained in:
parent
dc4ac1dce1
commit
7663d20b56
|
@ -27,15 +27,22 @@ class Rodrigues:
|
||||||
|
|
||||||
# ******************************************************************************************
|
# ******************************************************************************************
|
||||||
class Quaternion:
|
class Quaternion:
|
||||||
"""
|
u"""
|
||||||
Orientation represented as unit quaternion.
|
Orientation represented as unit quaternion.
|
||||||
|
|
||||||
All methods and naming conventions based on http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions.
|
All methods and naming conventions based on Rowenhorst_etal2015
|
||||||
|
Convention 1: coordinate frames are right-handed
|
||||||
|
Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
||||||
|
when viewing from the end point of the rotation axis unit vector towards the origin
|
||||||
|
Convention 3: rotations will be interpreted in the passive sense
|
||||||
|
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
||||||
|
with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
||||||
|
Convention 5: the rotation angle ω is limited to the interval [0, π]
|
||||||
|
|
||||||
w is the real part, (x, y, z) are the imaginary parts.
|
w is the real part, (x, y, z) are the imaginary parts.
|
||||||
Representation of rotation is in ACTIVE form!
|
|
||||||
(Derived directly or through angleAxis, Euler angles, or active matrix)
|
Vector "a" (defined in coordinate system "A") is passively rotated
|
||||||
Vector "a" (defined in coordinate system "A") is actively rotated to new coordinates "b".
|
resulting in new coordinates "b" when expressed in system "B".
|
||||||
b = Q * a
|
b = Q * a
|
||||||
b = np.dot(Q.asMatrix(),a)
|
b = np.dot(Q.asMatrix(),a)
|
||||||
"""
|
"""
|
||||||
|
@ -309,10 +316,12 @@ class Quaternion:
|
||||||
return np.outer([i for i in self],[i for i in self])
|
return np.outer([i for i in self],[i for i in self])
|
||||||
|
|
||||||
def asMatrix(self):
|
def asMatrix(self):
|
||||||
return np.array(
|
qbarhalf = 0.5*(self.w**2 - self.x**2 - self.y**2 - self.z**2)
|
||||||
[[1.0-2.0*(self.y*self.y+self.z*self.z), 2.0*(self.x*self.y-self.z*self.w), 2.0*(self.x*self.z+self.y*self.w)],
|
return 2.0*np.array(
|
||||||
[ 2.0*(self.x*self.y+self.z*self.w), 1.0-2.0*(self.x*self.x+self.z*self.z), 2.0*(self.y*self.z-self.x*self.w)],
|
[[ qbarhalf + self.x**2 , self.x*self.y - self.w*self.z, self.x*self.z + self.w*self.y],
|
||||||
[ 2.0*(self.x*self.z-self.y*self.w), 2.0*(self.x*self.w+self.y*self.z), 1.0-2.0*(self.x*self.x+self.y*self.y)]])
|
[ self.x*self.y + self.w*self.z, qbarhalf + self.y**2 , self.y*self.z - self.w*self.x],
|
||||||
|
[ self.x*self.z - self.w*self.y, self.y*self.z + self.w*self.x, qbarhalf + self.z**2 ],
|
||||||
|
])
|
||||||
|
|
||||||
def asAngleAxis(self,
|
def asAngleAxis(self,
|
||||||
degrees = False):
|
degrees = False):
|
||||||
|
@ -335,52 +344,23 @@ class Quaternion:
|
||||||
return np.inf*np.ones(3) if self.w == 0.0 else np.array([self.x, self.y, self.z])/self.w
|
return np.inf*np.ones(3) if self.w == 0.0 else np.array([self.x, self.y, self.z])/self.w
|
||||||
|
|
||||||
def asEulers(self,
|
def asEulers(self,
|
||||||
type = "bunge",
|
degrees = False):
|
||||||
degrees = False,
|
"""Orientation as Bunge-Euler angles."""
|
||||||
standardRange = False):
|
q03 = self.w**2+self.z**2
|
||||||
"""
|
q12 = self.x**2+self.y**2
|
||||||
Orientation as Bunge-Euler angles.
|
chi = np.sqrt(q03*q12)
|
||||||
|
|
||||||
|
if abs(chi) < 1e-10 and abs(q12) < 1e-10:
|
||||||
|
eulers = np.array([math.atan2(-2*self.w*self.z,self.w**2-self.z**2),0,0])
|
||||||
|
elif abs(chi) < 1e-10 and abs(q03) < 1e-10:
|
||||||
|
eulers = np.array([math.atan2( 2*self.x*self.y,self.x**2-self.y**2),np.pi,0])
|
||||||
|
else:
|
||||||
|
eulers = np.array([math.atan2((self.x*self.z-self.w*self.y)/chi,(-self.w*self.x-self.y*self.z)/chi),
|
||||||
|
math.atan2(2*chi,q03-q12),
|
||||||
|
math.atan2((self.w*self.y+self.x*self.z)/chi,( self.y*self.z-self.w*self.x)/chi),
|
||||||
|
])
|
||||||
|
|
||||||
Conversion of ACTIVE rotation to Euler angles taken from:
|
return np.degrees(eulers) if degrees else eulers
|
||||||
Melcher, A.; Unser, A.; Reichhardt, M.; Nestler, B.; Poetschke, M.; Selzer, M.
|
|
||||||
Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations
|
|
||||||
Technische Mechanik 30 (2010) pp 401--413.
|
|
||||||
"""
|
|
||||||
angles = [0.0,0.0,0.0]
|
|
||||||
|
|
||||||
if type.lower() == 'bunge' or type.lower() == 'zxz':
|
|
||||||
if abs(self.x) < 1e-4 and abs(self.y) < 1e-4:
|
|
||||||
x = self.w**2 - self.z**2
|
|
||||||
y = 2.*self.w*self.z
|
|
||||||
angles[0] = math.atan2(y,x)
|
|
||||||
elif abs(self.w) < 1e-4 and abs(self.z) < 1e-4:
|
|
||||||
x = self.x**2 - self.y**2
|
|
||||||
y = 2.*self.x*self.y
|
|
||||||
angles[0] = math.atan2(y,x)
|
|
||||||
angles[1] = math.pi
|
|
||||||
else:
|
|
||||||
chi = math.sqrt((self.w**2 + self.z**2)*(self.x**2 + self.y**2))
|
|
||||||
|
|
||||||
x = (self.w * self.x - self.y * self.z)/2./chi
|
|
||||||
y = (self.w * self.y + self.x * self.z)/2./chi
|
|
||||||
angles[0] = math.atan2(y,x)
|
|
||||||
|
|
||||||
x = self.w**2 + self.z**2 - (self.x**2 + self.y**2)
|
|
||||||
y = 2.*chi
|
|
||||||
angles[1] = math.atan2(y,x)
|
|
||||||
|
|
||||||
x = (self.w * self.x + self.y * self.z)/2./chi
|
|
||||||
y = (self.z * self.x - self.y * self.w)/2./chi
|
|
||||||
angles[2] = math.atan2(y,x)
|
|
||||||
|
|
||||||
if standardRange:
|
|
||||||
angles[0] %= 2*math.pi
|
|
||||||
if angles[1] < 0.0:
|
|
||||||
angles[1] += math.pi
|
|
||||||
angles[2] *= -1.0
|
|
||||||
angles[2] %= 2*math.pi
|
|
||||||
|
|
||||||
return np.degrees(angles) if degrees else angles
|
|
||||||
|
|
||||||
|
|
||||||
# # Static constructors
|
# # Static constructors
|
||||||
|
@ -408,7 +388,7 @@ class Quaternion:
|
||||||
halfangle = math.atan(np.linalg.norm(rodrigues))
|
halfangle = math.atan(np.linalg.norm(rodrigues))
|
||||||
c = math.cos(halfangle)
|
c = math.cos(halfangle)
|
||||||
w = c
|
w = c
|
||||||
x,y,z = c*rodrigues
|
x,y,z = rodrigues/c
|
||||||
return cls([w,x,y,z])
|
return cls([w,x,y,z])
|
||||||
|
|
||||||
|
|
||||||
|
@ -431,24 +411,19 @@ class Quaternion:
|
||||||
@classmethod
|
@classmethod
|
||||||
def fromEulers(cls,
|
def fromEulers(cls,
|
||||||
eulers,
|
eulers,
|
||||||
type = 'Bunge',
|
|
||||||
degrees = False):
|
degrees = False):
|
||||||
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype='d')
|
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype='d')
|
||||||
eulers = np.radians(eulers) if degrees else eulers
|
eulers = np.radians(eulers) if degrees else eulers
|
||||||
|
|
||||||
c = np.cos(0.5 * eulers)
|
sigma = 0.5*(eulers[0]+eulers[2])
|
||||||
s = np.sin(0.5 * eulers)
|
delta = 0.5*(eulers[0]-eulers[2])
|
||||||
|
c = np.cos(0.5*eulers[1])
|
||||||
|
s = np.sin(0.5*eulers[1])
|
||||||
|
|
||||||
if type.lower() == 'bunge' or type.lower() == 'zxz':
|
w = c * np.cos(sigma)
|
||||||
w = c[0] * c[1] * c[2] - s[0] * c[1] * s[2]
|
x = -s * np.cos(delta)
|
||||||
x = c[0] * s[1] * c[2] + s[0] * s[1] * s[2]
|
y = -s * np.sin(delta)
|
||||||
y = - c[0] * s[1] * s[2] + s[0] * s[1] * c[2]
|
z = -c * np.sin(sigma)
|
||||||
z = c[0] * c[1] * s[2] + s[0] * c[1] * c[2]
|
|
||||||
else:
|
|
||||||
w = c[0] * c[1] * c[2] - s[0] * s[1] * s[2]
|
|
||||||
x = s[0] * s[1] * c[2] + c[0] * c[1] * s[2]
|
|
||||||
y = s[0] * c[1] * c[2] + c[0] * s[1] * s[2]
|
|
||||||
z = c[0] * s[1] * c[2] - s[0] * c[1] * s[2]
|
|
||||||
return cls([w,x,y,z])
|
return cls([w,x,y,z])
|
||||||
|
|
||||||
|
|
||||||
|
@ -460,49 +435,16 @@ class Quaternion:
|
||||||
if m.shape != (3,3) and np.prod(m.shape) == 9:
|
if m.shape != (3,3) and np.prod(m.shape) == 9:
|
||||||
m = m.reshape(3,3)
|
m = m.reshape(3,3)
|
||||||
|
|
||||||
tr = np.trace(m)
|
w = 0.5*math.sqrt(1.+m[0,0]+m[1,1]+m[2,2])
|
||||||
if tr > 1e-8:
|
x = 0.5*math.sqrt(1.+m[0,0]-m[1,1]-m[2,2])
|
||||||
s = math.sqrt(tr + 1.0)*2.0
|
y = 0.5*math.sqrt(1.-m[0,0]+m[1,1]-m[2,2])
|
||||||
|
z = 0.5*math.sqrt(1.-m[0,0]-m[1,1]+m[2,2])
|
||||||
|
|
||||||
return cls(
|
x *= -1 if m[2,1] < m[1,2] else 1
|
||||||
[ s*0.25,
|
y *= -1 if m[0,2] < m[2,0] else 1
|
||||||
(m[2,1] - m[1,2])/s,
|
z *= -1 if m[1,0] < m[0,1] else 1
|
||||||
(m[0,2] - m[2,0])/s,
|
|
||||||
(m[1,0] - m[0,1])/s,
|
|
||||||
])
|
|
||||||
|
|
||||||
elif m[0,0] > m[1,1] and m[0,0] > m[2,2]:
|
return cls( np.array([w,x,y,z])/math.sqrt(w**2 + x**2 + y**2 + z**2))
|
||||||
t = m[0,0] - m[1,1] - m[2,2] + 1.0
|
|
||||||
s = 2.0*math.sqrt(t)
|
|
||||||
|
|
||||||
return cls(
|
|
||||||
[ (m[2,1] - m[1,2])/s,
|
|
||||||
s*0.25,
|
|
||||||
(m[0,1] + m[1,0])/s,
|
|
||||||
(m[2,0] + m[0,2])/s,
|
|
||||||
])
|
|
||||||
|
|
||||||
elif m[1,1] > m[2,2]:
|
|
||||||
t = -m[0,0] + m[1,1] - m[2,2] + 1.0
|
|
||||||
s = 2.0*math.sqrt(t)
|
|
||||||
|
|
||||||
return cls(
|
|
||||||
[ (m[0,2] - m[2,0])/s,
|
|
||||||
(m[0,1] + m[1,0])/s,
|
|
||||||
s*0.25,
|
|
||||||
(m[1,2] + m[2,1])/s,
|
|
||||||
])
|
|
||||||
|
|
||||||
else:
|
|
||||||
t = -m[0,0] - m[1,1] + m[2,2] + 1.0
|
|
||||||
s = 2.0*math.sqrt(t)
|
|
||||||
|
|
||||||
return cls(
|
|
||||||
[ (m[1,0] - m[0,1])/s,
|
|
||||||
(m[2,0] + m[0,2])/s,
|
|
||||||
(m[1,2] + m[2,1])/s,
|
|
||||||
s*0.25,
|
|
||||||
])
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
@ -663,7 +605,7 @@ class Symmetry:
|
||||||
quaternion,
|
quaternion,
|
||||||
who = []):
|
who = []):
|
||||||
"""List of symmetrically equivalent quaternions based on own symmetry."""
|
"""List of symmetrically equivalent quaternions based on own symmetry."""
|
||||||
return [quaternion*q for q in self.symmetryQuats(who)]
|
return [q*quaternion for q in self.symmetryQuats(who)]
|
||||||
|
|
||||||
|
|
||||||
def inFZ(self,R):
|
def inFZ(self,R):
|
||||||
|
@ -829,7 +771,7 @@ class Orientation:
|
||||||
else:
|
else:
|
||||||
self.quaternion = Quaternion.fromRandom(randomSeed=random)
|
self.quaternion = Quaternion.fromRandom(randomSeed=random)
|
||||||
elif isinstance(Eulers, np.ndarray) and Eulers.shape == (3,): # based on given Euler angles
|
elif isinstance(Eulers, np.ndarray) and Eulers.shape == (3,): # based on given Euler angles
|
||||||
self.quaternion = Quaternion.fromEulers(Eulers,type='bunge',degrees=degrees)
|
self.quaternion = Quaternion.fromEulers(Eulers,degrees=degrees)
|
||||||
elif isinstance(matrix, np.ndarray) : # based on given rotation matrix
|
elif isinstance(matrix, np.ndarray) : # based on given rotation matrix
|
||||||
self.quaternion = Quaternion.fromMatrix(matrix)
|
self.quaternion = Quaternion.fromMatrix(matrix)
|
||||||
elif isinstance(angleAxis, np.ndarray) and angleAxis.shape == (4,): # based on given angle and rotation axis
|
elif isinstance(angleAxis, np.ndarray) and angleAxis.shape == (4,): # based on given angle and rotation axis
|
||||||
|
@ -855,16 +797,15 @@ class Orientation:
|
||||||
return 'Symmetry: %s\n' % (self.symmetry) + \
|
return 'Symmetry: %s\n' % (self.symmetry) + \
|
||||||
'Quaternion: %s\n' % (self.quaternion) + \
|
'Quaternion: %s\n' % (self.quaternion) + \
|
||||||
'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \
|
'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \
|
||||||
'Bunge Eulers / deg: %s' % ('\t'.join(map(str,self.asEulers('bunge',degrees=True))) )
|
'Bunge Eulers / deg: %s' % ('\t'.join(map(str,self.asEulers(degrees=True))) )
|
||||||
|
|
||||||
def asQuaternion(self):
|
def asQuaternion(self):
|
||||||
return self.quaternion.asList()
|
return self.quaternion.asList()
|
||||||
|
|
||||||
def asEulers(self,
|
def asEulers(self,
|
||||||
type = 'bunge',
|
|
||||||
degrees = False,
|
degrees = False,
|
||||||
standardRange = False):
|
):
|
||||||
return self.quaternion.asEulers(type, degrees, standardRange)
|
return self.quaternion.asEulers(degrees)
|
||||||
eulers = property(asEulers)
|
eulers = property(asEulers)
|
||||||
|
|
||||||
def asRodrigues(self):
|
def asRodrigues(self):
|
||||||
|
@ -912,13 +853,13 @@ class Orientation:
|
||||||
"""
|
"""
|
||||||
if self.symmetry != other.symmetry: raise TypeError('disorientation between different symmetry classes not supported yet.')
|
if self.symmetry != other.symmetry: raise TypeError('disorientation between different symmetry classes not supported yet.')
|
||||||
|
|
||||||
misQ = self.quaternion.conjugated()*other.quaternion
|
misQ = other.quaternion*self.quaternion.conjugated()
|
||||||
mySymQs = self.symmetry.symmetryQuats() if SST else self.symmetry.symmetryQuats()[:1] # take all or only first sym operation
|
mySymQs = self.symmetry.symmetryQuats() if SST else self.symmetry.symmetryQuats()[:1] # take all or only first sym operation
|
||||||
otherSymQs = other.symmetry.symmetryQuats()
|
otherSymQs = other.symmetry.symmetryQuats()
|
||||||
|
|
||||||
for i,sA in enumerate(mySymQs):
|
for i,sA in enumerate(mySymQs):
|
||||||
for j,sB in enumerate(otherSymQs):
|
for j,sB in enumerate(otherSymQs):
|
||||||
theQ = sA.conjugated()*misQ*sB
|
theQ = sB*misQ*sA.conjugated()
|
||||||
for k in range(2):
|
for k in range(2):
|
||||||
theQ.conjugate()
|
theQ.conjugate()
|
||||||
breaker = self.symmetry.inFZ(theQ) \
|
breaker = self.symmetry.inFZ(theQ) \
|
||||||
|
@ -939,10 +880,10 @@ class Orientation:
|
||||||
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)"""
|
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)"""
|
||||||
if SST: # pole requested to be within SST
|
if SST: # pole requested to be within SST
|
||||||
for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions
|
for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions
|
||||||
pole = q.conjugated()*axis # align crystal direction to axis
|
pole = q*axis # align crystal direction to axis
|
||||||
if self.symmetry.inSST(pole,proper): break # found SST version
|
if self.symmetry.inSST(pole,proper): break # found SST version
|
||||||
else:
|
else:
|
||||||
pole = self.quaternion.conjugated()*axis # align crystal direction to axis
|
pole = self.quaternion*axis # align crystal direction to axis
|
||||||
|
|
||||||
return (pole,i if SST else 0)
|
return (pole,i if SST else 0)
|
||||||
|
|
||||||
|
@ -951,7 +892,7 @@ class Orientation:
|
||||||
color = np.zeros(3,'d')
|
color = np.zeros(3,'d')
|
||||||
|
|
||||||
for q in self.symmetry.equivalentQuaternions(self.quaternion):
|
for q in self.symmetry.equivalentQuaternions(self.quaternion):
|
||||||
pole = q.conjugated()*axis # align crystal direction to axis
|
pole = q*axis # align crystal direction to axis
|
||||||
inSST,color = self.symmetry.inSST(pole,color=True)
|
inSST,color = self.symmetry.inSST(pole,color=True)
|
||||||
if inSST: break
|
if inSST: break
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue