generalized addGradient with --data instead of --scalar and --vector
This commit is contained in:
parent
708cbd12a5
commit
761670f218
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit 2a19f35198e5e1e2f3e4d5a0728ed2667c2075f8
|
||||
Subproject commit 3341e5973bda63fe03ace6490dc6b010e188c3f3
|
|
@ -4,6 +4,7 @@
|
|||
import os,sys,math
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
from collections import defaultdict
|
||||
import damask
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
|
@ -22,6 +23,7 @@ def gradFFT(geomdim,field):
|
|||
grad_fourier = np.empty(field_fourier.shape+(3,),'c16')
|
||||
|
||||
# differentiation in Fourier space
|
||||
# Question: why are grid[0,1,2] normalized by geomdim[2,1,0]??
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0]
|
||||
if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
@ -47,8 +49,8 @@ def gradFFT(geomdim,field):
|
|||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """
|
||||
Add column(s) containing gradient of requested column(s).
|
||||
Operates on periodic ordered three-dimensional data sets.
|
||||
Deals with both vector- and scalar fields.
|
||||
Operates on periodic ordered three-dimensional data sets
|
||||
of vector and scalar fields.
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
|
@ -56,22 +58,17 @@ parser.add_option('-p','--pos','--periodiccellcenter',
|
|||
dest = 'pos',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'label of coordinates [%default]')
|
||||
parser.add_option('-v','--vector',
|
||||
dest = 'vector',
|
||||
parser.add_option('-d','--data',
|
||||
dest = 'data',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'label(s) of vector field values')
|
||||
parser.add_option('-s','--scalar',
|
||||
dest = 'scalar',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'label(s) of scalar field values')
|
||||
help = 'label(s) of field values')
|
||||
|
||||
parser.set_defaults(pos = 'pos',
|
||||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.vector is None and options.scalar is None:
|
||||
parser.error('no data column specified.')
|
||||
if options.data is None: parser.error('no data column specified.')
|
||||
|
||||
# --- loop over input files ------------------------------------------------------------------------
|
||||
|
||||
|
@ -82,30 +79,31 @@ for name in filenames:
|
|||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
# --- interpret header ----------------------------------------------------------------------------
|
||||
|
||||
table.head_read()
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
items = {
|
||||
'scalar': {'dim': 1, 'shape': [1], 'labels':options.scalar, 'active':[], 'column': []},
|
||||
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
|
||||
}
|
||||
errors = []
|
||||
remarks = []
|
||||
column = {}
|
||||
|
||||
if table.label_dimension(options.pos) != 3: errors.append('coordinates {} are not a vector.'.format(options.pos))
|
||||
else: colCoord = table.label_index(options.pos)
|
||||
errors = []
|
||||
active = defaultdict(list)
|
||||
|
||||
for type, data in items.iteritems():
|
||||
for what in (data['labels'] if data['labels'] is not None else []):
|
||||
dim = table.label_dimension(what)
|
||||
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
|
||||
else:
|
||||
items[type]['active'].append(what)
|
||||
items[type]['column'].append(table.label_index(what))
|
||||
coordDim = table.label_dimension(options.pos)
|
||||
if coordDim != 3:
|
||||
errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos))
|
||||
else: coordCol = table.label_index(options.pos)
|
||||
|
||||
for i,dim in enumerate(table.label_dimension(options.data)):
|
||||
me = options.data[i]
|
||||
if dim == -1:
|
||||
remarks.append('"{}" not found...'.format(me))
|
||||
elif dim == 1:
|
||||
active['scalar'].append(me)
|
||||
remarks.append('adding scalar "{}"...'.format(me))
|
||||
elif dim == 3:
|
||||
active['vector'].append(me)
|
||||
remarks.append('adding vector "{}"...'.format(me))
|
||||
else:
|
||||
remarks.append('skipping "{}" of dimension {}...'.format(me,dim))
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
|
@ -113,19 +111,20 @@ for name in filenames:
|
|||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for type, data in items.iteritems():
|
||||
for label in data['active']:
|
||||
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in range(3 * data['dim'])]) # extend ASCII header with new labels
|
||||
for type, data in active.iteritems():
|
||||
for label in data:
|
||||
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in range(3*table.label_dimension(label))]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
||||
coords = [np.unique(table.data[:,coordCol+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
@ -135,12 +134,12 @@ for name in filenames:
|
|||
# ------------------------------------------ process value field -----------------------------------
|
||||
|
||||
stack = [table.data]
|
||||
for type, data in items.iteritems():
|
||||
for i,label in enumerate(data['active']):
|
||||
for type, data in active.iteritems():
|
||||
for i,label in enumerate(data):
|
||||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(gradFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape(grid[::-1].tolist()+data['shape'])))
|
||||
table.data[:,table.label_indexrange(label)].
|
||||
reshape(grid[::-1].tolist()+[table.label_dimension(label)])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
|
|
Loading…
Reference in New Issue