now deals with 1D, 2D, 3D. speed up of grid detection. "pos" as default coordinate label.

This commit is contained in:
Philip Eisenlohr 2016-04-15 18:25:56 -04:00
parent 8ac40ced5a
commit 7567aae7c0
1 changed files with 27 additions and 24 deletions

View File

@ -89,19 +89,20 @@ Add column(s) containing Euclidean distance to grain structural features: bounda
""", version = scriptID) """, version = scriptID)
parser.add_option('-c','--coordinates', dest='coords', metavar='string', parser.add_option('-c','--coordinates', dest='coords', metavar='string',
help='column heading for coordinates [%default]') help='column label of coordinates [%default]')
parser.add_option('-i','--identifier', dest='id', metavar = 'string', parser.add_option('-i','--identifier', dest='id', metavar = 'string',
help='heading of column containing grain identifier [%default]') help='column label of grain identifier [%default]')
parser.add_option('-t','--type', dest = 'type', action = 'extend', metavar = '<string LIST>', parser.add_option('-t','--type', dest = 'type', action = 'extend', metavar = '<string LIST>',
help = 'feature type {%s} '%(', '.join(map(lambda x:'/'.join(x['names']),features))) ) help = 'feature type {%s} '%(', '.join(map(lambda x:'/'.join(x['names']),features))) )
parser.add_option('-n','--neighborhood',dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string', parser.add_option('-n','--neighborhood',dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
help = 'type of neighborhood [neumann] {%s}'%(', '.join(neighborhoods.keys()))) help = 'type of neighborhood [neumann] {%s}'%(', '.join(neighborhoods.keys())))
parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar = 'float', parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar = 'float',
help = 'voxel size [%default]') help = 'voxel size [%default]')
parser.set_defaults(coords = 'ipinitialcoord') parser.set_defaults(coords = 'pos',
parser.set_defaults(id = 'texture') id = 'texture',
parser.set_defaults(neighborhood = 'neumann') neighborhood = 'neumann',
parser.set_defaults(scale = 1.0) scale = 1.0,
)
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
@ -125,10 +126,8 @@ for i,feature in enumerate(features):
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: try: table = damask.ASCIItable(name = name, buffered = False)
table = damask.ASCIItable(name = name, buffered = False) except: continue
except:
continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------ # ------------------------------------------ read header ------------------------------------------
@ -141,7 +140,9 @@ for name in filenames:
remarks = [] remarks = []
column = {} column = {}
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords)) coordDim = table.label_dimension(options.coords)
if not 3 >= coordDim >= 1:
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.coords))
else: coordCol = table.label_index(options.coords) else: coordCol = table.label_index(options.coords)
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id)) if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
@ -164,18 +165,20 @@ for name in filenames:
table.data_readArray() table.data_readArray()
coords = [{},{},{}] coords = [np.unique(table.data[:,coordCol+i]) for i in xrange(coordDim)]
for i in xrange(len(table.data)): mincorner = np.array(map(min,coords))
for j in xrange(3): maxcorner = np.array(map(max,coords))
coords[j][str(table.data[i,coordCol+j])] = True grid = np.array(map(len,coords)+[1]*(3-len(coords)),'i')
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
],'d') # size from bounding box, corrected for cell-centeredness
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings N = grid.prod()
if N != len(table.data): errors.append('data count {} does not match grid '.format(N) +
'x'.join(map(str,grid)) +
'.')
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ process value field ----------------------------------- # ------------------------------------------ process value field -----------------------------------