now deals with 1D, 2D, 3D. speed up of grid detection. "pos" as default coordinate label.
This commit is contained in:
parent
8ac40ced5a
commit
7567aae7c0
|
@ -89,19 +89,20 @@ Add column(s) containing Euclidean distance to grain structural features: bounda
|
||||||
""", version = scriptID)
|
""", version = scriptID)
|
||||||
|
|
||||||
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
|
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
|
||||||
help='column heading for coordinates [%default]')
|
help='column label of coordinates [%default]')
|
||||||
parser.add_option('-i','--identifier', dest='id', metavar = 'string',
|
parser.add_option('-i','--identifier', dest='id', metavar = 'string',
|
||||||
help='heading of column containing grain identifier [%default]')
|
help='column label of grain identifier [%default]')
|
||||||
parser.add_option('-t','--type', dest = 'type', action = 'extend', metavar = '<string LIST>',
|
parser.add_option('-t','--type', dest = 'type', action = 'extend', metavar = '<string LIST>',
|
||||||
help = 'feature type {%s} '%(', '.join(map(lambda x:'/'.join(x['names']),features))) )
|
help = 'feature type {%s} '%(', '.join(map(lambda x:'/'.join(x['names']),features))) )
|
||||||
parser.add_option('-n','--neighborhood',dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
|
parser.add_option('-n','--neighborhood',dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
|
||||||
help = 'type of neighborhood [neumann] {%s}'%(', '.join(neighborhoods.keys())))
|
help = 'type of neighborhood [neumann] {%s}'%(', '.join(neighborhoods.keys())))
|
||||||
parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar = 'float',
|
parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar = 'float',
|
||||||
help = 'voxel size [%default]')
|
help = 'voxel size [%default]')
|
||||||
parser.set_defaults(coords = 'ipinitialcoord')
|
parser.set_defaults(coords = 'pos',
|
||||||
parser.set_defaults(id = 'texture')
|
id = 'texture',
|
||||||
parser.set_defaults(neighborhood = 'neumann')
|
neighborhood = 'neumann',
|
||||||
parser.set_defaults(scale = 1.0)
|
scale = 1.0,
|
||||||
|
)
|
||||||
|
|
||||||
(options,filenames) = parser.parse_args()
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
@ -125,10 +126,8 @@ for i,feature in enumerate(features):
|
||||||
if filenames == []: filenames = [None]
|
if filenames == []: filenames = [None]
|
||||||
|
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
try:
|
try: table = damask.ASCIItable(name = name, buffered = False)
|
||||||
table = damask.ASCIItable(name = name, buffered = False)
|
except: continue
|
||||||
except:
|
|
||||||
continue
|
|
||||||
damask.util.report(scriptName,name)
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
# ------------------------------------------ read header ------------------------------------------
|
# ------------------------------------------ read header ------------------------------------------
|
||||||
|
@ -141,7 +140,9 @@ for name in filenames:
|
||||||
remarks = []
|
remarks = []
|
||||||
column = {}
|
column = {}
|
||||||
|
|
||||||
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
|
coordDim = table.label_dimension(options.coords)
|
||||||
|
if not 3 >= coordDim >= 1:
|
||||||
|
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.coords))
|
||||||
else: coordCol = table.label_index(options.coords)
|
else: coordCol = table.label_index(options.coords)
|
||||||
|
|
||||||
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
|
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
|
||||||
|
@ -164,18 +165,20 @@ for name in filenames:
|
||||||
|
|
||||||
table.data_readArray()
|
table.data_readArray()
|
||||||
|
|
||||||
coords = [{},{},{}]
|
coords = [np.unique(table.data[:,coordCol+i]) for i in xrange(coordDim)]
|
||||||
for i in xrange(len(table.data)):
|
mincorner = np.array(map(min,coords))
|
||||||
for j in xrange(3):
|
maxcorner = np.array(map(max,coords))
|
||||||
coords[j][str(table.data[i,coordCol+j])] = True
|
grid = np.array(map(len,coords)+[1]*(3-len(coords)),'i')
|
||||||
grid = np.array(map(len,coords),'i')
|
|
||||||
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
|
|
||||||
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
|
|
||||||
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
|
|
||||||
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
|
|
||||||
],'d') # size from bounding box, corrected for cell-centeredness
|
|
||||||
|
|
||||||
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings
|
N = grid.prod()
|
||||||
|
|
||||||
|
if N != len(table.data): errors.append('data count {} does not match grid '.format(N) +
|
||||||
|
'x'.join(map(str,grid)) +
|
||||||
|
'.')
|
||||||
|
if errors != []:
|
||||||
|
damask.util.croak(errors)
|
||||||
|
table.close(dismiss = True)
|
||||||
|
continue
|
||||||
|
|
||||||
# ------------------------------------------ process value field -----------------------------------
|
# ------------------------------------------ process value field -----------------------------------
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue