formatted the interaction matrix for beta-Sn

This commit is contained in:
Aritra Chakraborty 2015-07-02 05:45:56 +00:00
parent 0e6ac411bb
commit 74af77a81f
1 changed files with 47 additions and 68 deletions

View File

@ -532,7 +532,7 @@ module lattice
LATTICE_hex_NtransSystem = int([0,0],pInt) !< total # of transformation systems per family for hex
integer(pInt), dimension(LATTICE_maxNcleavageFamily), parameter, public :: &
LATTICE_hex_NcleavageSystem = int([3,0,0],pInt) !< total # of cleavage systems per family for hex
LATTICE_hex_NcleavageSystem = int([3,0,0],pInt) !< total # of cleavage systems per family for hex
integer(pInt), parameter , private :: &
LATTICE_hex_Nslip = 33_pInt, & ! sum(lattice_hex_NslipSystem), !< total # of slip systems for hex
@ -806,21 +806,21 @@ module lattice
!--------------------------------------------------------------------------------------------------
! bct
integer(pInt), dimension(LATTICE_maxNslipFamily), parameter, public :: &
LATTICE_bct_NslipSystem = int([2, 2, 2, 4, 2, 4, 2, 2, 4, 8],pInt) !< # of slip systems per family for bct (Sn) Bieler J. Electr Mater 2009
LATTICE_bct_NslipSystem = int([2, 2, 2, 4, 2, 4, 2, 2, 4, 8 ],pInt) !< # of slip systems per family for bct (Sn) Bieler J. Electr Mater 2009
integer(pInt), dimension(LATTICE_maxNtwinFamily), parameter, public :: &
LATTICE_bct_NtwinSystem = int([0, 0, 0, 0], pInt) !< total # of twin systems per family for bct
LATTICE_bct_NtwinSystem = int([0, 0, 0, 0], pInt) !< total # of twin systems per family for bct-example
integer(pInt), dimension(LATTICE_maxNtransFamily), parameter, public :: &
LATTICE_bct_NtransSystem = int([0,0],pInt) !< total # of transformation systems per family for bcc
integer(pInt), dimension(LATTICE_maxNcleavageFamily), parameter, public :: &
LATTICE_bct_NcleavageSystem = int([0,0,0],pInt) !< total # of cleavage systems per family for bcc
LATTICE_bct_NcleavageSystem = int([0,0,0],pInt) !< total # of cleavage systems per family for bcc
integer(pInt), parameter , private :: &
LATTICE_bct_Nslip = 32_pInt, & ! sum(lattice_bct_NslipSystem), !< total # of slip systems for bct
LATTICE_bct_Ntwin = 0_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
LATTICE_bct_Ntwin = 0_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
LATTICE_bct_NnonSchmid = 0_pInt, & !< # of non-Schmid contributions for bcc
LATTICE_bct_Ntrans = 0_pInt, & !< total # of transformations for bcc
LATTICE_bct_Ncleavage = 0_pInt !< total # of transformations for bcc
@ -874,69 +874,48 @@ module lattice
integer(pInt), dimension(LATTICE_bct_Nslip,LATTICE_bct_Nslip), parameter, public :: &
LATTICE_bct_interactionSlipSlip = reshape(int( [&
1, 2, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91,&
2, 1, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91,&
6, 6, 4, 5, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92,&
6, 6, 5, 4, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92,&
12, 12, 11, 11, 9, 10, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93,&
12, 12, 11, 11, 10, 9, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93,&
20, 20, 19, 19, 18, 18, 16, 17, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94,&
20, 20, 19, 19, 18, 18, 17, 16, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94,&
20, 20, 19, 19, 18, 18, 17, 17, 16, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94,&
20, 20, 19, 19, 18, 18, 17, 17, 17, 16, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94,&
30,30, 29,29, 28,28, 27,27,27,27, 25, 26, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, &
95, 95, 95, 95, 95, 95, 95, 95,&
30,30, 29,29, 28,28, 27,27,27,27, 26, 25, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77,&
95, 95, 95, 95, 95, 95, 95, 95,&
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 36, 37, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, &
96, 96, 96, 96, 96, 96, 96, 96,&
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 37, 36, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, &
96, 96, 96, 96, 96, 96, 96, 96,&
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 37, 37, 36, 37, 48, 48, 62, 62, 78, 78, 78, 78, &
96, 96, 96, 96, 96, 96, 96, 96,&
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 37, 37, 37, 36, 48, 48, 62, 62, 78, 78, 78, 78, &
96, 96, 96, 96, 96, 96, 96, 96,&
56,56, 55,55, 54,54, 53,53,53,53, 52, 52, 51, 51, 51, 51, 49, 50, 63, 63, 79, 79, 79, 79, &
97, 97, 97, 97, 97, 97, 97, 97,&
56,56, 55,55, 54,54, 53,53,53,53, 52, 52, 51, 51, 51, 51, 50, 49, 63, 63, 79, 79, 79, 79, &
97, 97, 97, 97, 97, 97, 97, 97,&
72,72, 71,71, 70,70, 69,69,69,69, 68, 68, 67, 67, 67, 67, 66, 66, 64, 65, 80, 80, 80, 80, &
98, 98, 98, 98, 98, 98, 98, 98,&
72,72, 71,71, 70,70, 69,69,69,69, 68, 68, 67, 67, 67, 67, 66, 66, 65, 64, 80, 80, 80, 80,&
98, 98, 98, 98, 98, 98, 98, 98,&
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 81, 82, 82, 82,&
99, 99, 99, 99, 99, 99, 99, 99,&
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 81, 82, 82,&
99, 99, 99, 99, 99, 99, 99, 99,&
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 81, 82,&
99, 99, 99, 99, 99, 99, 99, 99,&
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81,&
99, 99, 99, 99, 99, 99, 99, 99,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 100, 101, 101, 101, 101, 101, 101, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 100, 101, 101, 101, 101, 101, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 101, 100, 101, 101, 101, 101, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 101, 101, 100, 101, 101, 101, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 101, 101, 101, 100, 101, 101, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 101, 101, 101, 101, 100, 101, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 101, 101, 101, 101, 101, 100, 101,&
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103,&
102, 102, 102, 102, 101, 101, 101, 101, 101, 101, 101, 100 &
1,2, 3,3, 7,7, 13,13,13,13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, &
2,1, 3,3, 7,7, 13,13,13,13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, &
!
6,6, 4,5, 8,8, 14,14,14,14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, &
6,6, 5,4, 8,8, 14,14,14,14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, &
!
12,12, 11,11, 9,10, 15,15,15,15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, &
12,12, 11,11, 10,9, 15,15,15,15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, &
!
20,20, 19,19, 18,18, 16,17,17,17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, &
20,20, 19,19, 18,18, 17,16,17,17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, &
20,20, 19,19, 18,18, 17,17,16,17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, &
20,20, 19,19, 18,18, 17,17,17,16, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, &
!
30,30, 29,29, 28,28, 27,27,27,27, 25, 26, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, &
30,30, 29,29, 28,28, 27,27,27,27, 26, 25, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, &
!
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 36, 37, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, &
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 37, 36, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, &
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 37, 37, 36, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, &
42,42, 41,41, 40,40, 39,39,39,39, 38, 38, 37, 37, 37, 36, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, &
!
56,56, 55,55, 54,54, 53,53,53,53, 52, 52, 51, 51, 51, 51, 49, 50, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, &
56,56, 55,55, 54,54, 53,53,53,53, 52, 52, 51, 51, 51, 51, 50, 49, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, &
!
72,72, 71,71, 70,70, 69,69,69,69, 68, 68, 67, 67, 67, 67, 66, 66, 64, 65, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, &
72,72, 71,71, 70,70, 69,69,69,69, 68, 68, 67, 67, 67, 67, 66, 66, 65, 64, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, &
!
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 81, 82, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, &
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 81, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, &
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 81, 82, 99, 99, 99, 99, 99, 99, 99, 99, &
90,90, 89,89, 88,88, 87,87,87,87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 99, 99, 99, 99, 99, 99, 99, 99, &
!
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 100, 101, 101, 101, 101, 101, 101, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 100, 101, 101, 101, 101, 101, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 101, 100, 101, 101, 101, 101, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 101, 101, 100, 101, 101, 101, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 101, 101, 101, 100, 101, 101, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 101, 101, 101, 101, 100, 101, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 101, 101, 101, 101, 101, 100, 101, &
110,110, 109,109, 108,108, 107,107,107,107, 106, 106, 105, 105, 105, 105, 104, 104, 103, 103, 102, 102, 102, 102, 101, 101, 101, 101, 101, 101, 101, 100 &
!
],pInt),[lattice_bct_Nslip,lattice_bct_Nslip],order=[2,1])
! integer(pInt), dimension(LATTICE_bct_Nslip,LATTICE_bct_Ntwin), parameter, public :: &