added spectral thermal and damage solvers

This commit is contained in:
Pratheek Shanthraj 2015-06-03 17:30:31 +00:00
parent 240c865afc
commit 74982294a0
9 changed files with 1452 additions and 409 deletions

View File

@ -52,38 +52,40 @@ program DAMASK_spectral_Driver
use numerics, only: &
worldrank, &
worldsize, &
stagItMax, &
maxCutBack, &
spectral_solver, &
continueCalculation
use homogenization, only: &
materialpoint_sizeResults, &
materialpoint_results
use material, only: &
thermal_type, &
damage_type, &
THERMAL_conduction_ID, &
DAMAGE_nonlocal_ID
use DAMASK_spectral_Utilities, only: &
tBoundaryCondition, &
utilities_init, &
utilities_destroy, &
tSolutionState, &
cutBack
tLoadCase, &
cutBack, &
nActiveFields, &
FIELD_UNDEFINED_ID, &
FIELD_MECH_ID, &
FIELD_THERMAL_ID, &
FIELD_DAMAGE_ID
use DAMASK_spectral_SolverBasicPETSC
use DAMASK_spectral_SolverAL
use DAMASK_spectral_SolverPolarisation
use spectral_damage
use spectral_thermal
implicit none
#include <petsc-finclude/petscsys.h>
type tLoadCase
real(pReal), dimension (3,3) :: rotation = math_I3 !< rotation of BC
type(tBoundaryCondition) :: P, & !< stress BC
deformation !< deformation BC (Fdot or L)
real(pReal) :: time = 0.0_pReal, & !< length of increment
temperature = 300.0_pReal, & !< isothermal starting conditions
density = 0.0_pReal !< density
integer(pInt) :: incs = 0_pInt, & !< number of increments
outputfrequency = 1_pInt, & !< frequency of result writes
restartfrequency = 0_pInt, & !< frequency of restart writes
logscale = 0_pInt !< linear/logarithmic time inc flag
logical :: followFormerTrajectory = .true. !< follow trajectory of former loadcase
end type tLoadCase
!--------------------------------------------------------------------------------------------------
! variables related to information from load case and geom file
real(pReal), dimension(9) :: temp_valueVector = 0.0_pReal !< temporarily from loadcase file when reading in tensors (initialize to 0.0)
@ -117,7 +119,7 @@ program DAMASK_spectral_Driver
logical :: &
guess !< guess along former trajectory
integer(pInt) :: &
i, j, k, l, &
i, j, k, l, field, &
errorID, &
cutBackLevel = 0_pInt, & !< cut back level \f$ t = \frac{t_{inc}}{2^l} \f$
stepFraction = 0_pInt !< fraction of current time interval
@ -133,9 +135,11 @@ program DAMASK_spectral_Driver
character(len=6) :: loadcase_string
character(len=1024) :: incInfo !< string parsed to solution with information about current load case
type(tLoadCase), allocatable, dimension(:) :: loadCases !< array of all load cases
type(tSolutionState) solres
type(tSolutionState), allocatable, dimension(:) :: solres
integer(kind=MPI_OFFSET_KIND) :: my_offset
integer, dimension(:), allocatable :: outputSize
integer(pInt) :: stagIter
logical :: stagIterate
PetscErrorCode :: ierr
external :: quit
!--------------------------------------------------------------------------------------------------
@ -148,6 +152,13 @@ program DAMASK_spectral_Driver
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! initialize field solver information
nActiveFields = 1
if (any(thermal_type == THERMAL_conduction_ID )) nActiveFields = nActiveFields + 1
if (any(damage_type == DAMAGE_nonlocal_ID )) nActiveFields = nActiveFields + 1
allocate(solres(nActiveFields))
!--------------------------------------------------------------------------------------------------
! reading basic information from load case file and allocate data structure containing load cases
call IO_open_file(FILEUNIT,trim(loadCaseFile))
@ -174,6 +185,20 @@ program DAMASK_spectral_Driver
allocate (loadCases(N_n)) ! array of load cases
loadCases%P%myType='p'
do i = 1, size(loadCases)
allocate(loadCases(i)%ID(nActiveFields))
field = 1
loadCases(i)%ID(field) = FIELD_MECH_ID ! mechanical active by default
if (any(thermal_type == THERMAL_conduction_ID)) then ! thermal field active
field = field + 1
loadCases(i)%ID(field) = FIELD_THERMAL_ID
endif
if (any(damage_type == DAMAGE_nonlocal_ID)) then ! damage field active
field = field + 1
loadCases(i)%ID(field) = FIELD_DAMAGE_ID
endif
enddo
!--------------------------------------------------------------------------------------------------
! reading the load case and assign values to the allocated data structure
rewind(FILEUNIT)
@ -222,8 +247,6 @@ program DAMASK_spectral_Driver
loadCases(currentLoadCase)%time = IO_floatValue(line,positions,i+1_pInt)
case('temp','temperature') ! starting temperature
loadCases(currentLoadCase)%temperature = IO_floatValue(line,positions,i+1_pInt)
case('den','density') ! starting density
loadCases(currentLoadCase)%density = IO_floatValue(line,positions,i+1_pInt)
case('n','incs','increments','steps') ! number of increments
loadCases(currentLoadCase)%incs = IO_intValue(line,positions,i+1_pInt)
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
@ -307,7 +330,6 @@ program DAMASK_spectral_Driver
write(6,'(2x,a,/,3(3(3x,f12.7,1x)/))',advance='no') 'rotation of loadframe:',&
math_transpose33(loadCases(currentLoadCase)%rotation)
write(6,'(2x,a,f12.6)') 'temperature:', loadCases(currentLoadCase)%temperature
write(6,'(2x,a,f12.6)') 'density: ', loadCases(currentLoadCase)%density
if (loadCases(currentLoadCase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
write(6,'(2x,a,f12.6)') 'time: ', loadCases(currentLoadCase)%time
if (loadCases(currentLoadCase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
@ -323,6 +345,10 @@ program DAMASK_spectral_Driver
!--------------------------------------------------------------------------------------------------
! doing initialization depending on selected solver
call Utilities_init()
do field = 1, nActiveFields
select case (loadCases(1)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
call basicPETSc_init(loadCases(1)%temperature)
@ -330,14 +356,26 @@ program DAMASK_spectral_Driver
if(iand(debug_level(debug_spectral),debug_levelBasic)/= 0 .and. worldrank == 0_pInt) &
call IO_warning(42_pInt, ext_msg='debug Divergence')
call AL_init(loadCases(1)%temperature)
case (DAMASK_spectral_SolverPolarisation_label)
if(iand(debug_level(debug_spectral),debug_levelBasic)/= 0 .and. worldrank == 0_pInt) &
call IO_warning(42_pInt, ext_msg='debug Divergence')
call Polarisation_init(loadCases(1)%temperature)
case default
call IO_error(error_ID = 891, ext_msg = trim(spectral_solver))
end select
case(FIELD_THERMAL_ID)
call spectral_thermal_init(loadCases(1)%temperature)
case(FIELD_DAMAGE_ID)
call spectral_damage_init()
end select
enddo
!--------------------------------------------------------------------------------------------------
! write header of output file
allocate(outputSize(worldsize), source = 0_pInt); outputSize(worldrank+1) = size(materialpoint_results)*8
@ -442,30 +480,6 @@ program DAMASK_spectral_Driver
time = time + timeinc ! forward time
stepFraction = stepFraction + 1_pInt
remainingLoadCaseTime = time0 - time + loadCases(currentLoadCase)%time + timeInc
!--------------------------------------------------------------------------------------------------
! forward solution
select case(spectral_solver)
case (DAMASK_spectral_SolverBasicPETSC_label)
call BasicPETSC_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverAL_label)
call AL_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverPolarisation_label)
call Polarisation_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
rotation_BC = loadCases(currentLoadCase)%rotation)
end select
!--------------------------------------------------------------------------------------------------
! report begin of new increment
@ -487,47 +501,105 @@ program DAMASK_spectral_Driver
endif
!--------------------------------------------------------------------------------------------------
! calculate solution
select case(spectral_solver)
case (DAMASK_spectral_SolverBasicPETSC_label)
solres = BasicPETSC_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
! forward fields
do field = 1, nActiveFields
select case(loadCases(currentLoadCase)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
call BasicPETSc_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
F_BC = loadCases(currentLoadCase)%deformation, &
temperature_bc = loadCases(currentLoadCase)%temperature, &
rotation_BC = loadCases(currentLoadCase)%rotation, &
density = loadCases(currentLoadCase)%density)
P_BC = loadCases(currentLoadCase)%P, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverAL_label)
solres = AL_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
call AL_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
F_BC = loadCases(currentLoadCase)%deformation, &
temperature_bc = loadCases(currentLoadCase)%temperature, &
rotation_BC = loadCases(currentLoadCase)%rotation, &
density = loadCases(currentLoadCase)%density)
P_BC = loadCases(currentLoadCase)%P, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverPolarisation_label)
solres = Polarisation_solution (&
call Polarisation_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
F_BC = loadCases(currentLoadCase)%deformation, &
P_BC = loadCases(currentLoadCase)%P, &
rotation_BC = loadCases(currentLoadCase)%rotation)
end select
case(FIELD_THERMAL_ID)
call spectral_thermal_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
case(FIELD_DAMAGE_ID)
call spectral_damage_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
end select
enddo
!--------------------------------------------------------------------------------------------------
! solve fields
stagIter = 0_pInt
stagIterate = .true.
do while (stagIterate)
do field = 1, nActiveFields
select case(loadCases(currentLoadCase)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
solres(field) = BasicPETSC_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
temperature_bc = loadCases(currentLoadCase)%temperature, &
rotation_BC = loadCases(currentLoadCase)%rotation, &
density = loadCases(currentLoadCase)%density)
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverAL_label)
solres(field) = AL_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
temperature_bc = loadCases(currentLoadCase)%temperature, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverPolarisation_label)
solres(field) = Polarisation_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
temperature_bc = loadCases(currentLoadCase)%temperature, &
rotation_BC = loadCases(currentLoadCase)%rotation)
end select
case(FIELD_THERMAL_ID)
solres(field) = spectral_thermal_solution (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
case(FIELD_DAMAGE_ID)
solres(field) = spectral_damage_solution (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
end select
if(.not. solres(field)%converged) exit ! no solution found
enddo
stagIter = stagIter + 1_pInt
stagIterate = stagIter < stagItMax .and. &
all(solres(:)%converged) .and. &
.not. all(solres(:)%stagConverged)
enddo
!--------------------------------------------------------------------------------------------------
! check solution
cutBack = .False.
if(solres%termIll .or. .not. solres%converged) then ! no solution found
if(solres(1)%termIll .or. .not. all(solres(:)%converged .and. solres(:)%stagConverged)) then ! no solution found
if (cutBackLevel < maxCutBack) then ! do cut back
if (worldrank == 0) write(6,'(/,a)') ' cut back detected'
cutBack = .True.
stepFraction = (stepFraction - 1_pInt) * subStepFactor ! adjust to new denominator
cutBackLevel = cutBackLevel + 1_pInt
time = time - timeinc ! rewind time
timeIncOld = timeinc
timeinc = timeinc/2.0_pReal
elseif (solres%termIll) then ! material point model cannot find a solution, exit in any casy
elseif (solres(1)%termIll) then ! material point model cannot find a solution, exit in any casy
call IO_warning(850_pInt)
call quit(-1_pInt*(lastRestartWritten+1_pInt)) ! quit and provide information about last restart inc written (e.g. for regridding)
elseif (continueCalculation == 1_pInt) then
@ -548,7 +620,7 @@ program DAMASK_spectral_Driver
endif
enddo subIncLooping
cutBackLevel = max(0_pInt, cutBackLevel - 1_pInt) ! try half number of subincs next inc
if(solres%converged) then ! report converged inc
if(all(solres(:)%converged)) then ! report converged inc
convergedCounter = convergedCounter + 1_pInt
if (worldrank == 0) &
write(6,'(/,a,'//IO_intOut(totalIncsCounter)//',a)') &
@ -593,14 +665,24 @@ program DAMASK_spectral_Driver
call MPI_file_close(resUnit,ierr)
close(statUnit)
do field = 1, nActiveFields
select case(loadCases(1)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSC_label)
case (DAMASK_spectral_SolverBasicPETSc_label)
call BasicPETSC_destroy()
case (DAMASK_spectral_SolverAL_label)
call AL_destroy()
case (DAMASK_spectral_SolverPolarisation_label)
call Polarisation_destroy()
end select
case(FIELD_THERMAL_ID)
call spectral_thermal_destroy()
case(FIELD_DAMAGE_ID)
call spectral_damage_destroy()
end select
enddo
call utilities_destroy()
call PetscFinalize(ierr); CHKERRQ(ierr)

View File

@ -13,7 +13,8 @@ module DAMASK_spectral_solverAL
use math, only: &
math_I3
use DAMASK_spectral_utilities, only: &
tSolutionState
tSolutionState, &
tSolutionParams
implicit none
private
@ -24,14 +25,6 @@ module DAMASK_spectral_solverAL
!--------------------------------------------------------------------------------------------------
! derived types
type tSolutionParams !< @todo use here the type definition for a full loadcase including mask
real(pReal), dimension(3,3) :: P_BC, rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: temperature
real(pReal) :: density
end type tSolutionParams
type(tSolutionParams), private :: params
real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal
@ -124,12 +117,9 @@ subroutine AL_init(temperature)
use DAMASK_interface, only: &
getSolverJobName
use DAMASK_spectral_Utilities, only: &
Utilities_init, &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
Utilities_updateIPcoords, &
grid1Red, &
wgt
Utilities_updateIPcoords
use mesh, only: &
gridLocal, &
gridGlobal
@ -150,7 +140,6 @@ subroutine AL_init(temperature)
integer(pInt) :: proc
character(len=1024) :: rankStr
call Utilities_init()
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverAL init -+>>>'
write(6,'(a)') ' $Id$'
@ -169,6 +158,7 @@ subroutine AL_init(temperature)
!--------------------------------------------------------------------------------------------------
! PETSc Init
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = gridLocal(3)
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
@ -182,6 +172,7 @@ subroutine AL_init(temperature)
gridLocal (1),gridLocal (2),localK, & ! local grid
da,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr)
call DMDASNESSetFunctionLocal(da,INSERT_VALUES,AL_formResidual,dummy,ierr)
CHKERRQ(ierr)
@ -266,7 +257,7 @@ end subroutine AL_init
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function &
AL_solution(incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc, &
rotation_BC,density)
rotation_BC)
use numerics, only: &
update_gamma
use math, only: &
@ -287,8 +278,7 @@ type(tSolutionState) function &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime, & !< remaining time of current load case
temperature_bc, &
density
temperature_bc
logical, intent(in) :: &
guess
type(tBoundaryCondition), intent(in) :: &
@ -324,7 +314,6 @@ type(tSolutionState) function &
params%timeinc = timeinc
params%timeincOld = timeinc_old
params%temperature = temperature_bc
params%density = density
!--------------------------------------------------------------------------------------------------
! solve BVP
@ -363,16 +352,14 @@ subroutine AL_formResidual(in,x_scal,f_scal,dummy,ierr)
math_transpose33, &
math_mul3333xx33, &
math_invSym3333, &
math_mul33x33, &
PI
math_mul33x33
use DAMASK_spectral_Utilities, only: &
wgt, &
field_realMPI, &
field_fourierMPI, &
Utilities_FFTforward, &
Utilities_fourierConvolution, &
tensorField_realMPI, &
utilities_FFTtensorForward, &
utilities_fourierGammaConvolution, &
Utilities_inverseLaplace, &
Utilities_FFTbackward, &
utilities_FFTtensorBackward, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS, &
Utilities_curlRMS
@ -444,9 +431,9 @@ subroutine AL_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
!
field_realMPI = 0.0_pReal
tensorField_realMPI = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, gridLocal(1)
field_realMPI(1:3,1:3,i,j,k) = &
tensorField_realMPI(1:3,1:3,i,j,k) = &
polarBeta*math_mul3333xx33(C_scale,F(1:3,1:3,i,j,k) - math_I3) -&
polarAlpha*math_mul33x33(F(1:3,1:3,i,j,k), &
math_mul3333xx33(C_scale,F_lambda(1:3,1:3,i,j,k) - math_I3))
@ -455,13 +442,13 @@ subroutine AL_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! doing convolution in Fourier space
call Utilities_FFTforward()
call Utilities_fourierConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC))
call Utilities_FFTbackward()
call utilities_FFTtensorForward()
call utilities_fourierGammaConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC))
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
residual_F_lambda = polarBeta*F - field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
residual_F_lambda = polarBeta*F - tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
@ -473,11 +460,11 @@ subroutine AL_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! calculate divergence
field_realMPI = 0.0_pReal
field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = residual_F
call Utilities_FFTforward()
tensorField_realMPI = 0.0_pReal
tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = residual_F
call utilities_FFTtensorForward()
err_div = Utilities_divergenceRMS()
call Utilities_FFTbackward()
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
@ -493,11 +480,11 @@ subroutine AL_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! calculating curl
field_realMPI = 0.0_pReal
field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F
call Utilities_FFTforward()
tensorField_realMPI = 0.0_pReal
tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F
call utilities_FFTtensorForward()
err_curl = Utilities_curlRMS()
call Utilities_FFTbackward()
call utilities_FFTtensorBackward()
end subroutine AL_formResidual
@ -727,7 +714,6 @@ subroutine AL_destroy()
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
call Utilities_destroy()
end subroutine AL_destroy

View File

@ -13,7 +13,8 @@ module DAMASK_spectral_SolverBasicPETSc
use math, only: &
math_I3
use DAMASK_spectral_Utilities, only: &
tSolutionState
tSolutionState, &
tSolutionParams
implicit none
private
@ -24,14 +25,6 @@ module DAMASK_spectral_SolverBasicPETSc
!--------------------------------------------------------------------------------------------------
! derived types
type tSolutionParams
real(pReal), dimension(3,3) :: P_BC, rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: temperature
real(pReal) :: density
end type tSolutionParams
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
@ -58,7 +51,7 @@ module DAMASK_spectral_SolverBasicPETSc
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness
S = 0.0_pReal !< current compliance (filled up with zeros)
real(pReal), private :: err_stress, err_div, err_divPrev, err_divDummy
real(pReal), private :: err_stress, err_div
logical, private :: ForwardData
integer(pInt), private :: &
totalIter = 0_pInt !< total iteration in current increment
@ -112,16 +105,13 @@ subroutine basicPETSc_init(temperature)
use DAMASK_interface, only: &
getSolverJobName
use DAMASK_spectral_Utilities, only: &
Utilities_init, &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
utilities_updateIPcoords, &
grid1Red, &
wgt
use mesh, only: &
gridLocal, &
gridGlobal, &
mesh_ipCoordinates
gridGlobal
use math, only: &
math_invSym3333
@ -138,7 +128,6 @@ subroutine basicPETSc_init(temperature)
integer(pInt) :: proc
character(len=1024) :: rankStr
call Utilities_init()
mainProcess: if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverBasicPETSc init -+>>>'
write(6,'(a)') ' $Id$'
@ -155,6 +144,7 @@ subroutine basicPETSc_init(temperature)
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = gridLocal(3)
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
@ -168,6 +158,7 @@ subroutine basicPETSc_init(temperature)
gridLocal (1),gridLocal (2),localK, & ! local grid
da,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr) ! global solution vector (grid x 9, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(da,INSERT_VALUES,BasicPETSC_formResidual,dummy,ierr) ! residual vector of same shape as solution vector
CHKERRQ(ierr)
@ -205,12 +196,13 @@ subroutine basicPETSc_init(temperature)
call Utilities_updateIPcoords(F)
call Utilities_constitutiveResponse(F_lastInc, F, &
temperature, &
1.0_pReal, &
0.0_pReal, &
P, &
C_volAvg,C_minMaxAvg, & ! global average of stiffness and (min+max)/2
temp33_Real, &
.false., &
math_I3)
call DMDAVecRestoreArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr) ! write data back to PETSc
if (restartInc > 1_pInt) then ! using old values from files
@ -237,11 +229,10 @@ end subroutine basicPETSc_init
!> @brief solution for the Basic PETSC scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function basicPETSc_solution( &
incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc,rotation_BC,density)
incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc,rotation_BC)
use numerics, only: &
update_gamma, &
itmax, &
worldrank
itmax
use DAMASK_spectral_Utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
@ -258,8 +249,7 @@ type(tSolutionState) function basicPETSc_solution( &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime, & !< remaining time of current load case
temperature_bc, &
density
temperature_bc
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
@ -290,7 +280,6 @@ type(tSolutionState) function basicPETSc_solution( &
params%timeinc = timeinc
params%timeincOld = timeinc_old
params%temperature = temperature_BC
params%density = density
call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(snes,reason,ierr); CHKERRQ(ierr)
@ -329,11 +318,11 @@ subroutine BasicPETSC_formResidual(in,x_scal,f_scal,dummy,ierr)
debug_spectralRotation
use DAMASK_spectral_Utilities, only: &
wgt, &
field_realMPI, &
field_fourierMPI, &
Utilities_FFTforward, &
Utilities_FFTbackward, &
Utilities_fourierConvolution, &
tensorField_realMPI, &
tensorField_fourierMPI, &
utilities_FFTtensorForward, &
utilities_FFTtensorBackward, &
utilities_fourierGammaConvolution, &
Utilities_inverseLaplace, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS
@ -392,16 +381,16 @@ subroutine BasicPETSC_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! updated deformation gradient using fix point algorithm of basic scheme
field_realMPI = 0.0_pReal
field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = f_scal
call Utilities_FFTforward()
tensorField_realMPI = 0.0_pReal
tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = f_scal
call utilities_FFTtensorForward()
err_div = Utilities_divergenceRMS()
call Utilities_fourierConvolution(math_rotate_backward33(F_aim_lastIter-F_aim,params%rotation_BC))
call Utilities_FFTbackward()
call utilities_fourierGammaConvolution(math_rotate_backward33(F_aim_lastIter-F_aim,params%rotation_BC))
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
f_scal = tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
end subroutine BasicPETSc_formResidual
@ -578,7 +567,6 @@ subroutine BasicPETSc_destroy()
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
call Utilities_destroy()
end subroutine BasicPETSc_destroy

View File

@ -13,7 +13,8 @@ module DAMASK_spectral_solverPolarisation
use math, only: &
math_I3
use DAMASK_spectral_utilities, only: &
tSolutionState
tSolutionState, &
tSolutionParams
implicit none
private
@ -24,14 +25,6 @@ module DAMASK_spectral_solverPolarisation
!--------------------------------------------------------------------------------------------------
! derived types
type tSolutionParams !< @todo use here the type definition for a full loadcase including mask
real(pReal), dimension(3,3) :: P_BC, rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: temperature
real(pReal) :: density
end type tSolutionParams
type(tSolutionParams), private :: params
real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal
@ -124,12 +117,9 @@ subroutine Polarisation_init(temperature)
use DAMASK_interface, only: &
getSolverJobName
use DAMASK_spectral_Utilities, only: &
Utilities_init, &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
Utilities_updateIPcoords, &
grid1Red, &
wgt
Utilities_updateIPcoords
use mesh, only: &
gridLocal, &
gridGlobal
@ -150,7 +140,6 @@ subroutine Polarisation_init(temperature)
integer(pInt) :: proc
character(len=1024) :: rankStr
call Utilities_init()
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverPolarisation init -+>>>'
write(6,'(a)') ' $Id$'
@ -169,6 +158,7 @@ subroutine Polarisation_init(temperature)
!--------------------------------------------------------------------------------------------------
! PETSc Init
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = gridLocal(3)
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
@ -182,10 +172,10 @@ subroutine Polarisation_init(temperature)
gridLocal (1),gridLocal (2),localK, & ! local grid
da,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr)
call DMDASNESSetFunctionLocal(da,INSERT_VALUES,Polarisation_formResidual,dummy,ierr)
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call SNESSetConvergenceTest(snes,Polarisation_converged,dummy,PETSC_NULL_FUNCTION,ierr)
CHKERRQ(ierr)
call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr)
@ -265,7 +255,7 @@ end subroutine Polarisation_init
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function &
Polarisation_solution(incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc, &
rotation_BC,density)
rotation_BC)
use numerics, only: &
update_gamma
use math, only: &
@ -277,8 +267,6 @@ type(tSolutionState) function &
use FEsolving, only: &
restartWrite, &
terminallyIll
use numerics, only: &
worldrank
implicit none
@ -288,8 +276,7 @@ type(tSolutionState) function &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime, & !< remaining time of current load case
temperature_bc, &
density
temperature_bc
logical, intent(in) :: &
guess
type(tBoundaryCondition), intent(in) :: &
@ -324,7 +311,6 @@ type(tSolutionState) function &
params%timeinc = timeinc
params%timeincOld = timeinc_old
params%temperature = temperature_bc
params%density = density
!--------------------------------------------------------------------------------------------------
! solve BVP
@ -363,16 +349,14 @@ subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr)
math_transpose33, &
math_mul3333xx33, &
math_invSym3333, &
math_mul33x33, &
PI
math_mul33x33
use DAMASK_spectral_Utilities, only: &
wgt, &
field_realMPI, &
field_fourierMPI, &
Utilities_FFTforward, &
Utilities_fourierConvolution, &
tensorField_realMPI, &
utilities_FFTtensorForward, &
utilities_fourierGammaConvolution, &
Utilities_inverseLaplace, &
Utilities_FFTbackward, &
utilities_FFTtensorBackward, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS, &
Utilities_curlRMS
@ -444,9 +428,9 @@ subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
!
field_realMPI = 0.0_pReal
tensorField_realMPI = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, gridLocal(1)
field_realMPI(1:3,1:3,i,j,k) = &
tensorField_realMPI(1:3,1:3,i,j,k) = &
polarBeta*math_mul3333xx33(C_scale,F(1:3,1:3,i,j,k) - math_I3) -&
polarAlpha*math_mul33x33(F(1:3,1:3,i,j,k), &
math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3))
@ -454,13 +438,13 @@ subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! doing convolution in Fourier space
call Utilities_FFTforward()
call Utilities_fourierConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC))
call Utilities_FFTbackward()
call utilities_FFTtensorForward()
call utilities_fourierGammaConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC))
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
residual_F_tau = polarBeta*F - field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
residual_F_tau = polarBeta*F - tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
@ -472,11 +456,11 @@ subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! calculate divergence
field_realMPI = 0.0_pReal
field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = residual_F
call Utilities_FFTforward()
tensorField_realMPI = 0.0_pReal
tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = residual_F
call utilities_FFTtensorForward()
err_div = Utilities_divergenceRMS()
call Utilities_FFTbackward()
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
@ -492,11 +476,11 @@ subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr)
!--------------------------------------------------------------------------------------------------
! calculating curl
field_realMPI = 0.0_pReal
field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F
call Utilities_FFTforward()
tensorField_realMPI = 0.0_pReal
tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F
call utilities_FFTtensorForward()
err_curl = Utilities_curlRMS()
call Utilities_FFTbackward()
call utilities_FFTtensorBackward()
end subroutine Polarisation_formResidual
@ -727,7 +711,6 @@ subroutine Polarisation_destroy()
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
call Utilities_destroy()
end subroutine Polarisation_destroy

View File

@ -11,6 +11,8 @@ module DAMASK_spectral_utilities
use prec, only: &
pReal, &
pInt
use math, only: &
math_I3
implicit none
private
@ -21,6 +23,18 @@ module DAMASK_spectral_utilities
logical, public :: cutBack =.false. !< cut back of BVP solver in case convergence is not achieved or a material point is terminally ill
integer(pInt), public, parameter :: maxPhaseFields = 2_pInt
integer(pInt), public :: nActiveFields = 0_pInt
!--------------------------------------------------------------------------------------------------
! field labels information
enum, bind(c)
enumerator :: FIELD_UNDEFINED_ID, &
FIELD_MECH_ID, &
FIELD_THERMAL_ID, &
FIELD_DAMAGE_ID, &
FIELD_VACANCYDIFFUSION_ID
end enum
!--------------------------------------------------------------------------------------------------
! grid related information information
real(pReal), public :: wgt !< weighting factor 1/Nelems
@ -28,37 +42,29 @@ module DAMASK_spectral_utilities
!--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW
integer(pInt), public :: grid1Red !< grid(1)/2
real (C_DOUBLE), public, dimension(:,:,:,:,:), pointer :: field_realMPI !< real representation (some stress or deformation) of field_fourier
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:,:), pointer :: field_fourierMPI !< field on which the Fourier transform operates
real (C_DOUBLE), public, dimension(:,:,:,:,:), pointer :: tensorField_realMPI !< real representation (some stress or deformation) of field_fourier
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:,:), pointer :: tensorField_fourierMPI !< field on which the Fourier transform operates
real(C_DOUBLE), public, dimension(:,:,:,:), pointer :: vectorField_realMPI !< vector field real representation for fftw
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:), pointer :: vectorField_fourierMPI !< vector field fourier representation for fftw
real(C_DOUBLE), public, dimension(:,:,:), pointer :: scalarField_realMPI !< scalar field real representation for fftw
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:), pointer :: scalarField_fourierMPI !< scalar field fourier representation for fftw
real(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method
real(pReal), private, dimension(:,:,:,:), allocatable :: xi !< wave vector field for divergence and for gamma operator
real(pReal), private, dimension(3,3,3,3) :: C_ref !< reference stiffness
real(pReal), private, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence (Basic, Basic PETSc)
!--------------------------------------------------------------------------------------------------
! debug fftw
real(C_DOUBLE), private, dimension(:,:,:), pointer :: scalarField_realMPI !< scalar field real representation for debugging fftw
complex(C_DOUBLE_COMPLEX),private, dimension(:,:,:), pointer :: scalarField_fourierMPI !< scalar field fourier representation for debugging fftw
!--------------------------------------------------------------------------------------------------
! geometry reconstruction
real(C_DOUBLE), private, dimension(:,:,:,:), pointer :: coords_realMPI !< vector field real representation for geometry reconstruction
complex(C_DOUBLE_COMPLEX),private, dimension(:,:,:,:), pointer :: coords_fourierMPI !< vector field fourier representation for geometry reconstruction
!--------------------------------------------------------------------------------------------------
! debug divergence
real(C_DOUBLE), private, dimension(:,:,:,:), pointer :: divRealMPI !< vector field real representation for debugging divergence calculation
complex(C_DOUBLE_COMPLEX),private, dimension(:,:,:,:), pointer :: divFourierMPI !< vector field fourier representation for debugging divergence calculation
real(pReal), private, dimension(3,3,3,3) :: C_ref !< mechanic reference stiffness
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence (Basic, Basic PETSc)
!--------------------------------------------------------------------------------------------------
! plans for FFTW
type(C_PTR), private :: &
planForthMPI, & !< FFTW MPI plan P(x) to P(k)
planBackMPI, & !< FFTW MPI plan F(k) to F(x)
planTensorForthMPI, & !< FFTW MPI plan P(x) to P(k)
planTensorBackMPI, & !< FFTW MPI plan F(k) to F(x)
planVectorForthMPI, & !< FFTW MPI plan P(x) to P(k)
planVectorBackMPI, & !< FFTW MPI plan F(k) to F(x)
planScalarForthMPI, & !< FFTW MPI plan P(x) to P(k)
planScalarBackMPI, & !< FFTW MPI plan F(k) to F(x)
planDebugForthMPI, & !< FFTW MPI plan for scalar field
planDebugBackMPI, & !< FFTW MPI plan for scalar field inverse
planDivMPI, & !< FFTW MPI plan for FFTW in case of debugging divergence calculation
planCoordsMPI !< FFTW MPI plan for geometry reconstruction
planDivMPI !< FFTW MPI plan for FFTW in case of debugging divergence calculation
!--------------------------------------------------------------------------------------------------
! variables controlling debugging
@ -74,6 +80,7 @@ module DAMASK_spectral_utilities
type, public :: tSolutionState !< return type of solution from spectral solver variants
logical :: converged = .true.
logical :: regrid = .false.
logical :: stagConverged = .true.
logical :: termIll = .false.
integer(pInt) :: iterationsNeeded = 0_pInt
end type tSolutionState
@ -85,6 +92,30 @@ module DAMASK_spectral_utilities
character(len=64) :: myType = 'None'
end type tBoundaryCondition
type, public :: tLoadCase
real(pReal), dimension (3,3) :: rotation = math_I3 !< rotation of BC
type(tBoundaryCondition) :: P, & !< stress BC
deformation !< deformation BC (Fdot or L)
real(pReal) :: time = 0.0_pReal, & !< length of increment
temperature = 300.0_pReal !< isothermal starting conditions
integer(pInt) :: incs = 0_pInt, & !< number of increments
outputfrequency = 1_pInt, & !< frequency of result writes
restartfrequency = 0_pInt, & !< frequency of restart writes
logscale = 0_pInt !< linear/logarithmic time inc flag
logical :: followFormerTrajectory = .true. !< follow trajectory of former loadcase
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
end type tLoadCase
type, public :: tSolutionParams !< @todo use here the type definition for a full loadcase including mask
real(pReal), dimension(3,3) :: P_BC, rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: temperature
real(pReal) :: density
end type tSolutionParams
type(tSolutionParams), private :: params
type, public :: phaseFieldDataBin !< set of parameters defining a phase field
real(pReal) :: diffusion = 0.0_pReal, & !< thermal conductivity
mobility = 0.0_pReal, & !< thermal mobility
@ -96,18 +127,29 @@ module DAMASK_spectral_utilities
public :: &
utilities_init, &
utilities_updateGamma, &
utilities_FFTforward, &
utilities_FFTbackward, &
utilities_fourierConvolution, &
utilities_FFTtensorForward, &
utilities_FFTtensorBackward, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGammaConvolution, &
utilities_fourierGreenConvolution, &
utilities_inverseLaplace, &
utilities_divergenceRMS, &
utilities_curlRMS, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence, &
utilities_maskedCompliance, &
utilities_constitutiveResponse, &
utilities_calculateRate, &
utilities_forwardField, &
utilities_destroy, &
utilities_updateIPcoords
utilities_updateIPcoords, &
FIELD_UNDEFINED_ID, &
FIELD_MECH_ID, &
FIELD_THERMAL_ID, &
FIELD_DAMAGE_ID
private :: &
utilities_getFilter
@ -123,15 +165,12 @@ contains
!--------------------------------------------------------------------------------------------------
subroutine utilities_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_interface, only: &
geometryFile
use IO, only: &
IO_error, &
IO_warning, &
IO_timeStamp, &
IO_open_file
use numerics, only: &
DAMASK_NumThreadsInt, &
fftw_planner_flag, &
fftw_timelimit, &
memory_efficient, &
@ -155,9 +194,7 @@ subroutine utilities_init()
gridGlobal, &
gridLocal, &
gridOffset, &
geomSizeGlobal, &
geomSizeLocal, &
geomSizeOffset
geomSizeGlobal
implicit none
#ifdef PETSc
@ -168,13 +205,11 @@ subroutine utilities_init()
PetscErrorCode :: ierr
#endif
integer(pInt) :: i, j, k
integer(pInt), parameter :: fileUnit = 228_pInt
integer(pInt), dimension(3) :: k_s
type(C_PTR) :: &
tensorFieldMPI, & !< field cotaining data for FFTW in real and fourier space (in place)
scalarFieldMPI, & !< field cotaining data for FFTW in real space when debugging FFTW (no in place)
div, & !< field cotaining data for FFTW in real and fourier space when debugging divergence (in place)
coordsMPI
vectorFieldMPI, & !< field cotaining data for FFTW in real space when debugging FFTW (no in place)
scalarFieldMPI !< field cotaining data for FFTW in real space when debugging FFTW (no in place)
integer(C_INTPTR_T) :: gridFFTW(3), alloc_local, local_K, local_K_offset
integer(C_INTPTR_T), parameter :: &
scalarSize = 1_C_INTPTR_T, &
@ -236,57 +271,68 @@ subroutine utilities_init()
gridFFTW = int(gridGlobal,C_INTPTR_T)
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
MPI_COMM_WORLD, local_K, local_K_offset)
tensorFieldMPI = fftw_alloc_complex(9*alloc_local)
call c_f_pointer(tensorFieldMPI, field_realMPI, [3_C_INTPTR_T,3_C_INTPTR_T, &
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K])
call c_f_pointer(tensorFieldMPI, field_fourierMPI, [3_C_INTPTR_T,3_C_INTPTR_T, &
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K])
tensorFieldMPI = fftw_alloc_complex(tensorSize*alloc_local)
call c_f_pointer(tensorFieldMPI, tensorField_realMPI, [3_C_INTPTR_T,3_C_INTPTR_T, &
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real tensor representation
call c_f_pointer(tensorFieldMPI, tensorField_fourierMPI, [3_C_INTPTR_T,3_C_INTPTR_T, &
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K]) ! place a pointer for a fourier tensor representation
vectorFieldMPI = fftw_alloc_complex(vecSize*alloc_local)
call c_f_pointer(vectorFieldMPI, vectorField_realMPI, [3_C_INTPTR_T,&
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real vector representation
call c_f_pointer(vectorFieldMPI, vectorField_fourierMPI,[3_C_INTPTR_T,&
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a fourier vector representation
scalarFieldMPI = fftw_alloc_complex(scalarSize*alloc_local) ! allocate data for real representation (no in place transform)
call c_f_pointer(scalarFieldMPI, scalarField_realMPI, &
[2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1),gridFFTW(2),local_K]) ! place a pointer for a real scalar representation
call c_f_pointer(scalarFieldMPI, scalarField_fourierMPI, &
[ gridFFTW(1)/2_C_INTPTR_T + 1 ,gridFFTW(2),local_K]) ! place a pointer for a fourier scarlar representation
allocate (xi(3,grid1Red,gridLocal(2),gridLocal(3)),source = 0.0_pReal) ! frequencies, only half the size for first dimension
coordsMPI = fftw_alloc_complex(3*alloc_local)
call c_f_pointer(coordsMPI, coords_realMPI, [3_C_INTPTR_T,&
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real representation on coords_fftw
call c_f_pointer(coordsMPI, coords_fourierMPI,[3_C_INTPTR_T,&
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a real representation on coords_fftw
!--------------------------------------------------------------------------------------------------
! MPI fftw plans
planForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], tensorSize, & ! dimension, logical length in each dimension in reversed order, no. of transforms
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! default iblock and oblock
field_realMPI, field_fourierMPI, & ! input data, output data
! tensor MPI fftw plans
planTensorForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
tensorSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock
tensorField_realMPI, tensorField_fourierMPI, &! input data, output data
MPI_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
planBackMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], tensorSize, & ! dimension, logical length in each dimension in reversed order, no. of transforms
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! default iblock and oblock
field_fourierMPI,field_realMPI, & ! input data, output data
planTensorBackMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
tensorSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock
tensorField_fourierMPI,tensorField_realMPI, &! input data, output data
MPI_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision
!--------------------------------------------------------------------------------------------------
! Coordinates MPI fftw plans
planCoordsMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], vecSize, & ! dimension, logical length in each dimension in reversed order, no. of transforms
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! default iblock and oblock
coords_fourierMPI,coords_realMPI, & ! input data, output data
! vector MPI fftw plans
planVectorForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
vecSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock
vectorField_realMPI, vectorField_fourierMPI, &! input data, output data
MPI_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
planVectorBackMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
vecSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock
vectorField_fourierMPI,vectorField_realMPI, & ! input data, output data
MPI_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision
!--------------------------------------------------------------------------------------------------
! scalar MPI fftw plans
planScalarForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock
scalarField_realMPI, scalarField_fourierMPI, & ! input data, output data
MPI_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
planScalarBackMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order, no. of transforms
scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock
scalarField_fourierMPI,scalarField_realMPI, & ! input data, output data
MPI_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
!--------------------------------------------------------------------------------------------------
! depending on debug options, allocate more memory and create additional plans
if (debugDivergence) then
div = fftw_alloc_complex(3*alloc_local)
call c_f_pointer(div,divRealMPI, [3_C_INTPTR_T,&
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K])
call c_f_pointer(div,divFourierMPI,[3_C_INTPTR_T,&
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K])
planDivMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2) ,gridFFTW(1)],vecSize, &
FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &
divFourierMPI, divRealMPI, &
vectorField_fourierMPI, vectorField_realMPI, &
MPI_COMM_WORLD, fftw_planner_flag)
endif
if (debugFFTW) then
scalarFieldMPI = fftw_alloc_complex(alloc_local) ! allocate data for real representation (no in place transform)
call c_f_pointer(scalarFieldMPI, scalarField_realMPI, &
[2*(gridFFTW(1)/2 + 1),gridFFTW(2),local_K]) ! place a pointer for a real representation
call c_f_pointer(scalarFieldMPI, scalarField_fourierMPI, &
[ gridFFTW(1)/2 + 1 ,gridFFTW(2),local_K]) ! place a pointer for a fourier representation
planDebugForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], &
scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &
scalarField_realMPI, scalarField_fourierMPI, &
@ -345,8 +391,6 @@ subroutine utilities_updateGamma(C,saveReference)
gridLocal
use math, only: &
math_inv33
use mesh, only: &
gridLocal
implicit none
real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness
@ -383,14 +427,13 @@ subroutine utilities_updateGamma(C,saveReference)
end subroutine utilities_updateGamma
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed
!> @details Does an unweighted FFT transform from real to complex.
!> In case of debugging the FFT, also one component of the tensor (specified by row and column)
!> is independetly transformed complex to complex and compared to the whole tensor transform
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTforward()
subroutine utilities_FFTtensorForward()
use math
use numerics, only: &
worldrank
@ -398,10 +441,6 @@ subroutine utilities_FFTforward()
gridLocal
implicit none
external :: &
MPI_Bcast, &
MPI_reduce
integer(pInt) :: row, column ! if debug FFTW, compare 3D array field of row and column
real(pReal), dimension(2) :: myRand, maxScalarField ! random numbers
integer(pInt) :: i, j, k
@ -419,12 +458,12 @@ subroutine utilities_FFTforward()
call MPI_Bcast(column,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr)
scalarField_realMPI = 0.0_pReal
scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = &
field_realMPI(row,column,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) ! store the selected component
tensorField_realMPI(row,column,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) ! store the selected component
endif
!--------------------------------------------------------------------------------------------------
! doing the FFT
call fftw_mpi_execute_dft_r2c(planForthMPI,field_realMPI,field_fourierMPI)
call fftw_mpi_execute_dft_r2c(planTensorForthMPI,tensorField_realMPI,tensorField_fourierMPI)
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 FT results
@ -433,10 +472,10 @@ subroutine utilities_FFTforward()
where(abs(scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3))) > tiny(1.0_pReal)) ! avoid division by zero
scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3)) = &
(scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3))-&
field_fourierMPI(row,column,1:grid1Red,1:gridLocal(2),1:gridLocal(3)))/&
tensorField_fourierMPI(row,column,1:grid1Red,1:gridLocal(2),1:gridLocal(3)))/&
scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3))
else where
scalarField_fourierMPI = cmplx(0.0,0.0,pReal)
scalarField_realMPI = cmplx(0.0,0.0,pReal)
end where
maxScalarField(1) = maxval(real (scalarField_fourierMPI(1:grid1Red,1:gridLocal(2), &
1:gridLocal(3))))
@ -454,11 +493,11 @@ subroutine utilities_FFTforward()
!--------------------------------------------------------------------------------------------------
! applying filter
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
field_fourierMPI(1:3,1:3,i,j,k) = cmplx(utilities_getFilter(xi(1:3,i,j,k)),0.0,pReal)* &
field_fourierMPI(1:3,1:3,i,j,k)
tensorField_fourierMPI(1:3,1:3,i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* &
tensorField_fourierMPI(1:3,1:3,i,j,k)
enddo; enddo; enddo
end subroutine utilities_FFTforward
end subroutine utilities_FFTtensorForward
!--------------------------------------------------------------------------------------------------
@ -468,7 +507,7 @@ end subroutine utilities_FFTforward
!> is independetly transformed complex to complex and compared to the whole tensor transform
!> results is weighted by number of points stored in wgt
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTbackward()
subroutine utilities_FFTtensorBackward()
use math
use numerics, only: &
worldrank
@ -476,10 +515,6 @@ subroutine utilities_FFTbackward()
gridLocal
implicit none
external :: &
MPI_Bcast, &
MPI_reduce
integer(pInt) :: row, column !< if debug FFTW, compare 3D array field of row and column
real(pReal), dimension(2) :: myRand
real(pReal) :: maxScalarField
@ -496,12 +531,12 @@ subroutine utilities_FFTbackward()
call MPI_Bcast(row ,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr)
call MPI_Bcast(column,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr)
scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3)) = &
field_fourierMPI(row,column,1:grid1Red,1:gridLocal(2),1:gridLocal(3))
tensorField_fourierMPI(row,column,1:grid1Red,1:gridLocal(2),1:gridLocal(3))
endif
!--------------------------------------------------------------------------------------------------
! doing the iFFT
call fftw_mpi_execute_dft_c2r(planBackMPI,field_fourierMPI,field_realMPI) ! back transform of fluct deformation gradient
call fftw_mpi_execute_dft_c2r(planTensorBackMPI,tensorField_fourierMPI,tensorField_realMPI) ! back transform of fluct deformation gradient
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
@ -510,10 +545,10 @@ subroutine utilities_FFTbackward()
where(abs(real(scalarField_realMPI,pReal)) > tiny(1.0_pReal)) ! avoid division by zero
scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = &
(scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) &
- field_realMPI (row,column,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)))/ &
- tensorField_realMPI (row,column,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)))/ &
scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
else where
scalarField_realMPI = 0.0_pReal
scalarField_realMPI = cmplx(0.0,0.0,pReal)
end where
maxScalarField = maxval(real (scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))))
call MPI_reduce(MPI_IN_PLACE,maxScalarField,1,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr)
@ -524,10 +559,91 @@ subroutine utilities_FFTbackward()
endif
endif
field_realMPI = field_realMPI * wgt ! normalize the result by number of elements
tensorField_realMPI = tensorField_realMPI * wgt ! normalize the result by number of elements
end subroutine utilities_FFTbackward
end subroutine utilities_FFTtensorBackward
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed
!> @details Does an unweighted FFT transform from real to complex.
!> In case of debugging the FFT, also one component of the scalar
!> is independetly transformed complex to complex and compared to the whole scalar transform
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarForward()
use math
use mesh, only: &
gridLocal
integer(pInt) :: i, j, k
! doing the scalar FFT
call fftw_mpi_execute_dft_r2c(planScalarForthMPI,scalarField_realMPI,scalarField_fourierMPI)
! applying filter
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
scalarField_fourierMPI(i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* &
scalarField_fourierMPI(i,j,k)
enddo; enddo; enddo
end subroutine utilities_FFTscalarForward
!--------------------------------------------------------------------------------------------------
!> @brief backward FFT of data in field_fourier to field_real
!> @details Does an inverse FFT transform from complex to real
!> In case of debugging the FFT, also one component of the scalar
!> is independetly transformed complex to complex and compared to the whole scalar transform
!> results is weighted by number of points stored in wgt
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarBackward()
use math
! doing the scalar iFFT
call fftw_mpi_execute_dft_c2r(planScalarBackMPI,scalarField_fourierMPI,scalarField_realMPI)
scalarField_realMPI = scalarField_realMPI * wgt ! normalize the result by number of elements
end subroutine utilities_FFTscalarBackward
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed
!> @details Does an unweighted FFT transform from real to complex.
!> In case of debugging the FFT, also one component of the vector
!> is independetly transformed complex to complex and compared to the whole vector transform
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTvectorForward()
use math
use mesh, only: &
gridLocal
integer(pInt) :: i, j, k
! doing the vecotr FFT
call fftw_mpi_execute_dft_r2c(planVectorForthMPI,vectorField_realMPI,vectorField_fourierMPI)
! applying filter
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
vectorField_fourierMPI(1:3,i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* &
vectorField_fourierMPI(1:3,i,j,k)
enddo; enddo; enddo
end subroutine utilities_FFTvectorForward
!--------------------------------------------------------------------------------------------------
!> @brief backward FFT of data in field_fourier to field_real
!> @details Does an inverse FFT transform from complex to real
!> In case of debugging the FFT, also one component of the vector
!> is independetly transformed complex to complex and compared to the whole vector transform
!> results is weighted by number of points stored in wgt
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTvectorBackward()
use math
! doing the vector iFFT
call fftw_mpi_execute_dft_c2r(planVectorBackMPI,vectorField_fourierMPI,vectorField_realMPI)
vectorField_realMPI = vectorField_realMPI * wgt ! normalize the result by number of elements
end subroutine utilities_FFTvectorBackward
!--------------------------------------------------------------------------------------------------
!> @brief doing convolution with inverse laplace kernel
@ -554,13 +670,14 @@ subroutine utilities_inverseLaplace()
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, grid1Red
k_s = xi(1:3,i,j,k)*scaledGeomSize
if (any(k_s /= 0_pInt)) field_fourierMPI(1:3,1:3,i,j,k-gridOffset) = &
field_fourierMPI(1:3,1:3,i,j,k-gridOffset)/ &
if (any(k_s /= 0_pInt)) tensorField_fourierMPI(1:3,1:3,i,j,k-gridOffset) = &
tensorField_fourierMPI(1:3,1:3,i,j,k-gridOffset)/ &
cmplx(-sum((2.0_pReal*PI*k_s/geomSizeGlobal)* &
(2.0_pReal*PI*k_s/geomSizeGlobal)),0.0_pReal,pReal)
enddo; enddo; enddo
if (gridOffset == 0_pInt) &
field_fourierMPI(1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal)
tensorField_fourierMPI(1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal)
end subroutine utilities_inverseLaplace
@ -568,7 +685,7 @@ end subroutine utilities_inverseLaplace
!--------------------------------------------------------------------------------------------------
!> @brief doing convolution gamma_hat * field_real, ensuring that average value = fieldAim
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierConvolution(fieldAim)
subroutine utilities_fourierGammaConvolution(fieldAim)
use numerics, only: &
memory_efficient
use math, only: &
@ -583,12 +700,13 @@ subroutine utilities_fourierConvolution(fieldAim)
real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution
real(pReal), dimension(3,3) :: xiDyad, temp33_Real
complex(pReal), dimension(3,3) :: temp33_complex
integer(pInt) :: &
i, j, k, &
l, m, n, o
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' ... doing convolution .....................................................'
write(6,'(/,a)') ' ... doing gamma convolution ................................................'
flush(6)
endif
@ -605,22 +723,59 @@ subroutine utilities_fourierConvolution(fieldAim)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt)&
gamma_hat(l,m,n,o, 1,1,1) = temp33_Real(l,n)*xiDyad(m,o)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3, 1,1,1) * field_fourierMPI(1:3,1:3,i,j,k))
field_fourierMPI(1:3,1:3,i,j,k) = temp33_Complex
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3, 1,1,1) * &
tensorField_fourierMPI(1:3,1:3,i,j,k))
tensorField_fourierMPI(1:3,1:3,i,j,k) = temp33_Complex
endif
enddo; enddo; enddo
else ! use precalculated gamma-operator
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * field_fourierMPI(1:3,1:3,i,j,k))
field_fourierMPI(1:3,1:3,i,j,k) = temp33_Complex
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * &
tensorField_fourierMPI(1:3,1:3,i,j,k))
tensorField_fourierMPI(1:3,1:3,i,j,k) = temp33_Complex
enddo; enddo; enddo
endif
if (gridOffset == 0_pInt) &
field_fourierMPI(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
tensorField_fourierMPI(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
end subroutine utilities_fourierConvolution
end subroutine utilities_fourierGammaConvolution
!--------------------------------------------------------------------------------------------------
!> @brief doing convolution DamageGreenOp_hat * field_real
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT)
use numerics, only: &
memory_efficient
use math, only: &
math_mul33x3, &
PI
use numerics, only: &
worldrank
use mesh, only: &
gridLocal, &
geomSizeGlobal
implicit none
real(pReal), dimension(3,3), intent(in) :: D_ref !< desired average value of the field after convolution
real(pReal), intent(in) :: mobility_ref, deltaT !< desired average value of the field after convolution
real(pReal), dimension(3) :: k_s
real(pReal) :: GreenOp_hat
integer(pInt) :: i, j, k
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2) ;do i = 1_pInt, grid1Red
k_s = xi(1:3,i,j,k)*scaledGeomSize
GreenOp_hat = 1.0_pReal/ &
(mobility_ref + deltaT*sum((2.0_pReal*PI*k_s/geomSizeGlobal)* &
math_mul33x3(D_ref,(2.0_pReal*PI*k_s/geomSizeGlobal))))!< GreenOp_hat = iK^{T} * D_ref * iK, K is frequency
scalarField_fourierMPI(i,j,k) = scalarField_fourierMPI(i,j,k)*GreenOp_hat
enddo; enddo; enddo
end subroutine utilities_fourierGreenConvolution
!--------------------------------------------------------------------------------------------------
!> @brief calculate root mean square of divergence of field_fourier
@ -634,10 +789,6 @@ real(pReal) function utilities_divergenceRMS()
gridGlobal
implicit none
external :: &
MPI_reduce, &
MPI_Allreduce
integer(pInt) :: i, j, k
real(pReal) :: &
err_real_div_RMS, & !< RMS of divergence in real space
@ -658,19 +809,19 @@ real(pReal) function utilities_divergenceRMS()
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2)
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(math_mul33x3_complex(field_fourierMPI(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
+ 2.0_pReal*(sum (real(math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(math_mul33x3_complex(field_fourierMPI(1:3,1:3,i,j,k),&
+sum(aimag(math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,i,j,k),&
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
enddo
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
+ sum( real(math_mul33x3_complex(field_fourierMPI(1:3,1:3,1 ,j,k), &
+ sum( real(math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,1 ,j,k), &
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) &
+ sum(aimag(math_mul33x3_complex(field_fourierMPI(1:3,1:3,1 ,j,k), &
+ sum(aimag(math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,1 ,j,k), &
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) &
+ sum( real(math_mul33x3_complex(field_fourierMPI(1:3,1:3,grid1Red,j,k), &
+ sum( real(math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,grid1Red,j,k), &
xi(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal) &
+ sum(aimag(math_mul33x3_complex(field_fourierMPI(1:3,1:3,grid1Red,j,k), &
+ sum(aimag(math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,grid1Red,j,k), &
xi(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal)
enddo; enddo
if(gridGlobal(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
@ -682,19 +833,19 @@ real(pReal) function utilities_divergenceRMS()
if (debugDivergence) then ! calculate divergence again
err_div_max = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, grid1Red
temp3_Complex = math_mul33x3_complex(field_fourierMPI(1:3,1:3,i,j,k)*wgt,& ! weighting P_fourier
temp3_Complex = math_mul33x3_complex(tensorField_fourierMPI(1:3,1:3,i,j,k)*wgt,& ! weighting P_fourier
xi(1:3,i,j,k))*TWOPIIMG
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
divFourierMPI(1:3,i,j,k) = temp3_Complex ! need divergence NOT squared
vectorField_fourierMPI(1:3,i,j,k) = temp3_Complex ! need divergence NOT squared
enddo; enddo; enddo
call fftw_mpi_execute_dft_c2r(planDivMPI,divFourierMPI,divRealMPI) ! already weighted
call fftw_mpi_execute_dft_c2r(planDivMPI,vectorField_fourierMPI,vectorField_realMPI) ! already weighted
err_real_div_RMS = sum(divRealMPI**2.0_pReal)
err_real_div_RMS = sum(vectorField_realMPI**2.0_pReal)
call MPI_reduce(MPI_IN_PLACE,err_real_div_RMS,1,MPI_DOUBLE,MPI_SUM,0,PETSC_COMM_WORLD,ierr)
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
err_real_div_max = maxval(sum(divRealMPI**2.0_pReal,dim=4)) ! max in real space
err_real_div_max = maxval(sum(vectorField_realMPI**2.0_pReal,dim=4)) ! max in real space
call MPI_reduce(MPI_IN_PLACE,err_real_div_max,1,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr)
err_real_div_max = sqrt(err_real_div_max)
@ -725,9 +876,6 @@ real(pReal) function utilities_curlRMS()
gridGlobal
implicit none
external :: &
MPI_Allreduce
integer(pInt) :: i, j, k, l
complex(pReal), dimension(3,3) :: curl_fourier
PetscErrorCode :: ierr
@ -744,33 +892,33 @@ real(pReal) function utilities_curlRMS()
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2);
do i = 2_pInt, grid1Red - 1_pInt
do l = 1_pInt, 3_pInt
curl_fourier(l,1) = (+field_fourierMPI(l,3,i,j,k)*xi(2,i,j,k)&
-field_fourierMPI(l,2,i,j,k)*xi(3,i,j,k))*TWOPIIMG
curl_fourier(l,2) = (+field_fourierMPI(l,1,i,j,k)*xi(3,i,j,k)&
-field_fourierMPI(l,3,i,j,k)*xi(1,i,j,k))*TWOPIIMG
curl_fourier(l,3) = (+field_fourierMPI(l,2,i,j,k)*xi(1,i,j,k)&
-field_fourierMPI(l,1,i,j,k)*xi(2,i,j,k))*TWOPIIMG
curl_fourier(l,1) = (+tensorField_fourierMPI(l,3,i,j,k)*xi(2,i,j,k)&
-tensorField_fourierMPI(l,2,i,j,k)*xi(3,i,j,k))*TWOPIIMG
curl_fourier(l,2) = (+tensorField_fourierMPI(l,1,i,j,k)*xi(3,i,j,k)&
-tensorField_fourierMPI(l,3,i,j,k)*xi(1,i,j,k))*TWOPIIMG
curl_fourier(l,3) = (+tensorField_fourierMPI(l,2,i,j,k)*xi(1,i,j,k)&
-tensorField_fourierMPI(l,1,i,j,k)*xi(2,i,j,k))*TWOPIIMG
enddo
utilities_curlRMS = utilities_curlRMS + &
2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)
enddo
do l = 1_pInt, 3_pInt
curl_fourier = (+field_fourierMPI(l,3,1,j,k)*xi(2,1,j,k)&
-field_fourierMPI(l,2,1,j,k)*xi(3,1,j,k))*TWOPIIMG
curl_fourier = (+field_fourierMPI(l,1,1,j,k)*xi(3,1,j,k)&
-field_fourierMPI(l,3,1,j,k)*xi(1,1,j,k))*TWOPIIMG
curl_fourier = (+field_fourierMPI(l,2,1,j,k)*xi(1,1,j,k)&
-field_fourierMPI(l,1,1,j,k)*xi(2,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourierMPI(l,3,1,j,k)*xi(2,1,j,k)&
-tensorField_fourierMPI(l,2,1,j,k)*xi(3,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourierMPI(l,1,1,j,k)*xi(3,1,j,k)&
-tensorField_fourierMPI(l,3,1,j,k)*xi(1,1,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourierMPI(l,2,1,j,k)*xi(1,1,j,k)&
-tensorField_fourierMPI(l,1,1,j,k)*xi(2,1,j,k))*TWOPIIMG
enddo
utilities_curlRMS = utilities_curlRMS + &
2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)
do l = 1_pInt, 3_pInt
curl_fourier = (+field_fourierMPI(l,3,grid1Red,j,k)*xi(2,grid1Red,j,k)&
-field_fourierMPI(l,2,grid1Red,j,k)*xi(3,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+field_fourierMPI(l,1,grid1Red,j,k)*xi(3,grid1Red,j,k)&
-field_fourierMPI(l,3,grid1Red,j,k)*xi(1,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+field_fourierMPI(l,2,grid1Red,j,k)*xi(1,grid1Red,j,k)&
-field_fourierMPI(l,1,grid1Red,j,k)*xi(2,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourierMPI(l,3,grid1Red,j,k)*xi(2,grid1Red,j,k)&
-tensorField_fourierMPI(l,2,grid1Red,j,k)*xi(3,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourierMPI(l,1,grid1Red,j,k)*xi(3,grid1Red,j,k)&
-tensorField_fourierMPI(l,3,grid1Red,j,k)*xi(1,grid1Red,j,k))*TWOPIIMG
curl_fourier = (+tensorField_fourierMPI(l,2,grid1Red,j,k)*xi(1,grid1Red,j,k)&
-tensorField_fourierMPI(l,1,grid1Red,j,k)*xi(2,grid1Red,j,k))*TWOPIIMG
enddo
utilities_curlRMS = utilities_curlRMS + &
2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)
@ -884,6 +1032,48 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
end function utilities_maskedCompliance
!--------------------------------------------------------------------------------------------------
!> @brief calculate scalar gradient in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierScalarGradient()
use math, only: &
PI
use mesh, only: &
gridLocal, &
geomSizeGlobal
integer(pInt) :: i, j, k
vectorField_fourierMPI = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
vectorField_fourierMPI(1:3,i,j,k) = scalarField_fourierMPI(i,j,k)* &
cmplx(0.0_pReal,2.0_pReal*PI*xi(1:3,i,j,k)* &
scaledGeomSize/geomSizeGlobal,pReal)
enddo; enddo; enddo
end subroutine utilities_fourierScalarGradient
!--------------------------------------------------------------------------------------------------
!> @brief calculate vector divergence in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorDivergence()
use math, only: &
PI
use mesh, only: &
gridLocal, &
geomSizeGlobal
integer(pInt) :: i, j, k, m
scalarField_fourierMPI = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt
scalarField_fourierMPI(i,j,k) = &
scalarField_fourierMPI(i,j,k) + &
vectorField_fourierMPI(m,i,j,k)* &
cmplx(0.0_pReal,2.0_pReal*PI*xi(m,i,j,k)*scaledGeomSize(m)/geomSizeGlobal(m),pReal)
enddo
enddo; enddo; enddo
end subroutine utilities_fourierVectorDivergence
!--------------------------------------------------------------------------------------------------
!> @brief calculates constitutive response
!--------------------------------------------------------------------------------------------------
@ -912,14 +1102,8 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
materialpoint_F, &
materialpoint_P, &
materialpoint_dPdF
! use thermal_isothermal, only: &
! thermal_isothermal_temperature
implicit none
external :: &
MPI_reduce, &
MPI_Allreduce
real(pReal), intent(in) :: temperature !< temperature (no field)
real(pReal), intent(in), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: &
F_lastInc, & !< target deformation gradient
@ -955,9 +1139,8 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
call CPFEM_general(CPFEM_COLLECT,F_lastInc(1:3,1:3,1,1,1),F(1:3,1:3,1,1,1), &
temperature,timeinc,1_pInt,1_pInt)
! thermal_isothermal_temperature(:) = temperature
materialpoint_F = reshape(F,[3,3,1,product(gridLocal)])
materialpoint_F = reshape(F,[3,3,1,product(gridLocal)])
call debug_reset()
!--------------------------------------------------------------------------------------------------
@ -1062,9 +1245,6 @@ function utilities_forwardField(timeinc,field_lastInc,rate,aim)
gridLocal
implicit none
external :: &
MPI_Allreduce
real(pReal), intent(in) :: &
timeinc !< timeinc of current step
real(pReal), intent(in), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: &
@ -1122,11 +1302,13 @@ real(pReal) function utilities_getFilter(k)
utilities_getFilter = 0.0_pReal
if (gridGlobal(2) /= 1_pInt .and. k(2) == real(gridGlobal(2)/2_pInt, pReal)/scaledGeomSize(2)) &
utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation
if (gridGlobal(2) /= 1_pInt .and. k(2) == real(gridGlobal(2)/2_pInt + mod(gridGlobal(2),2_pInt), pReal)/scaledGeomSize(2)) &
if (gridGlobal(2) /= 1_pInt .and. &
k(2) == real(gridGlobal(2)/2_pInt + mod(gridGlobal(2),2_pInt), pReal)/scaledGeomSize(2)) &
utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation
if (gridGlobal(3) /= 1_pInt .and. k(3) == real(gridGlobal(3)/2_pInt, pReal)/scaledGeomSize(3)) &
utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation
if (gridGlobal(3) /= 1_pInt .and. k(3) == real(gridGlobal(3)/2_pInt + mod(gridGlobal(3),2_pInt), pReal)/scaledGeomSize(3)) &
if (gridGlobal(3) /= 1_pInt .and. &
k(3) == real(gridGlobal(3)/2_pInt + mod(gridGlobal(3),2_pInt), pReal)/scaledGeomSize(3)) &
utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation
end function utilities_getFilter
@ -1143,9 +1325,12 @@ subroutine utilities_destroy()
if (debugDivergence) call fftw_destroy_plan(planDivMPI)
if (debugFFTW) call fftw_destroy_plan(planDebugForthMPI)
if (debugFFTW) call fftw_destroy_plan(planDebugBackMPI)
call fftw_destroy_plan(planForthMPI)
call fftw_destroy_plan(planBackMPI)
call fftw_destroy_plan(planCoordsMPI)
call fftw_destroy_plan(planTensorForthMPI)
call fftw_destroy_plan(planTensorBackMPI)
call fftw_destroy_plan(planVectorForthMPI)
call fftw_destroy_plan(planVectorBackMPI)
call fftw_destroy_plan(planScalarForthMPI)
call fftw_destroy_plan(planScalarBackMPI)
end subroutine utilities_destroy
@ -1164,8 +1349,6 @@ subroutine utilities_updateIPcoords(F)
geomSizeGlobal, &
mesh_ipCoordinates
implicit none
external :: &
MPI_Bcast
real(pReal), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)), intent(in) :: F
integer(pInt) :: i, j, k, m
@ -1173,40 +1356,41 @@ subroutine utilities_updateIPcoords(F)
real(pReal), dimension(3,3) :: Favg
PetscErrorCode :: ierr
field_realMPI = 0.0_pReal
field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F
call utilities_FFTforward()
tensorField_realMPI = 0.0_pReal
tensorField_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F
call utilities_FFTtensorForward()
integrator = geomSizeGlobal * 0.5_pReal / PI
step = geomSizeGlobal/real(gridGlobal, pReal)
!--------------------------------------------------------------------------------------------------
! average F
if (gridOffset == 0_pInt) Favg = real(field_fourierMPI(1:3,1:3,1,1,1),pReal)*wgt
if (gridOffset == 0_pInt) Favg = real(tensorField_fourierMPI(1:3,1:3,1,1,1),pReal)*wgt
call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
!--------------------------------------------------------------------------------------------------
! integration in Fourier space
coords_fourierMPI = cmplx(0.0_pReal, 0.0_pReal, pReal)
vectorField_fourierMPI = cmplx(0.0_pReal, 0.0_pReal, pReal)
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red
do m = 1_pInt,3_pInt
coords_fourierMPI(m,i,j,k) = sum(field_fourierMPI(m,1:3,i,j,k)*&
vectorField_fourierMPI(m,i,j,k) = sum(tensorField_fourierMPI(m,1:3,i,j,k)*&
cmplx(0.0_pReal,xi(1:3,i,j,k)*scaledGeomSize*integrator,pReal))
enddo
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) coords_fourierMPI(1:3,i,j,k) = &
coords_fourierMPI(1:3,i,j,k)/cmplx(-sum(xi(1:3,i,j,k)*scaledGeomSize*xi(1:3,i,j,k)* &
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) &
vectorField_fourierMPI(1:3,i,j,k) = &
vectorField_fourierMPI(1:3,i,j,k)/cmplx(-sum(xi(1:3,i,j,k)*scaledGeomSize*xi(1:3,i,j,k)* &
scaledGeomSize),0.0_pReal,pReal)
enddo; enddo; enddo
call fftw_mpi_execute_dft_c2r(planCoordsMPI,coords_fourierMPI,coords_realMPI)
call fftw_mpi_execute_dft_c2r(planVectorBackMPI,vectorField_fourierMPI,vectorField_realMPI)
!--------------------------------------------------------------------------------------------------
! add average to fluctuation and put (0,0,0) on (0,0,0)
if (gridOffset == 0_pInt) offset_coords = coords_realMPI(1:3,1,1,1)
if (gridOffset == 0_pInt) offset_coords = vectorField_realMPI(1:3,1,1,1)
call MPI_Bcast(offset_coords,3,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
offset_coords = math_mul33x3(Favg,step/2.0_pReal) - offset_coords
m = 1_pInt
do k = 1_pInt,gridLocal(3); do j = 1_pInt,gridLocal(2); do i = 1_pInt,gridLocal(1)
mesh_ipCoordinates(1:3,1,m) = coords_realMPI(1:3,i,j,k) &
mesh_ipCoordinates(1:3,1,m) = vectorField_realMPI(1:3,i,j,k) &
+ offset_coords &
+ math_mul33x3(Favg,step*real([i,j,k+gridOffset]-1_pInt,pReal))
m = m+1_pInt

View File

@ -348,7 +348,8 @@ DAMASK_spectral.exe: MESHNAME := mesh.f90
DAMASK_spectral.exe: INTERFACENAME := DAMASK_spectral_interface.f90
SPECTRAL_SOLVER_FILES = DAMASK_spectral_solverAL.o DAMASK_spectral_solverBasicPETSc.o DAMASK_spectral_solverPolarisation.o
SPECTRAL_SOLVER_FILES = DAMASK_spectral_solverAL.o DAMASK_spectral_solverBasicPETSc.o DAMASK_spectral_solverPolarisation.o \
spectral_thermal.o spectral_damage.o
SPECTRAL_FILES = prec.o DAMASK_interface.o IO.o libs.o numerics.o debug.o math.o \
FEsolving.o mesh.o material.o lattice.o \
@ -379,6 +380,12 @@ DAMASK_spectral_solverPolarisation.o: DAMASK_spectral_solverPolarisation.f90
DAMASK_spectral_solverBasicPETSc.o: DAMASK_spectral_solverBasicPETSc.f90 \
DAMASK_spectral_utilities.o
spectral_thermal.o: spectral_thermal.f90 \
DAMASK_spectral_utilities.o
spectral_damage.o: spectral_damage.f90 \
DAMASK_spectral_utilities.o
DAMASK_spectral_utilities.o: DAMASK_spectral_utilities.f90 \
CPFEM.o

View File

@ -115,8 +115,9 @@ module numerics
spectral_solver = 'basicpetsc' , & !< spectral solution method
spectral_filter = 'none' !< spectral filtering method
character(len=1024), protected, public :: &
petsc_options = '-snes_type ngmres &
&-snes_ngmres_anderson '
petsc_options = '-mech_snes_type ngmres &
&-damage_snes_type ngmres &
&-thermal_snes_type ngmres '
integer(pInt), protected, public :: &
fftw_planner_flag = 32_pInt, & !< conversion of fftw_plan_mode to integer, basically what is usually done in the include file of fftw
continueCalculation = 0_pInt, & !< 0: exit if BVP solver does not converge, 1: continue calculation if BVP solver does not converge

409
code/spectral_damage.f90 Normal file
View File

@ -0,0 +1,409 @@
!--------------------------------------------------------------------------------------------------
! $Id: spectral_damage.f90 4082 2015-04-11 20:28:07Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for nonlocal damage
!--------------------------------------------------------------------------------------------------
module spectral_damage
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use DAMASK_spectral_Utilities, only: &
tSolutionState, &
tSolutionParams
use numerics, only: &
worldrank, &
worldsize
implicit none
private
#include <petsc-finclude/petsc.h90>
character (len=*), parameter, public :: &
spectral_damage_label = 'spectraldamage'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES, private :: damage_snes
Vec, private :: solution
PetscInt, private :: xstart, xend, ystart, yend, zstart, zend
real(pReal), private, dimension(:,:,:), allocatable :: &
damage_current, & !< field of current damage
damage_lastInc, & !< field of previous damage
damage_stagInc !< field of staggered damage
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
integer(pInt), private :: totalIter = 0_pInt !< total iteration in current increment
real(pReal), dimension(3,3), private :: D_ref
real(pReal), private :: mobility_ref
character(len=1024), private :: incInfo
public :: &
spectral_damage_init, &
spectral_damage_solution, &
spectral_damage_forward, &
spectral_damage_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use DAMASK_spectral_Utilities, only: &
wgt
use mesh, only: &
gridLocal, &
gridGlobal
use damage_nonlocal, only: &
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility
implicit none
DM :: damage_grid
Vec :: uBound, lBound
PetscErrorCode :: ierr
PetscObject :: dummy
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
integer(pInt) :: i, j, k, cell
character(len=100) :: snes_type
mainProcess: if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- spectral_damage init -+>>>'
write(6,'(a)') ' $Id: spectral_damage.f90 4082 2015-04-11 20:28:07Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,damage_snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(damage_snes,'damage_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = gridLocal(3)
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & !< cut off stencil at boundary
DMDA_STENCIL_BOX, & !< Moore (26) neighborhood around central point
gridGlobal(1),gridGlobal(2),gridGlobal(3), & !< global grid
1, 1, worldsize, &
1, 0, & !< #dof (damage phase field), ghost boundary width (domain overlap)
gridLocal (1),gridLocal (2),localK, & !< local grid
damage_grid,ierr) !< handle, error
CHKERRQ(ierr)
call SNESSetDM(damage_snes,damage_grid,ierr); CHKERRQ(ierr) !< connect snes to da
call DMCreateGlobalVector(damage_grid,solution,ierr); CHKERRQ(ierr) !< global solution vector (grid x 1, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(damage_grid,INSERT_VALUES,spectral_damage_formResidual,dummy,ierr) !< residual vector of same shape as solution vector
CHKERRQ(ierr)
call SNESSetFromOptions(damage_snes,ierr); CHKERRQ(ierr) !< pull it all together with additional cli arguments
call SNESGetType(damage_snes,snes_type,ierr); CHKERRQ(ierr)
if (trim(snes_type) == 'vinewtonrsls' .or. &
trim(snes_type) == 'vinewtonssls') then
call DMGetGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
call DMGetGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
call VecSet(lBound,0.0,ierr); CHKERRQ(ierr)
call VecSet(uBound,1.0,ierr); CHKERRQ(ierr)
call SNESVISetVariableBounds(damage_snes,lBound,uBound,ierr) !< variable bounds for variational inequalities like contact mechanics, damage etc.
call DMRestoreGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
call DMRestoreGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
endif
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAGetCorners(damage_grid,xstart,ystart,zstart,xend,yend,zend,ierr)
CHKERRQ(ierr)
xend = xstart + xend - 1
yend = ystart + yend - 1
zend = zstart + zend - 1
call VecSet(solution,1.0,ierr); CHKERRQ(ierr)
allocate(damage_current(gridLocal(1),gridLocal(2),gridLocal(3)), source=1.0_pReal)
allocate(damage_lastInc(gridLocal(1),gridLocal(2),gridLocal(3)), source=1.0_pReal)
allocate(damage_stagInc(gridLocal(1),gridLocal(2),gridLocal(3)), source=1.0_pReal)
!--------------------------------------------------------------------------------------------------
! damage reference diffusion update
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
D_ref = D_ref + damage_nonlocal_getDiffusion33(1,cell)
mobility_ref = mobility_ref + damage_nonlocal_getMobility(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine spectral_damage_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the spectral damage scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function spectral_damage_solution(guess,timeinc,timeinc_old,loadCaseTime)
use numerics, only: &
itmax, &
err_damage_tolAbs, &
err_damage_tolRel
use DAMASK_spectral_Utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use mesh, only: &
gridLocal
use damage_nonlocal, only: &
damage_nonlocal_putNonLocalDamage
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
integer(pInt) :: i, j, k, cell
PetscInt ::position
PetscReal :: minDamage, maxDamage, stagNorm, solnNorm
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
spectral_damage_solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(damage_snes,PETSC_NULL_OBJECT,solution,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(damage_snes,reason,ierr); CHKERRQ(ierr)
if (reason < 1) then
spectral_damage_solution%converged = .false.
spectral_damage_solution%iterationsNeeded = itmax
else
spectral_damage_solution%converged = .true.
spectral_damage_solution%iterationsNeeded = totalIter
endif
stagNorm = maxval(abs(damage_current - damage_stagInc))
solnNorm = maxval(abs(damage_current))
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
call MPI_Allreduce(MPI_IN_PLACE,solnNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
damage_stagInc = damage_current
spectral_damage_solution%stagConverged = stagNorm < err_damage_tolAbs &
.or. stagNorm < err_damage_tolRel*solnNorm
!--------------------------------------------------------------------------------------------------
! updating damage state
cell = 0_pInt !< material point = 0
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt !< material point increase
call damage_nonlocal_putNonLocalDamage(damage_current(i,j,k),1,cell)
enddo; enddo; enddo
call VecMin(solution,position,minDamage,ierr); CHKERRQ(ierr)
call VecMax(solution,position,maxDamage,ierr); CHKERRQ(ierr)
if (worldrank == 0) then
if (spectral_damage_solution%converged) &
write(6,'(/,a)') ' ... nonlocal damage converged .....................................'
write(6,'(/,a,f8.6,2x,f8.6,2x,f8.6,/)',advance='no') ' Minimum|Maximum|Delta Damage = ',&
minDamage, maxDamage, stagNorm
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end function spectral_damage_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral damage residual vector
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_formResidual(in,x_scal,f_scal,dummy,ierr)
use mesh, only: &
gridLocal
use math, only: &
math_mul33x3
use DAMASK_spectral_Utilities, only: &
scalarField_realMPI, &
vectorField_realMPI, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGreenConvolution, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence
use damage_nonlocal, only: &
damage_nonlocal_getSourceAndItsTangent,&
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
real(pReal) :: phiDot, dPhiDot_dPhi, mobility
damage_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
scalarField_realMPI = 0.0_pReal
scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = damage_current
call utilities_FFTscalarForward()
call utilities_fourierScalarGradient() !< calculate gradient of damage field
call utilities_FFTvectorBackward()
cell = 0_pInt
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
vectorField_realMPI(1:3,i,j,k) = math_mul33x3(damage_nonlocal_getDiffusion33(1,cell) - D_ref, &
vectorField_realMPI(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward()
call utilities_fourierVectorDivergence() !< calculate damage divergence in fourier field
call utilities_FFTscalarBackward()
cell = 0_pInt
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
call damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, damage_current(i,j,k), 1, cell)
mobility = damage_nonlocal_getMobility(1,cell)
scalarField_realMPI(i,j,k) = params%timeinc*scalarField_realMPI(i,j,k) + &
params%timeinc*phiDot + &
mobility*damage_lastInc(i,j,k) - &
mobility*damage_current(i,j,k) + &
mobility_ref*damage_current(i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! convolution of damage field with green operator
call utilities_FFTscalarForward()
call utilities_fourierGreenConvolution(D_ref, mobility_ref, params%timeinc)
call utilities_FFTscalarBackward()
where(scalarField_realMPI > 1.0_pReal) scalarField_realMPI = 1.0_pReal
where(scalarField_realMPI < 0.0_pReal) scalarField_realMPI = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) - &
damage_current
end subroutine spectral_damage_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief spectral damage forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_forward(guess,timeinc,timeinc_old,loadCaseTime)
use mesh, only: &
gridLocal
use DAMASK_spectral_Utilities, only: &
cutBack, &
wgt
use damage_nonlocal, only: &
damage_nonlocal_putNonLocalDamage, &
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
DM :: dm_local
PetscScalar, dimension(:,:,:), pointer :: x_scal
if (cutBack) then
damage_current = damage_lastInc
damage_stagInc = damage_lastInc
!--------------------------------------------------------------------------------------------------
! reverting damage field state
cell = 0_pInt
call SNESGetDM(damage_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = damage_current
call DMDAVecRestoreArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr)
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
call damage_nonlocal_putNonLocalDamage(damage_current(i,j,k),1,cell)
enddo; enddo; enddo
else
!--------------------------------------------------------------------------------------------------
! update rate and forward last inc
damage_lastInc = damage_current
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
D_ref = D_ref + damage_nonlocal_getDiffusion33(1,cell)
mobility_ref = mobility_ref + damage_nonlocal_getMobility(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
endif
end subroutine spectral_damage_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_destroy()
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution,ierr); CHKERRQ(ierr)
call SNESDestroy(damage_snes,ierr); CHKERRQ(ierr)
end subroutine spectral_damage_destroy
end module spectral_damage

403
code/spectral_thermal.f90 Normal file
View File

@ -0,0 +1,403 @@
!--------------------------------------------------------------------------------------------------
! $Id: spectral_thermal.f90 4082 2015-04-11 20:28:07Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for thermal conduction
!--------------------------------------------------------------------------------------------------
module spectral_thermal
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use DAMASK_spectral_Utilities, only: &
tSolutionState, &
tSolutionParams
use numerics, only: &
worldrank, &
worldsize
implicit none
private
#include <petsc-finclude/petsc.h90>
character (len=*), parameter, public :: &
spectral_thermal_label = 'spectralthermal'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES, private :: thermal_snes
Vec, private :: solution
PetscInt, private :: xstart, xend, ystart, yend, zstart, zend
real(pReal), private, dimension(:,:,:), allocatable :: &
temperature_current, & !< field of current temperature
temperature_lastInc, & !< field of previous temperature
temperature_stagInc !< field of staggered temperature
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
integer(pInt), private :: totalIter = 0_pInt !< total iteration in current increment
real(pReal), dimension(3,3), private :: D_ref
real(pReal), private :: mobility_ref
character(len=1024), private :: incInfo
public :: &
spectral_thermal_init, &
spectral_thermal_solution, &
spectral_thermal_forward, &
spectral_thermal_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_init(temperature0)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use DAMASK_spectral_Utilities, only: &
wgt
use mesh, only: &
gridLocal, &
gridGlobal
use thermal_conduction, only: &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
real(pReal), intent(inOut) :: temperature0
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
integer(pInt) :: i, j, k, cell
DM :: thermal_grid
PetscErrorCode :: ierr
PetscObject :: dummy
mainProcess: if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- spectral_thermal init -+>>>'
write(6,'(a)') ' $Id: spectral_thermal.f90 4082 2015-04-11 20:28:07Z MPIE\m.diehl $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,thermal_snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(thermal_snes,'thermal_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = gridLocal(3)
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
gridGlobal(1),gridGlobal(2),gridGlobal(3), & ! global grid
1, 1, worldsize, &
1, 0, & ! #dof (temperature field), ghost boundary width (domain overlap)
gridLocal (1),gridLocal (2),localK, & ! local grid
thermal_grid,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(thermal_snes,thermal_grid,ierr); CHKERRQ(ierr) ! connect snes to da
call DMCreateGlobalVector(thermal_grid,solution ,ierr); CHKERRQ(ierr) ! global solution vector (grid x 1, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(thermal_grid,INSERT_VALUES,spectral_thermal_formResidual,dummy,ierr) ! residual vector of same shape as solution vector
CHKERRQ(ierr)
call SNESSetFromOptions(thermal_snes,ierr); CHKERRQ(ierr) ! pull it all together with additional cli arguments
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAGetCorners(thermal_grid,xstart,ystart,zstart,xend,yend,zend,ierr)
CHKERRQ(ierr)
xend = xstart + xend - 1
yend = ystart + yend - 1
zend = zstart + zend - 1
call VecSet(solution,temperature0,ierr); CHKERRQ(ierr)
allocate(temperature_current(gridLocal(1),gridLocal(2),gridLocal(3)), source=temperature0)
allocate(temperature_lastInc(gridLocal(1),gridLocal(2),gridLocal(3)), source=temperature0)
allocate(temperature_stagInc(gridLocal(1),gridLocal(2),gridLocal(3)), source=temperature0)
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
D_ref = D_ref + thermal_conduction_getConductivity33(1,cell)
mobility_ref = mobility_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine spectral_thermal_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the Basic PETSC scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function spectral_thermal_solution(guess,timeinc,timeinc_old,loadCaseTime)
use numerics, only: &
itmax, &
err_thermal_tolAbs, &
err_thermal_tolRel
use DAMASK_spectral_Utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use mesh, only: &
gridLocal
use thermal_conduction, only: &
thermal_conduction_putTemperatureAndItsRate
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
integer(pInt) :: i, j, k, cell
PetscInt :: position
PetscReal :: minTemperature, maxTemperature, stagNorm, solnNorm
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
spectral_thermal_solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(thermal_snes,PETSC_NULL_OBJECT,solution,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(thermal_snes,reason,ierr); CHKERRQ(ierr)
if (reason < 1) then
spectral_thermal_solution%converged = .false.
spectral_thermal_solution%iterationsNeeded = itmax
else
spectral_thermal_solution%converged = .true.
spectral_thermal_solution%iterationsNeeded = totalIter
endif
stagNorm = maxval(abs(temperature_current - temperature_stagInc))
solnNorm = maxval(abs(temperature_current))
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
call MPI_Allreduce(MPI_IN_PLACE,solnNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
temperature_stagInc = temperature_current
spectral_thermal_solution%stagConverged = stagNorm < err_thermal_tolAbs &
.or. stagNorm < err_thermal_tolRel*solnNorm
!--------------------------------------------------------------------------------------------------
! updating thermal state
cell = 0_pInt !< material point = 0
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt !< material point increase
call thermal_conduction_putTemperatureAndItsRate(temperature_current(i,j,k), &
(temperature_current(i,j,k)-temperature_lastInc(i,j,k))/params%timeinc, &
1,cell)
enddo; enddo; enddo
call VecMin(solution,position,minTemperature,ierr); CHKERRQ(ierr)
call VecMax(solution,position,maxTemperature,ierr); CHKERRQ(ierr)
if (worldrank == 0) then
if (spectral_thermal_solution%converged) &
write(6,'(/,a)') ' ... thermal conduction converged ..................................'
write(6,'(/,a,f8.4,2x,f8.4,2x,f8.4,/)',advance='no') ' Minimum|Maximum|Delta Temperature = ',&
minTemperature, maxTemperature, stagNorm
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end function spectral_thermal_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral thermal residual vector
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_formResidual(in,x_scal,f_scal,dummy,ierr)
use mesh, only: &
gridLocal
use math, only: &
math_mul33x3
use DAMASK_spectral_Utilities, only: &
scalarField_realMPI, &
vectorField_realMPI, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGreenConvolution, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence
use thermal_conduction, only: &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
real(pReal) :: Tdot, dTdot_dT
temperature_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
scalarField_realMPI = 0.0_pReal
scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = temperature_current
call utilities_FFTscalarForward()
call utilities_fourierScalarGradient() !< calculate gradient of damage field
call utilities_FFTvectorBackward()
cell = 0_pInt
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
vectorField_realMPI(1:3,i,j,k) = math_mul33x3(thermal_conduction_getConductivity33(1,cell) - D_ref, &
vectorField_realMPI(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward()
call utilities_fourierVectorDivergence() !< calculate damage divergence in fourier field
call utilities_FFTscalarBackward()
cell = 0_pInt
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
call thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, temperature_current(i,j,k), 1, cell)
scalarField_realMPI(i,j,k) = params%timeinc*scalarField_realMPI(i,j,k) + &
params%timeinc*Tdot + &
thermal_conduction_getMassDensity (1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)*(temperature_lastInc(i,j,k) - &
temperature_current(i,j,k)) + &
mobility_ref*temperature_current(i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! convolution of damage field with green operator
call utilities_FFTscalarForward()
call utilities_fourierGreenConvolution(D_ref, mobility_ref, params%timeinc)
call utilities_FFTscalarBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = temperature_current - scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3))
end subroutine spectral_thermal_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_forward(guess,timeinc,timeinc_old,loadCaseTime)
use mesh, only: &
gridLocal
use DAMASK_spectral_Utilities, only: &
cutBack, &
wgt
use thermal_conduction, only: &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
integer(pInt) :: i, j, k, cell
DM :: dm_local
PetscScalar, pointer :: x_scal(:,:,:)
PetscErrorCode :: ierr
if (cutBack) then
temperature_current = temperature_lastInc
temperature_stagInc = temperature_lastInc
!--------------------------------------------------------------------------------------------------
! reverting thermal field state
cell = 0_pInt !< material point = 0
call SNESGetDM(thermal_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = temperature_current
call DMDAVecRestoreArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr)
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt !< material point increase
call thermal_conduction_putTemperatureAndItsRate(temperature_current(i,j,k), &
(temperature_current(i,j,k) - &
temperature_lastInc(i,j,k))/params%timeinc, &
1,cell)
enddo; enddo; enddo
else
!--------------------------------------------------------------------------------------------------
! update rate and forward last inc
temperature_lastInc = temperature_current
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,gridLocal(1)
cell = cell + 1_pInt
D_ref = D_ref + thermal_conduction_getConductivity33(1,cell)
mobility_ref = mobility_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
endif
end subroutine spectral_thermal_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_destroy()
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution,ierr); CHKERRQ(ierr)
call SNESDestroy(thermal_snes,ierr); CHKERRQ(ierr)
end subroutine spectral_thermal_destroy
end module spectral_thermal