diff --git a/dislocation_based_subroutine/CPFEM.f90 b/dislocation_based_subroutine/CPFEM.f90 new file mode 100644 index 000000000..591801fe6 --- /dev/null +++ b/dislocation_based_subroutine/CPFEM.f90 @@ -0,0 +1,488 @@ + +!############################################################## + MODULE CPFEM +!############################################################## +! *** CPFEM engine *** +! + use prec, only: pReal,pInt + implicit none +! +! **************************************************************** +! *** General variables for the material behaviour calculation *** +! **************************************************************** + real(pReal) CPFEM_Tp + real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_all + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jacobi_all + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn_all + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn1_all + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_results + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ini_ori + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_sigma_old + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_sigma_new + real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_old + real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_new + real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jaco_old + integer(pInt) :: CPFEM_inc_old = 0_pInt + integer(pInt) :: CPFEM_subinc_old = 1_pInt + integer(pInt) :: CPFEM_Nresults = 3_pInt + logical :: CPFEM_first_call = .true. + + CONTAINS + +!********************************************************* +!*** allocate the arrays defined in module CPFEM *** +!*** and initialize them *** +!********************************************************* + SUBROUTINE CPFEM_init() +! + use prec, only: pReal,pInt + use math, only: math_EulertoR + use mesh + use constitutive +! + implicit none + + integer(pInt) e,i,g +! +! *** mpie.marc parameters *** + CPFEM_Tp = 0.0_pReal + allocate(CPFEM_ffn_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn_all = 0.0_pReal + allocate(CPFEM_ffn1_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1_all = 0.0_pReal + allocate(CPFEM_stress_all( 6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_stress_all = 0.0_pReal + allocate(CPFEM_jacobi_all(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jacobi_all = 0.0_pReal +! +! *** User defined results !!! MISSING incorporate consti_Nresults *** + allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) + CPFEM_results = 0.0_pReal +! +! *** Second Piola-Kirchoff stress tensor at (t=t0) and (t=t1) *** + allocate(CPFEM_sigma_old(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_old = 0.0_pReal + allocate(CPFEM_sigma_new(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_new = 0.0_pReal +! +! *** Plastic deformation gradient at (t=t0) and (t=t1) *** + allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) + forall (e=1:mesh_NcpElems,i=1:mesh_maxNips,g=1:constitutive_maxNgrains) & + CPFEM_Fp_old(:,:,g,i,e) = math_EulerToR(constitutive_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation + allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_new = 0.0_pReal +! +! *** Old jacobian (consistent tangent) *** + allocate(CPFEM_jaco_old(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_old = 0.0_pReal +! +! *** Output to MARC output file *** + write(6,*) + write(6,*) 'Arrays allocated:' + write(6,*) 'CPFEM_ffn_all: ', shape(CPFEM_ffn_all) + write(6,*) 'CPFEM_ffn1_all: ', shape(CPFEM_ffn1_all) + write(6,*) 'CPFEM_stress_all: ', shape(CPFEM_stress_all) + write(6,*) 'CPFEM_jacobi_all: ', shape(CPFEM_jacobi_all) + write(6,*) 'CPFEM_results: ', shape(CPFEM_results) + write(6,*) 'CPFEM_sigma_old: ', shape(CPFEM_sigma_old) + write(6,*) 'CPFEM_sigma_new: ', shape(CPFEM_sigma_new) + write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old) + write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new) + write(6,*) 'CPFEM_jaco_old: ', shape(CPFEM_jaco_old) + write(6,*) + call flush(6) + return + + END SUBROUTINE +! +! +!*********************************************************************** +!*** perform initialization at first call, update variables and *** +!*** call the actual material model *** +!*********************************************************************** + SUBROUTINE CPFEM_general(ffn, ffn1, Tp, CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_dt, CPFEM_en, CPFEM_in) +! + use prec, only: pReal,pInt + use math, only: math_init + use mesh, only: mesh_init,mesh_FEasCP + use constitutive, only: constitutive_init,constitutive_state_old,constitutive_state_new + implicit none +! + real(pReal) ffn(3,3), ffn1(3,3), Tp, CPFEM_dt + integer(pInt) CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_en, CPFEM_in, cp_en +! +! initialization step + if (CPFEM_first_call) then +! three dimensional stress state ? + call math_init() + call mesh_init() + call constitutive_init() + call crystal_init() + call CPFEM_init() + CPFEM_first_call = .false. + endif + if (CPFEM_inc==CPFEM_inc_old) then ! not a new increment +! case of a new subincrement:update starting with subinc 2 + if (CPFEM_subinc > CPFEM_subinc_old) then + CPFEM_sigma_old = CPFEM_sigma_new + CPFEM_Fp_old = CPFEM_Fp_new + constitutive_state_old = constitutive_state_new + CPFEM_subinc_old = CPFEM_subinc + endif + else ! new increment + CPFEM_sigma_old = CPFEM_sigma_new + CPFEM_Fp_old = CPFEM_Fp_new + constitutive_state_old = constitutive_state_new + CPFEM_inc_old = CPFEM_inc + CPFEM_subinc_old = 1_pInt + endif + + cp_en = mesh_FEasCP('elem',CPFEM_en) + CPFEM_Tp = Tp + CPFEM_ffn_all(:,:,CPFEM_in, cp_en) = ffn + CPFEM_ffn1_all(:,:,CPFEM_in, cp_en) = ffn1 + call CPFEM_stressIP(CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in) + return + + END SUBROUTINE + + +!********************************************************** +!*** calculate the material behaviour at IP level *** +!********************************************************** + SUBROUTINE CPFEM_stressIP(& + CPFEM_cn,& ! Cycle number + CPFEM_dt,& ! Time increment (dt) + cp_en,& ! Element number + CPFEM_in) ! Integration point number + + use prec, only: pReal,pInt,ijaco,nCutback + use math, only: math_pDecomposition,math_RtoEuler + use IO, only: IO_error + use mesh, only: mesh_element + use constitutive +! + implicit none + + integer(pInt), parameter :: i_now = 1_pInt,i_then = 2_pInt + character(len=128) msg + integer(pInt) CPFEM_cn,cp_en,CPFEM_in,grain,i + logical updateJaco,error + real(pReal) CPFEM_dt,dt,t,volfrac + real(pReal), dimension(6) :: cs,Tstar_v + real(pReal), dimension(6,6) :: cd + real(pReal), dimension(3,3) :: Fe,U,R,deltaFg + real(pReal), dimension(3,3,2) :: Fg,Fp + real(pReal), dimension(constitutive_maxNstatevars,2) :: state + + updateJaco = (mod(CPFEM_cn,ijaco)==0) ! update consistent tangent every ijaco'th iteration + + CPFEM_stress_all(:,CPFEM_in,cp_en) = 0.0_pReal ! average Cauchy stress + if (updateJaco) CPFEM_jaco_old(:,:,CPFEM_in,cp_en) = 0.0_pReal ! average consistent tangent + +! -------------- grain loop ----------------- + do grain = 1,texture_Ngrains(mesh_element(4,cp_en)) +! ------------------------------------------- + + i = 0_pInt ! cutback counter + state(:,i_now) = constitutive_state_old(:,grain,CPFEM_in,cp_en) + Fg(:,:,i_now) = CPFEM_ffn_all(:,:,CPFEM_in,cp_en) + Fp(:,:,i_now) = CPFEM_Fp_old(:,:,grain,CPFEM_in,cp_en) + + deltaFg = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en)-CPFEM_ffn_all(:,:,CPFEM_in,cp_en) + dt = CPFEM_dt + + Tstar_v = CPFEM_sigma_old(:,grain,CPFEM_in,cp_en) ! use last result as initial guess + Fg(:,:,i_then) = Fg(:,:,i_now) + state(:,i_then) = 0.0_pReal ! state_old as initial guess + t = 0.0_pReal + +! ------- crystallite integration ----------- + do +! ------------------------------------------- + if (t+dt < CPFEM_dt) then ! intermediate solution + t = t+dt ! next time inc + Fg(:,:,i_then) = Fg(:,:,i_then)+deltaFg ! corresponding Fg + else ! full step solution + t = CPFEM_dt ! final time + Fg(:,:,i_then) = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en) ! final Fg + endif + + call CPFEM_stressCrystallite(msg,cs,cd,Tstar_v,Fp(:,:,i_then),Fe,state(:,i_then),& + dt,cp_en,CPFEM_in,grain,updateJaco .and. t==CPFEM_dt,& + Fg(:,:,i_now),Fg(:,:,i_then),Fp(:,:,i_now),state(:,i_now)) + if (msg == 'ok') then ! solution converged + if (t == CPFEM_dt) exit ! reached final "then" + else ! solution not found + i = i+1_pInt ! inc cutback counter +! write(6,*) 'ncut:', i + if (i > nCutback) then ! limit exceeded? + write(6,*) 'cutback limit --> '//msg + write(6,*) 'Grain: ',grain + write(6,*) 'Integration point: ',CPFEM_in + write(6,*) 'Element: ',mesh_element(1,cp_en) + call IO_error(600) + return ! byebye + else + t = t-dt ! rewind time + Fg(:,:,i_then) = Fg(:,:,i_then)-deltaFg ! rewind Fg + dt = 0.5_pReal*dt ! cut time-step in half + deltaFg = 0.5_pReal*deltaFg ! cut Fg-step in half + endif + endif + enddo ! crystallite integration (cutback loop) + +! ---- update crystallite matrices at t = t1 ---- + CPFEM_Fp_new(:,:,grain,CPFEM_in,cp_en) = Fp(:,:,i_then) + constitutive_state_new(:,grain,CPFEM_in,cp_en) = state(:,i_then) + CPFEM_sigma_new(:,grain,CPFEM_in,cp_en) = Tstar_v +! ---- update results plotted in MENTAT ---- + call math_pDecomposition(Fe,U,R,error) ! polar decomposition + if (error) then + write(6,*) 'polar decomposition' + write(6,*) 'Grain: ',grain + write(6,*) 'Integration point: ',CPFEM_in + write(6,*) 'Element: ',mesh_element(1,cp_en) + call IO_error(600) + return + endif + CPFEM_results(1:3,grain,CPFEM_in,cp_en) = math_RtoEuler(transpose(R)) ! orientation + CPFEM_results(4:3+constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en) = & + constitutive_post_results(Tstar_v,state(:,i_then),CPFEM_dt,CPFEM_Tp,grain,CPFEM_in,cp_en) + +! ---- contribute to IP result ---- + volfrac = constitutive_matVolFrac(grain,CPFEM_in,cp_en)*constitutive_texVolFrac(grain,CPFEM_in,cp_en) + CPFEM_stress_all(:,CPFEM_in,cp_en) = CPFEM_stress_all(:,CPFEM_in,cp_en)+volfrac*cs ! average Cauchy stress + if (updateJaco) CPFEM_jaco_old(:,:,CPFEM_in,cp_en) = CPFEM_jaco_old(:,:,CPFEM_in,cp_en)+volfrac*cd ! average consistent tangent + + enddo ! grain loop + + return + END SUBROUTINE + + +!******************************************************************** +! Calculates the stress for a single component +! it is based on the paper by Kalidindi et al.: +! J. Mech. Phys, Solids Vol. 40, No. 3, pp. 537-569, 1992 +! it is modified to use anisotropic elasticity matrix +!******************************************************************** + subroutine CPFEM_stressCrystallite(& + msg,& ! return message + cs,& ! Cauchy stress vector + dcs_de,& ! consistent tangent + Tstar_v,& ! second Piola-Kirchoff stress tensor + Fp_new,& ! new plastic deformation gradient + Fe_new,& ! new "elastic" deformation gradient + state_new,& ! new state variable array +! + dt,& ! time increment + cp_en,& ! element number + CPFEM_in,& ! integration point number + grain,& ! grain number + updateJaco,& ! boolean to calculate Jacobi matrix + Fg_old,& ! old global deformation gradient + Fg_new,& ! new global deformation gradient + Fp_old,& ! old plastic deformation gradient + state_old) ! old state variable array + + use prec, only: pReal,pInt,pert_e + use constitutive, only: constitutive_Nstatevars + use math, only: math_Mandel6to33,mapMandel + implicit none + + character(len=*) msg + logical updateJaco + integer(pInt) cp_en,CPFEM_in,grain,i + real(pReal) dt + real(pReal), dimension(3,3) :: Fg_old,Fg_new,Fg_pert,Fp_old,Fp_new,Fp_pert,Fe_new,Fe_pert,E_pert + real(pReal), dimension(6) :: cs,Tstar_v,Tstar_v_pert + real(pReal), dimension(6,6) :: dcs_de + real(pReal), dimension(constitutive_Nstatevars(grain,CPFEM_in,cp_en)) :: state_old,state_new,state_pert + + call CPFEM_timeIntegration(msg,Fp_new,Fe_new,Tstar_v,state_new, & ! def gradients and PK2 at end of time step + dt,cp_en,CPFEM_in,grain,Fg_new,Fp_old,state_old) + if (msg /= 'ok') return + cs = CPFEM_CauchyStress(Tstar_v,Fe_new) ! Cauchy stress + + if (updateJaco) then ! consistent tangent using numerical perturbation of Fg + do i = 1,6 ! Fg component + E_pert = 0.0_pReal + E_pert(mapMandel(1,i),mapMandel(2,i)) = E_pert(mapMandel(1,i),mapMandel(2,i)) + pert_e/2.0_pReal + E_pert(mapMandel(2,i),mapMandel(1,i)) = E_pert(mapMandel(2,i),mapMandel(1,i)) + pert_e/2.0_pReal + + Fg_pert = Fg_new+matmul(E_pert,Fg_old) ! perturbated Fg + Tstar_v_pert = Tstar_v ! initial guess from end of time step + state_pert = state_new ! initial guess from end of time step + call CPFEM_timeIntegration(msg,Fp_pert,Fe_pert,Tstar_v_pert,state_pert, & + dt,cp_en,CPFEM_in,grain,Fg_pert,Fp_old,state_old) + if (msg /= 'ok') then + msg = 'consistent tangent --> '//msg + return + endif +! Remark: (perturbated) Cauchy stress is Mandel hence dcs_de(:,4:6) is too large by sqrt(2) + dcs_de(:,i) = (CPFEM_CauchyStress(Tstar_v_pert,Fe_pert)-cs)/pert_e + enddo + endif + + return + + END SUBROUTINE + + +!*********************************************************************** +!*** fully-implicit two-level time integration *** +!*********************************************************************** + SUBROUTINE CPFEM_timeIntegration(& + msg,& ! return message + Fp_new,& ! new plastic deformation gradient + Fe_new,& ! new "elastic" deformation gradient + Tstar_v,& ! 2nd PK stress (taken as initial guess if /= 0) + state_new,& ! current microstructure at end of time inc (taken as guess if /= 0) +! + dt,& ! time increment + cp_en,& ! element number + CPFEM_in,& ! integration point number + grain,& ! grain number + Fg_new,& ! new total def gradient + Fp_old,& ! former plastic def gradient + state_old) ! former microstructure + + use prec + use constitutive, only: constitutive_Nstatevars,& + constitutive_HomogenizedC,constitutive_dotState,constitutive_LpAndItsTangent,& + constitutive_Microstructure + use math + implicit none + + character(len=*) msg + integer(pInt) cp_en, CPFEM_in, grain + integer(pInt) iState,iStress,dummy, i,j,k,l,m + real(pReal) dt,det, p_hydro + real(pReal), dimension(6) :: Tstar_v,dTstar_v,Rstress, E, T_elastic, Rstress_old + real(pReal), dimension(6,6) :: C_66,Jacobi,invJacobi + real(pReal), dimension(3,3) :: Fg_new,Fp_old,Fp_new,Fe_new,invFp_old,invFp_new,Lp,A,B,AB + real(pReal), dimension(3,3,3,3) :: dLp, LTL + real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state_new,dstate,Rstate,RstateS + logical failed + + msg = 'ok' ! error-free so far + + call math_invert3x3(Fp_old,invFp_old,det,failed) ! inversion of Fp + if (failed) then + msg = 'inversion Fp_old' + return + endif + + C_66 = constitutive_HomogenizedC(grain, CPFEM_in, cp_en) + A = matmul(Fg_new,invFp_old) ! actually Fe + A = matmul(transpose(A), A) + +! former state guessed, if none specified + if (all(state_new == 0.0_pReal)) state_new = state_old + RstateS = state_new + iState = 0_pInt + + Rstress = Tstar_v + Rstress_old=Rstress + +state: do ! outer iteration: state + iState = iState+1 + if (iState > nState) then + msg = 'limit state iteration' + return + endif + call constitutive_Microstructure(state_new,CPFEM_Tp,grain,CPFEM_in,cp_en) + iStress = 0_pInt +stress: do ! inner iteration: stress + iStress = iStress+1 + if (iStress > nStress) then ! too many loops required + msg = 'limit stress iteration' + return + endif + p_hydro=(Tstar_v(1)+Tstar_v(2)+Tstar_v(3))/3.0_pReal + forall(i=1:3) Tstar_v(i)=Tstar_v(i)-p_hydro + call constitutive_LpAndItsTangent(Lp,dLp,Tstar_v,state_new,CPFEM_Tp,grain,CPFEM_in,cp_en) + B = math_I3-dt*Lp +! B = B / math_det3x3(B)**(1.0_pReal/3.0_pReal) + AB = matmul(A,B) + T_elastic= 0.5_pReal*matmul(C_66,math_Mandel33to6(matmul(transpose(B),AB)-math_I3)) + p_hydro=(T_elastic(1)+T_elastic(2)+T_elastic(3))/3.0_pReal + forall(i=1:3) T_elastic(i)=T_elastic(i)-p_hydro + Rstress = Tstar_v - T_elastic +! step size control: if residuum does not improve redo iteration with reduced step size + if(maxval(abs(Rstress)) > maxval(abs(Rstress_old)) .and. & + maxval(abs(Rstress)) > 1.0e-6 .and. iStress > 1) then +! write(6,*) 'Hallo', iStress + Tstar_v=Tstar_v+0.5*dTstar_v + dTstar_v=0.5*dTstar_v + cycle + endif + if (iStress > 1 .and. (maxval(abs(Tstar_v)) < 1.0e-3_pReal .or. maxval(abs(Rstress/maxval(abs(Tstar_v)))) < tol_Stress)) exit stress + +! update stress guess using inverse of dRes/dTstar (Newton--Raphson) + LTL = 0.0_pReal + do i=1,3 + do j=1,3 + do k=1,3 + do l=1,3 + do m=1,3 + LTL(i,j,k,l) = LTL(i,j,k,l) + dLp(j,i,m,k)*AB(m,l) + AB(m,i)*dLp(m,j,k,l) + enddo + enddo + enddo + enddo + enddo + Jacobi = math_identity2nd(6) + 0.5_pReal*dt*matmul(C_66,math_Mandel3333to66(LTL)) + j = 0_pInt + call math_invert6x6(Jacobi,invJacobi,dummy,failed) + do while (failed .and. j <= nReg) + forall (i=1:6) Jacobi(i,i) = 1.05_pReal*maxval(Jacobi(i,:)) ! regularization + call math_invert6x6(Jacobi,invJacobi,dummy,failed) + j = j+1 + enddo + if (failed) then + msg = 'regularization Jacobi' + return + endif + dTstar_v = matmul(invJacobi,Rstress) ! correction to Tstar + Rstress_old=Rstress + Tstar_v = Tstar_v-dTstar_v +! write(999,*) Tstar_v, dTstar_v, Rstress + + enddo stress +! write(6,*) 'istress', istress + Tstar_v = 0.5_pReal*matmul(C_66,math_Mandel33to6(matmul(transpose(B),AB)-math_I3)) + dstate = dt*constitutive_dotState(Tstar_v,state_new,CPFEM_Tp,grain,CPFEM_in,cp_en) ! evolution of microstructure + Rstate = state_new - (state_old+dstate) + RstateS = 0.0_pReal + forall (i=1:constitutive_Nstatevars(grain,CPFEM_in,cp_en), state_new(i)/=0.0_pReal) & + RstateS(i) = Rstate(i)/state_new(i) + state_new = state_old+dstate + if (maxval(abs(RstateS)) < tol_State) exit state + + enddo state +! write(6,*) 'istate', istate +! write(999,*) 'Tstar_v raus', Tstar_v +! write(999,*) + + invFp_new = matmul(invFp_old,B) + call math_invert3x3(invFp_new,Fp_new,det,failed) + if (failed) then + msg = 'inversion Fp_new' + return + endif + Fp_new = Fp_new*det**(1.0_pReal/3.0_pReal) ! det = det(InvFp_new) !! + Fe_new = matmul(Fg_new,invFp_new) + return + END SUBROUTINE + + + FUNCTION CPFEM_CauchyStress(PK_v,Fe) +!*********************************************************************** +!*** Cauchy stress calculation *** +!*********************************************************************** + use prec, only: pReal,pInt + use math, only: math_Mandel33to6,math_Mandel6to33,math_det3x3 + implicit none +! *** Subroutine parameters *** + real(pReal) PK_v(6), Fe(3,3), CPFEM_CauchyStress(6) + + CPFEM_CauchyStress = math_Mandel33to6(matmul(matmul(Fe,math_Mandel6to33(PK_v)),transpose(Fe))/math_det3x3(Fe)) + return + END FUNCTION + + + END MODULE diff --git a/dislocation_based_subroutine/IO.f90 b/dislocation_based_subroutine/IO.f90 new file mode 100644 index 000000000..bd20f0476 --- /dev/null +++ b/dislocation_based_subroutine/IO.f90 @@ -0,0 +1,555 @@ + +!############################################################## + MODULE IO +!############################################################## + + CONTAINS +!--------------------------- +! function IO_open_file(unit,relPath) +! function IO_open_inputFile(unit) +! function IO_hybridIA(Nast,ODFfileName) +! private function hybridIA_reps(dV_V,steps,C) +! function IO_stringPos(line,maxN) +! function IO_stringValue(line,positions,pos) +! function IO_floatValue(line,positions,pos) +! function IO_intValue(line,positions,pos) +! function IO_fixedStringValue(line,ends,pos) +! function IO_fixedFloatValue(line,ends,pos) +! function IO_fixedFloatNoEValue(line,ends,pos) +! function IO_fixedIntValue(line,ends,pos) +! function IO_continousTntValues(unit,maxN) +! function IO_lc(line) +! subroutine IO_lcInplace(line) +! subroutine IO_error(ID) +!--------------------------- + + + +!******************************************************************** +! open existing file to given unit +! path to file is relative to working directory +!******************************************************************** + logical FUNCTION IO_open_file(unit,relPath) + + use prec, only: pInt + implicit none + + character(len=*), parameter :: pathSep = achar(47)//achar(92) ! /, \ + character(len=*) relPath + integer(pInt) unit + character(256) path + + inquire(6, name=path) ! determine outputfile + open(unit,status='old',err=100,file=path(1:scan(path,pathSep,back=.true.))//relPath) + IO_open_file = .true. + return +100 IO_open_file = .false. + return + + END FUNCTION + + +!******************************************************************** +! open FEM inputfile to given unit +!******************************************************************** + logical FUNCTION IO_open_inputFile(unit) + + use prec, only: pReal, pInt + implicit none + + character(256) outName + integer(pInt) unit, extPos + character(3) ext + + inquire(6, name=outName) ! determine outputfileName + extPos = len_trim(outName)-2 + if(outName(extPos:extPos+2)=='out') then + ext='dat' ! MARC + else + ext='inp' ! ABAQUS + end if + open(unit,status='old',err=100,file=outName(1:extPos-1)//ext) + IO_open_inputFile = .true. + return +100 IO_open_inputFile = .false. + return + + END FUNCTION + + +!******************************************************************** +! hybrid IA repetition counter +!******************************************************************** + FUNCTION hybridIA_reps(dV_V,steps,C) + + use prec, only: pReal, pInt + implicit none + + integer(pInt), intent(in), dimension(3) :: steps + integer(pInt) hybridIA_reps, phi1,Phi,phi2 + real(pReal), intent(in), dimension(steps(3),steps(2),steps(1)) :: dV_V + real(pReal), intent(in) :: C + + hybridIA_reps = 0_pInt + do phi1=1,steps(1) + do Phi =1,steps(2) + do phi2=1,steps(3) + hybridIA_reps = hybridIA_reps+nint(C*dV_V(phi2,Phi,phi1), pInt) + end do + end do + end do + return + + END FUNCTION + + +!******************************************************************** +! hybrid IA sampling of ODFfile +!******************************************************************** + FUNCTION IO_hybridIA(Nast,ODFfileName) + + use prec, only: pReal, pInt + use math, only: inRad + + implicit none + + character(len=*) ODFfileName + character(len=80) line + character(len=*), parameter :: fileFormat = '(A80)' + integer(pInt) i,j,bin,Nast,NnonZero,Nset,Nreps,reps,phi1,Phi,phi2 + integer(pInt), dimension(7) :: pos + integer(pInt), dimension(3) :: steps + integer(pInt), dimension(:), allocatable :: binSet + real(pReal) center,sum_dV_V,prob,dg_0,C,lowerC,upperC,rnd + real(pReal), dimension(3) :: limits,deltas + real(pReal), dimension(:,:,:), allocatable :: dV_V + real(pReal), dimension(3,Nast) :: IO_hybridIA + + if (.not. IO_open_file(999,ODFfileName)) goto 100 + +!--- parse header of ODF file --- +!--- limits in phi1, Phi, phi2 --- + read(999,fmt=fileFormat,end=100) line + pos = IO_stringPos(line,3) + if (pos(1).ne.3) goto 100 + do i=1,3 + limits(i) = IO_intValue(line,pos,i)*inRad + end do + +!--- deltas in phi1, Phi, phi2 --- + read(999,fmt=fileFormat,end=100) line + pos = IO_stringPos(line,3) + if (pos(1).ne.3) goto 100 + do i=1,3 + deltas(i) = IO_intValue(line,pos,i)*inRad + end do + steps = nint(limits/deltas,pInt) + allocate(dV_V(steps(3),steps(2),steps(1))) + +!--- box boundary/center at origin? --- + read(999,fmt=fileFormat,end=100) line + if (index(IO_lc(line),'bound')>0) then + center = 0.5_pReal + else + center = 0.0_pReal + end if + +!--- skip blank line --- + read(999,fmt=fileFormat,end=100) line + + sum_dV_V = 0.0_pReal + dV_V = 0.0_pReal + dg_0 = deltas(1)*deltas(3)*2.0_pReal*sin(deltas(2)/2.0_pReal) + NnonZero = 0_pInt + + do phi1=1,steps(1) + do Phi=1,steps(2) + do phi2=1,steps(3) + read(999,fmt='(F)',end=100) prob + if (prob > 0.0_pReal) then + NnonZero = NnonZero+1 + sum_dV_V = sum_dV_V+prob + else + prob = 0.0_pReal + end if + dV_V(phi2,Phi,phi1) = prob*dg_0*sin((Phi-1.0_pReal+center)*deltas(2)) + end do + end do + end do + + dV_V = dV_V/sum_dV_V ! normalize to 1 + +!--- now fix bounds --- + Nset = max(Nast,NnonZero) + lowerC = 0.0_pReal + upperC = real(Nset, pReal) + + do while (hybridIA_reps(dV_V,steps,upperC) < Nset) + lowerC = upperC + upperC = upperC*2.0_pReal + end do +!--- binary search for best C --- + do + C = (upperC+lowerC)/2.0_pReal + Nreps = hybridIA_reps(dV_V,steps,C) + if (abs(upperC-lowerC) < upperC*1.0e-14_pReal) then + C = upperC + Nreps = hybridIA_reps(dV_V,steps,C) + exit + elseif (Nreps < Nset) then + lowerC = C + elseif (Nreps > Nset) then + upperC = C + else + exit + end if + end do + + allocate(binSet(Nreps)) + bin = 0 ! bin counter + i = 1 ! set counter + do phi1=1,steps(1) + do Phi=1,steps(2) + do phi2=1,steps(3) + reps = nint(C*dV_V(phi2,Phi,phi1), pInt) + binSet(i:i+reps-1) = bin + bin = bin+1 ! advance bin + i = i+reps ! advance set + end do + end do + end do + + do i=1,Nast + if (i < Nast) then + call random_number(rnd) + j = nint(rnd*(Nast-i)+i+0.5_pReal,pInt) + else + j = i + end if + bin = binSet(j) + IO_hybridIA(1,i) = deltas(1)*(mod(bin/(steps(3)*steps(2)),steps(1))+center) ! phi1 + IO_hybridIA(2,i) = deltas(2)*(mod(bin/ steps(3) ,steps(2))+center) ! Phi + IO_hybridIA(3,i) = deltas(3)*(mod(bin ,steps(3))+center) ! phi2 + binSet(j) = binSet(i) + end do + close(999) + return + +! on error +100 IO_hybridIA = -1 + close(999) + return + + END FUNCTION + + +!******************************************************************** +! locate at most N space-separated parts in line +! return array containing number of parts found and +! their left/right positions to be used by IO_xxxVal +!******************************************************************** + FUNCTION IO_stringPos (line,N) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + character(len=*), parameter :: sep=achar(32)//achar(9)//achar(10)//achar(13) ! whitespaces + integer(pInt) N, part + integer(pInt) IO_stringPos(1+N*2) + + IO_stringPos = -1 + IO_stringPos(1) = 0 + part = 1 + do while ((N<1 .or. part<=N) .and. verify(line(IO_stringPos(part*2-1)+1:),sep)>0) + IO_stringPos(part*2) = IO_stringPos(part*2-1)+verify(line(IO_stringPos(part*2-1)+1:),sep) + IO_stringPos(part*2+1) = IO_stringPos(part*2)+scan(line(IO_stringPos(part*2):),sep)-2 + part = part+1 + end do + IO_stringPos(1) = part-1 + return + + END FUNCTION + + +!******************************************************************** +! read string value at pos from line +!******************************************************************** + FUNCTION IO_stringValue (line,positions,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + integer(pInt) positions(*),pos + character(len=1+positions(pos*2+1)-positions(pos*2)) IO_stringValue + + if (positions(1) < pos) then + IO_stringValue = '' + else + IO_stringValue = line(positions(pos*2):positions(pos*2+1)) + endif + return + + END FUNCTION + + +!******************************************************************** +! read string value at pos from fixed format line +!******************************************************************** + FUNCTION IO_fixedStringValue (line,ends,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + integer(pInt) ends(*),pos + character(len=ends(pos+1)-ends(pos)) IO_fixedStringValue + + IO_fixedStringValue = line(ends(pos)+1:ends(pos+1)) + return + + END FUNCTION + + +!******************************************************************** +! read float value at pos from line +!******************************************************************** + FUNCTION IO_floatValue (line,positions,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + real(pReal) IO_floatValue + integer(pInt) positions(*),pos + + if (positions(1) >= pos) then + read(UNIT=line(positions(pos*2):positions(pos*2+1)),ERR=100,FMT=*) IO_floatValue + return + endif +100 IO_floatValue = huge(1.0_pReal) + return + + END FUNCTION + + +!******************************************************************** +! read float value at pos from fixed format line +!******************************************************************** + FUNCTION IO_fixedFloatValue (line,ends,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + real(pReal) IO_fixedFloatValue + integer(pInt) ends(*),pos + + read(UNIT=line(ends(pos-1)+1:ends(pos)),ERR=100,FMT=*) IO_fixedFloatValue + return +100 IO_fixedFloatValue = huge(1.0_pReal) + return + + END FUNCTION + + +!******************************************************************** +! read float x.y+z value at pos from format line line +!******************************************************************** + FUNCTION IO_fixedNoEFloatValue (line,ends,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + real(pReal) IO_fixedNoEFloatValue,base + integer(pInt) ends(*),pos,pos_exp,expon + + pos_exp = scan(line(ends(pos)+1:ends(pos+1)),'+-',back=.true.) + if (pos_exp > 1) then + read(UNIT=line(ends(pos)+1:ends(pos)+pos_exp-1),ERR=100,FMT='(F)') base + read(UNIT=line(ends(pos)+pos_exp:ends(pos+1)),ERR=100,FMT='(I)') expon + else + read(UNIT=line(ends(pos)+1:ends(pos+1)),ERR=100,FMT=*) base + expon = 0_pInt + endif + IO_fixedNoEFloatValue = base*10.0_pReal**expon + return +100 IO_fixedNoEFloatValue = huge(1.0_pReal) + return + + END FUNCTION + + +!******************************************************************** +! read int value at pos from line +!******************************************************************** + FUNCTION IO_intValue (line,positions,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + integer(pInt) IO_intValue + integer(pInt) positions(*),pos + + if (positions(1) >= pos) then + read(UNIT=line(positions(pos*2):positions(pos*2+1)),ERR=100,FMT='(I)') IO_intValue + return + endif +100 IO_intValue = huge(1_pInt) + return + + END FUNCTION + + +!******************************************************************** +! read int value at pos from fixed format line +!******************************************************************** + FUNCTION IO_fixedIntValue (line,ends,pos) + + use prec, only: pReal,pInt + implicit none + + character(len=*) line + integer(pInt) IO_fixedIntValue + integer(pInt) ends(*),pos + + read(UNIT=line(ends(pos)+1:ends(pos+1)),ERR=100,FMT='(I)') IO_fixedIntValue + return +100 IO_fixedIntValue = huge(1_pInt) + return + + END FUNCTION + + +!******************************************************************** +! change character in line to lower case +!******************************************************************** + FUNCTION IO_lc (line) + + use prec, only: pInt + implicit none + + character (len=*) line + character (len=len(line)) IO_lc + integer(pInt) i + + IO_lc = line + do i=1,len(line) + if(64') then + part=tag(2:len_trim(tag)-1) + exit + elseif (tag(1:1)=='[') then + count=count+1 + endif +enddo +100 return + +end subroutine + + +character(len=80) function constitutive_assignNGaussAndFiber(file) +!********************************************************************* +!********************************************************************* +use prec, only: pInt +use IO, only: IO_stringPos,IO_stringValue,IO_lc +implicit none + +!* Definition of variables +character(len=80) line,tag +integer(pInt) file,section +integer(pInt), dimension(3) :: positions + +constitutive_assignNGaussAndFiber='' +section = 0_pInt + +do + read(file,'(a80)',END=100) line + positions=IO_stringPos(line,1) + tag=IO_lc(IO_stringValue(line,positions,1)) + if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines + cycle + elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then + constitutive_assignNGaussAndFiber=tag(2:len_trim(tag)-1) + exit + elseif (tag(1:1)=='[') then + section=section+1 + texture_NGauss(section) = 0_pInt + texture_NFiber(section) = 0_pInt + elseif (tag=='(gauss)') then + texture_NGauss(section)=texture_NGauss(section)+1 + elseif (tag=='(fiber)') then + texture_NFiber(section)=texture_NFiber(section)+1 + endif +enddo +100 return + +end function + + +character(len=80) function constitutive_Parse_UnknownPart(file) +!********************************************************************* +!* read an unknown "part" from the input file until * +!* the next part is reached * +!* INPUT: * +!* - file : file ID * +!********************************************************************* +use prec, only: pInt +use IO, only: IO_stringPos,IO_stringValue,IO_lc +implicit none + +!* Definition of variables +character(len=80) line,tag +integer(pInt), parameter :: maxNchunks = 1 +integer(pInt) file +integer(pInt), dimension(1+2*maxNchunks) :: positions + +constitutive_parse_unknownPart='' + +do + read(file,'(a80)',END=100) line + positions=IO_stringPos(line,maxNchunks) + tag=IO_lc(IO_stringValue(line,positions,1)) + if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines + cycle + elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then + constitutive_Parse_UnknownPart=tag(2:len_trim(tag)-1) + exit + endif +enddo +100 return + +end function + + +character(len=80) function constitutive_Parse_MaterialPart(file) +!********************************************************************* +!* This function reads a material "part" from the input file until * +!* the next part is reached * +!* INPUT: * +!* - file : file ID * +!********************************************************************* +use prec, only: pInt,pReal +use IO +use crystal, only: crystal_MaxMaxNslipOfStructure +implicit none + +!* Definition of variables +character(len=80) line,tag +integer(pInt), parameter :: maxNchunks = 2 +integer(pInt) i,file,section +integer(pInt), dimension(1+2*maxNchunks) :: positions + +section = 0 +constitutive_parse_materialPart = '' + +do while(.true.) + read(file,'(a80)',END=100) line + positions=IO_stringPos(line,maxNchunks) ! parse leading chunks + tag=IO_lc(IO_stringValue(line,positions,1)) + if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines + cycle + elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then + constitutive_parse_materialPart=tag(2:len_trim(tag)-1) + exit + elseif (tag(1:1)=='[') then + section=section+1 + else + if (section>0) then + select case(tag) + case ('crystal_structure') + material_CrystalStructure(section)=IO_intValue(line,positions,2) + case ('nslip') + material_Nslip(section)=IO_intValue(line,positions,2) + case ('c11') + material_C11(section)=IO_floatValue(line,positions,2) + case ('c12') + material_C12(section)=IO_floatValue(line,positions,2) + case ('c13') + material_C13(section)=IO_floatValue(line,positions,2) + case ('c33') + material_C33(section)=IO_floatValue(line,positions,2) + case ('c44') + material_C44(section)=IO_floatValue(line,positions,2) + case ('rho0') !* conversion in 1/mm˛ + material_rho0(section)=IO_floatValue(line,positions,2)/1.0e6_pReal + case ('interaction_coefficient') + do i=1,crystal_MaxMaxNslipOfStructure + material_SlipIntCoeff(i,section)=IO_floatValue(line,positions,i+1) + enddo + case ('bg') !* conversion in mm + material_bg(section)=IO_floatValue(line,positions,2)*1.0e3_pReal + case ('Qedge') !* conversion in mJ/Kelvin + material_Qedge(section)=IO_floatValue(line,positions,2)*1.0e3_pReal + case ('tau0') + material_tau0(section)=IO_floatValue(line,positions,2) + case ('c1') + material_c1(section)=IO_floatValue(line,positions,2) + case ('c2') + material_c2(section)=IO_floatValue(line,positions,2) + case ('c3') + material_c3(section)=IO_floatValue(line,positions,2) + case ('c4') + material_c4(section)=IO_floatValue(line,positions,2) + case ('c5') + material_c5(section)=IO_floatValue(line,positions,2) + end select + endif + endif +enddo +100 return + +end function + + +character(len=80) function constitutive_Parse_TexturePart(file) +!********************************************************************* +!* This function reads a texture "part" from the input file until * +!* the next part is reached * +!* INPUT: * +!* - file : file ID * +!********************************************************************* +use prec, only: pInt +use IO +use math, only: inRad +implicit none + +!* Definition of variables +character(len=80) line,tag +integer(pInt), parameter :: maxNchunks = 13 ! may be more than 10 chunks ..? +integer(pInt) file,section,gaussCount,fiberCount,i +integer(pInt), dimension(1+2*maxNchunks) :: positions + +section = 0 +gaussCount = 0 +fiberCount = 0 +constitutive_parse_texturePart = '' + +do while(.true.) + read(file,'(a80)',END=100) line + positions=IO_stringPos(line,maxNchunks) ! parse leading chunks + tag=IO_lc(IO_stringValue(line,positions,1)) + if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines + cycle + elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then + constitutive_parse_texturePart=tag(2:len_trim(tag)-1) + exit + elseif (tag(1:1)=='[') then + section=section+1 + gaussCount=0 + fiberCount=0 + else + if (section>0) then + select case(tag) + case ('hybridIA') + texture_ODFfile(section)=IO_stringValue(line,positions,2) + case ('(gauss)') + gaussCount=gaussCount+1 + do i=2,10,2 + tag=IO_lc(IO_stringValue(line,positions,i)) + select case (tag) + case('phi1') + texture_Gauss(1,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('phi') + texture_Gauss(2,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('phi2') + texture_Gauss(3,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('scatter') + texture_Gauss(4,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('fraction') + texture_Gauss(5,gaussCount,section)=IO_floatValue(line,positions,i+1) + end select + enddo + case ('(fiber)') + fiberCount=fiberCount+1 + do i=2,12,2 + tag=IO_lc(IO_stringValue(line,positions,i)) + select case (tag) + case('alpha1') + texture_fiber(1,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('alpha2') + texture_fiber(2,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('beta1') + texture_fiber(3,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('beta2') + texture_fiber(4,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('scatter') + texture_fiber(5,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad + case('fraction') + texture_fiber(6,fiberCount,section)=IO_floatValue(line,positions,i+1) + end select + enddo + case ('ngrains') + texture_Ngrains(section)=IO_intValue(line,positions,2) + case ('symmetry') + texture_symmetry(section)=IO_stringValue(line,positions,2) + end select + endif + endif +enddo +100 return + +end function + + +subroutine constitutive_Parse_MatTexDat(filename) +!********************************************************************* +!* This function reads the material and texture input file * +!* INPUT: * +!* - filename : name of input file * +!********************************************************************* +use prec, only: pReal,pInt +use IO, only: IO_error, IO_open_file +use math, only: math_Mandel3333to66, math_Voigt66to3333 +use crystal, only: crystal_MaxMaxNslipOfStructure +implicit none + +!* Definition of variables +character(len=*) filename +character(len=80) part,formerPart +integer(pInt) sectionCount,i,j,k, fileunit + +! set fileunit +fileunit=200 +!----------------------------- +!* First reading: number of materials and textures +!----------------------------- +!* determine material_maxN and texture_maxN from last respective parts +if(IO_open_file(fileunit,filename)==.false.) goto 100 +part = '_dummy_' +do while (part/='') + formerPart = part + call constitutive_CountSections(fileunit,sectionCount,part) + select case (formerPart) + case ('materials') + material_maxN = sectionCount + case ('textures') + texture_maxN = sectionCount + end select +enddo +!* Array allocation +allocate(material_CrystalStructure(material_maxN)) ; material_CrystalStructure=0_pInt +allocate(material_Nslip(material_maxN)) ; material_Nslip=0_pInt +allocate(material_C11(material_maxN)) ; material_C11=0.0_pReal +allocate(material_C12(material_maxN)) ; material_C12=0.0_pReal +allocate(material_C13(material_maxN)) ; material_C13=0.0_pReal +allocate(material_C33(material_maxN)) ; material_C33=0.0_pReal +allocate(material_C44(material_maxN)) ; material_C44=0.0_pReal +allocate(material_Gmod(material_maxN)) ; material_Gmod=0.0_pReal +allocate(material_Cslip_66(6,6,material_maxN)) ; material_Cslip_66=0.0_pReal +allocate(material_rho0(material_maxN)) ; material_rho0=0.0_pReal +allocate(material_SlipIntCoeff(crystal_MaxMaxNslipOfStructure,material_maxN)) ; material_SlipIntCoeff=0.0_pReal +allocate(material_bg(material_maxN)) ; material_bg=0.0_pReal +allocate(material_Qedge(material_maxN)) ; material_Qedge=0.0_pReal +allocate(material_tau0(material_maxN)) ; material_tau0=0.0_pReal +allocate(material_c1(material_maxN)) ; material_c1=0.0_pReal +allocate(material_c2(material_maxN)) ; material_c2=0.0_pReal +allocate(material_c3(material_maxN)) ; material_c3=0.0_pReal +allocate(material_c4(material_maxN)) ; material_c4=0.0_pReal +allocate(material_c5(material_maxN)) ; material_c5=0.0_pReal +allocate(texture_ODFfile(texture_maxN)) ; texture_ODFfile='' +allocate(texture_Ngrains(texture_maxN)) ; texture_Ngrains=0_pInt +allocate(texture_symmetry(texture_maxN)) ; texture_symmetry='' +allocate(texture_NGauss(texture_maxN)) ; texture_NGauss=0_pInt +allocate(texture_NFiber(texture_maxN)) ; texture_NFiber=0_pInt +allocate(texture_NRandom(texture_maxN)) ; texture_NRandom=0_pInt + +!----------------------------- +!* Second reading: number of Gauss and Fiber +!----------------------------- +rewind(fileunit) +part = '_dummy_' +do while (part/='') + select case (part) + case ('textures') + part = constitutive_assignNGaussAndFiber(fileunit) + case default + part = constitutive_Parse_UnknownPart(fileunit) + end select +enddo +!* Array allocation +texture_maxNGauss=maxval(texture_NGauss) +texture_maxNFiber=maxval(texture_NFiber) +allocate(texture_Gauss(5,texture_maxNGauss,texture_maxN)) ; texture_Gauss=0.0_pReal +allocate(texture_Fiber(6,texture_maxNFiber,texture_maxN)) ; texture_Fiber=0.0_pReal + +!----------------------------- +!* Third reading: materials and textures are stored +!----------------------------- +rewind(fileunit) +part='_dummy_' +do while (part/='') + select case (part) + case ('materials') + part=constitutive_Parse_MaterialPart(fileunit) + case ('textures') + part=constitutive_Parse_TexturePart(fileunit) + case default + part=constitutive_Parse_UnknownPart(fileunit) + end select +enddo +close(fileunit) + + +!* Construction of the elasticity matrices +do i=1,material_maxN + material_Gmod(i)=material_C44(i) + select case (material_CrystalStructure(i)) + case(1:2) ! cubic(s) + do k=1,3 + do j=1,3 + material_Cslip_66(k,j,i)=material_C12(i) + enddo + material_Cslip_66(k,k,i)=material_C11(i) + material_Cslip_66(k+3,k+3,i)=material_C44(i) + enddo + case(3) ! hcp + material_Cslip_66(1,1,i)=material_C11(i) + material_Cslip_66(2,2,i)=material_C11(i) + material_Cslip_66(3,3,i)=material_C33(i) + material_Cslip_66(1,2,i)=material_C12(i) + material_Cslip_66(2,1,i)=material_C12(i) + material_Cslip_66(1,3,i)=material_C13(i) + material_Cslip_66(3,1,i)=material_C13(i) + material_Cslip_66(2,3,i)=material_C13(i) + material_Cslip_66(3,2,i)=material_C13(i) + material_Cslip_66(4,4,i)=material_C44(i) + material_Cslip_66(5,5,i)=material_C44(i) + material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i)) + end select + material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i))) +enddo + + +! MISSING some consistency checks may be..? +! if ODFfile present then set NGauss NFiber =0 +return +100 call IO_error(200) ! corrupt materials_textures file +end subroutine + + +subroutine constitutive_Assignment() +!********************************************************************* +!* This subroutine assign material parameters according to ipc,ip,el * +!********************************************************************* +use prec, only: pReal,pInt +use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri,math_symmetricEulers,math_EulerToR +use mesh, only: mesh_NcpElems,FE_Nips,FE_mapElemtype,mesh_maxNips,mesh_element +use IO, only: IO_hybridIA +use crystal, only: crystal_MaxNslipOfStructure,crystal_SlipIntType,crystal_sn,crystal_st +implicit none + +!* Definition of variables +integer(pInt) e,i,j,k,l,m,o,g,s +integer(pInt) matID,texID +real(pReal) K_inter,x,y +integer(pInt), dimension(:,:,:), allocatable :: hybridIA_population +integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,sumVolfrac,ODFmap,sampleCount +real(pReal), dimension(3,4*(1+texture_maxNGauss+texture_maxNfiber)) :: Euler +real(pReal), dimension(4*(1+texture_maxNGauss+texture_maxNfiber)) :: texVolfrac + +! process textures +o = 0_pInt ! ODF counter +ODFmap = 0_pInt ! blank mapping +sampleCount = 0_pInt ! count orientations assigned per texture + +do texID=1,texture_maxN + if (texture_ODFfile(texID)=='') then + sumVolfrac(texID) = sum(texture_gauss(5,:,texID))+sum(texture_fiber(6,:,texID)) + if (sumVolfrac(texID)<1.0_pReal) texture_NRandom(texID) = 1_pInt ! check whether random component missing + select case (texture_symmetry(texID)) ! set symmetry factor + case ('orthotropic') + Nsym(texID) = 4_pInt + case ('monoclinic') + Nsym(texID) = 2_pInt + case default + Nsym(texID) = 1_pInt + end select + Ncomponents(texID) = texture_NGauss(texID)+texture_NFiber(texID)+texture_NRandom(texID) + else ! hybrid IA + o = o+1 + ODFmap(texID) = o ! remember mapping + Ncomponents(texID) = 1_pInt ! single "component" + Nsym(texID) = 1_pInt ! no symmetry (use full ODF instead) + endif +! adjust multiplicity and number of grains per IP of components + multiplicity(texID) = max(1_pInt,texture_Ngrains(texID)/Ncomponents(texID)/Nsym(texID)) + if (mod(texture_Ngrains(texID),Ncomponents(texID)*Nsym(texID)) /= 0_pInt) then + texture_Ngrains(texID) = multiplicity(texID)*Ncomponents(texID)*Nsym(texID) + write (6,*) 'changed Ngrains to',texture_Ngrains(texID),' for texture',texID + endif +enddo + +!* publish globals +constitutive_maxNgrains = maxval(texture_Ngrains) +constitutive_maxNstatevars = maxval(material_Nslip) + 0_pInt +constitutive_maxNresults = 1_pInt + +!* calc texture_totalNgrains +allocate(texture_totalNgrains(texture_maxN)) ; texture_totalNgrains=0_pInt +do i=1,mesh_NcpElems + texID = mesh_element(4,i) + texture_totalNgrains(texID) = texture_totalNgrains(texID) + FE_Nips(FE_mapElemtype(mesh_element(2,i)))*texture_Ngrains(texID) +enddo + +! generate hybridIA samplings for ODFfile textures to later draw from these populations +allocate(hybridIA_population(3,maxval(texture_totalNgrains,ODFmap /= 0),o)) +do texID = 1,texture_maxN + if (ODFmap(texID) > 0) & + hybridIA_population(:,:,ODFmap(texID)) = IO_hybridIA(texture_totalNgrains(texID),texture_ODFfile(texID)) +enddo + +!* Array allocation +allocate(constitutive_Ngrains(mesh_maxNips,mesh_NcpElems)) ; constitutive_Ngrains=0_pInt +allocate(constitutive_matID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_matID=0_pInt +allocate(constitutive_texID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_texID=0_pInt +allocate(constitutive_MatVolFrac(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_MatVolFrac=0.0_pReal +allocate(constitutive_TexVolFrac(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_TexVolFrac=0.0_pReal +allocate(constitutive_EulerAngles(3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_EulerAngles=0.0_pReal +allocate(constitutive_Nresults(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nresults=0_pInt +allocate(constitutive_results(constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) +constitutive_results=0.0_pReal +allocate(constitutive_Nstatevars(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nstatevars=0_pInt +allocate(constitutive_state_old(constitutive_maxNstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) +constitutive_state_old=0.0_pReal +allocate(constitutive_state_new(constitutive_maxNstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) +constitutive_state_new=0.0_pReal +allocate(constitutive_Pforest(constitutive_maxNstatevars,constitutive_maxNstatevars,material_maxN)) +constitutive_Pforest=0.0_pReal +allocate(constitutive_Pparallel(constitutive_maxNstatevars,constitutive_maxNstatevars,material_maxN)) +constitutive_Pparallel=0.0_pReal +allocate(constitutive_rho_p(constitutive_maxNstatevars)) ; constitutive_rho_p=0.0_pReal +allocate(constitutive_rho_f(constitutive_maxNstatevars)) ; constitutive_rho_f=0.0_pReal +allocate(constitutive_rho_m(constitutive_maxNstatevars)) ; constitutive_rho_m=0.0_pReal +allocate(constitutive_passing_stress(constitutive_maxNstatevars)) ; constitutive_passing_stress=0.0_pReal +allocate(constitutive_jump_width(constitutive_maxNstatevars)) ; constitutive_jump_width=0.0_pReal +allocate(constitutive_activation_volume(constitutive_maxNstatevars)) ; constitutive_activation_volume=0.0_pReal +allocate(constitutive_g0_slip(constitutive_maxNstatevars)) ; constitutive_g0_slip=0.0_pReal + +!* Assignment of all grains in all IPs of all cp-elements +do e=1,mesh_NcpElems + matID=mesh_element(3,e) + texID=mesh_element(4,e) + do i=1,FE_Nips(FE_mapElemtype(mesh_element(2,e))) + g = 0_pInt ! grain counter + do m = 1,multiplicity(texID) + o = 0_pInt ! component counter + if (texture_ODFfile(texID)=='') then + do k = 1,texture_nGauss(texID) ! *** gauss *** + o = o+1 + Euler(:,o) = math_sampleGaussOri(texture_Gauss(1:3,k,texID),texture_Gauss(4,k,texID)) + texVolFrac(o) = texture_Gauss(5,k,texID) + enddo + do k = 1,texture_nFiber(texID) ! *** fiber *** + o = o+1 + Euler(:,o) = math_sampleFiberOri(texture_Fiber(1:2,k,texID),texture_Fiber(3:4,k,texID),texture_Fiber(5,k,texID)) + texVolFrac(o) = texture_Fiber(6,k,texID) + enddo + do k = 1,texture_nRandom(texID) ! *** random *** + o = o+1 + Euler(:,o) = math_sampleRandomOri() + texVolfrac(o) = 1.0_pReal-sumVolfrac(texID) + enddo + else ! *** hybrid IA *** + o = 1 ! only singular orientation, i.e. single "component" + Euler(:,o) = hybridIA_population(:,1+sampleCount(texID),ODFmap(texID)) + texVolfrac(o) = 1.0_pReal + endif + if (Nsym(texID) > 1) then ! symmetry generates additional orientations + forall (k=1:o) + Euler(:,1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = & + math_symmetricEulers(texture_symmetry(texID),Euler(:,k)) + texVolfrac(1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = texVolfrac(k) + end forall + endif + do s = 1,Nsym(texID)*o ! loop over orientations to be assigned to ip (ex multiplicity) + g = g+1 ! next "grain" + sampleCount(texID) = sampleCount(texID)+1 ! next member of population + constitutive_matID(g,i,e) = matID ! copy matID of element + constitutive_texID(g,i,e) = texID ! copy texID of element + constitutive_MatVolFrac(g,i,e) = 1.0_pReal ! singular material (so far) + constitutive_TexVolFrac(g,i,e) = texVolfrac(s)/multiplicity(texID)/Nsym(texID) + constitutive_Nstatevars(g,i,e) = material_Nslip(matID) ! number of state variables (i.e. tau_c of each slip system) + constitutive_Nresults(g,i,e) = 0 ! number of constitutive results + constitutive_EulerAngles(:,g,i,e) = Euler(:,s) ! store initial orientation + forall (l=1:constitutive_Nstatevars(g,i,e)) ! initialize state variables + constitutive_state_old(l,g,i,e) = material_rho0(matID) + constitutive_state_new(l,g,i,e) = material_rho0(matID) + end forall + enddo ! components + enddo ! multiplicity + enddo ! ip +enddo ! cp_element + + +!* Construction of the hardening matrices +do i=1,material_maxN +!* Iteration over the systems + do j=1,constitutive_maxNstatevars + do k=1,constitutive_maxNstatevars +!* Hardening type * + select case (crystal_SlipIntType(j,k,i)) + case (0) + K_inter=0.0_pReal + case (1) + K_inter=material_SlipIntCoeff(1,i) + case (2) + K_inter=material_SlipIntCoeff(2,i) + case (3) + K_inter=material_SlipIntCoeff(3,i) + case (4) + K_inter=material_SlipIntCoeff(4,i) + case (5) + K_inter=material_SlipIntCoeff(5,i) + case (6) + K_inter=material_SlipIntCoeff(6,i) + end select +!* Projection of the dislocation * + x=dot_product(crystal_sn(:,j,i),crystal_st(:,k,i)) + y=1.0_pReal-x**(2.0_pReal) +!* Interaction matrix * + constitutive_Pforest(j,k,i)=abs(x)*K_inter + if (y>0.0_pReal) then + constitutive_Pparallel(j,k,i)=sqrt(y)*K_inter + else + constitutive_Pparallel(j,k,i)=0.0_pReal + endif + enddo + enddo +enddo + +end subroutine + + +function constitutive_HomogenizedC(ipc,ip,el) +!********************************************************************* +!* This function returns the homogenized elacticity matrix * +!* INPUT: * +!* - ipc : component-ID of current integration point * +!* - ip : current integration point * +!* - el : current element * +!********************************************************************* +use prec, only: pReal,pInt +implicit none + +!* Definition of variables +integer(pInt) ipc,ip,el +real(pReal), dimension(6,6) :: constitutive_homogenizedC + +!* Homogenization scheme +constitutive_homogenizedC=constitutive_MatVolFrac(ipc,ip,el)*material_Cslip_66(:,:,constitutive_matID(ipc,ip,el)) + +return +end function + + +subroutine constitutive_Microstructure(state,Tp,ipc,ip,el) +!********************************************************************* +!* This function calculates from state needed variables * +!* INPUT: * +!* - state : state variables * +!* - Tp : temperature * +!* - ipc : component-ID of current integration point * +!* - ip : current integration point * +!* - el : current element * +!********************************************************************* +use prec, only: pReal,pInt +implicit none + +!* Definition of variables +integer(pInt) ipc,ip,el +integer(pInt) matID,i +real(pReal) Tp +real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state + +!* Get the material-ID from the triplet(ipc,ip,el) +matID = constitutive_matID(ipc,ip,el) + +!* Quantities derivated from state +constitutive_rho_f=matmul(constitutive_Pforest(1:constitutive_Nstatevars(ipc,ip,el),& + 1:constitutive_Nstatevars(ipc,ip,el),matID),state) +constitutive_rho_p=matmul(constitutive_Pparallel(1:constitutive_Nstatevars(ipc,ip,el),& + 1:constitutive_Nstatevars(ipc,ip,el),matID),state) +do i=1,material_Nslip(matID) + constitutive_passing_stress(i)=material_tau0(matID)+material_c1(matID)*material_Gmod(matID)*material_bg(matID)*& + sqrt(constitutive_rho_p(i)) + constitutive_jump_width(i)=material_c2(matID)/sqrt(constitutive_rho_f(i)) + constitutive_activation_volume(i)=material_c3(matID)*constitutive_jump_width(i)*material_bg(matID)**2.0_pReal + constitutive_rho_m(i)=(2.0_pReal*Kb*Tp*sqrt(constitutive_rho_p(i)))/& + (material_c1(matID)*material_c3(matID)*material_Gmod(matID)*constitutive_jump_width(i)*material_bg(matID)**3.0_pReal) + constitutive_g0_slip(i)=constitutive_rho_m(i)*material_bg(matID)*attack_frequency*constitutive_jump_width(i)*& + exp(-(material_Qedge(matID)+constitutive_passing_stress(i)*constitutive_activation_volume(i))/& + (Kb*Tp)) +enddo + +end subroutine + + +subroutine constitutive_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,state,Tp,ipc,ip,el) +!********************************************************************* +!* This subroutine contains the constitutive equation for * +!* calculating the velocity gradient * +!* INPUT: * +!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * +!* - state : current microstructure * +!* - Tp : temperature * +!* - ipc : component-ID of current integration point * +!* - ip : current integration point * +!* - el : current element * +!* OUTPUT: * +!* - Lp : plastic velocity gradient * +!* - dLp_dTstar : derivative of Lp (4th-order tensor) * +!********************************************************************* +use prec, only: pReal,pInt +use crystal, only: crystal_Sslip,crystal_Sslip_v +implicit none + +!* Definition of variables +integer(pInt) ipc,ip,el +integer(pInt) matID,i,k,l,m,n +real(pReal) Tp +real(pReal), dimension(6) :: Tstar_v +real(pReal), dimension(3,3) :: Lp +real(pReal), dimension(3,3,3,3) :: dLp_dTstar +real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state,gdot_slip,dgdot_dtauslip,tau_slip + +!* Get the material-ID from the triplet(ipc,ip,el) +matID = constitutive_matID(ipc,ip,el) + +!* Calculation of Lp +Lp = 0.0_pReal +do i=1,material_Nslip(matID) + tau_slip(i)=dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID))) + gdot_slip(i)=constitutive_g0_slip(i)*sinh((abs(tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp))*& + sign(1.0_pReal,tau_slip(i)) + Lp=Lp+gdot_slip(i)*crystal_Sslip(:,:,i,material_CrystalStructure(matID)) +enddo + +!* Calculation of the tangent of Lp +dLp_dTstar=0.0_pReal +do i=1,material_Nslip(matID) + dgdot_dtauslip(i)=((constitutive_g0_slip(i)*constitutive_activation_volume(i))/(Kb*Tp))*& + cosh((abs(tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp)) + forall (k=1:3,l=1:3,m=1:3,n=1:3) + dLp_dTstar(k,l,m,n) = dLp_dTstar(k,l,m,n)+ & + dgdot_dtauslip(i)*crystal_Sslip(k,l,i,material_CrystalStructure(matID))* & + (crystal_Sslip(m,n,i,material_CrystalStructure(matID))+ & + crystal_Sslip(n,m,i,material_CrystalStructure(matID)))/2.0_pReal ! force m,n symmetry + endforall +enddo + +return +end subroutine + + +function constitutive_dotState(Tstar_v,state,Tp,ipc,ip,el) +!********************************************************************* +!* This subroutine contains the constitutive equation for * +!* calculating the velocity gradient * +!* INPUT: * +!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * +!* - state : current microstructure * +!* - Tp : temperature * +!* - ipc : component-ID of current integration point * +!* - ip : current integration point * +!* - el : current element * +!* OUTPUT: * +!* - constitutive_DotState : evolution of state variable * +!********************************************************************* +use prec, only: pReal,pInt +use crystal, only: crystal_Sslip_v +implicit none + +!* Definition of variables +integer(pInt) ipc,ip,el +integer(pInt) matID,i +real(pReal) Tp,tau_slip,gdot_slip +real(pReal), dimension(6) :: Tstar_v +real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: constitutive_dotState,state,lock,recovery + +!* Get the material-ID from the triplet(ipc,ip,el) +matID = constitutive_matID(ipc,ip,el) + +!* Hardening of each system +do i=1,constitutive_Nstatevars(ipc,ip,el) + tau_slip = dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID))) + gdot_slip = constitutive_g0_slip(i)*sinh((abs(tau_slip)*constitutive_activation_volume(i))/(Kb*Tp))*& + sign(1.0_pReal,tau_slip) + if (abs(tau_slip)>1.0e-20_pReal) then + lock(i)=(material_c4(matID)*sqrt(constitutive_rho_f(i))*abs(gdot_slip))/material_bg(matID) + recovery(i)=material_c5(matID)*state(i)*abs(gdot_slip) + constitutive_dotState(i)=lock(i)-recovery(i) + else + constitutive_dotState(i)=0.0_pReal + endif +enddo + +return +end function + + +function constitutive_post_results(Tstar_v,state,dt,Tp,ipc,ip,el) +!********************************************************************* +!* return array of constitutive results * +!* INPUT: * +!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * +!* - state : current microstructure * +!* - dt : current time increment * +!* - Tp : temperature * +!* - ipc : component-ID of current integration point * +!* - ip : current integration point * +!* - el : current element * +!********************************************************************* +use prec, only: pReal,pInt +use crystal, only: crystal_Sslip_v +implicit none + +!* Definition of variables +integer(pInt) ipc,ip,el +integer(pInt) matID,i +real(pReal) dt,Tp,tau_slip +real(pReal), dimension(6) :: Tstar_v +real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state +real(pReal), dimension(constitutive_Nresults(ipc,ip,el)) :: constitutive_post_results + +!* Get the material-ID from the triplet(ipc,ip,el) +matID = constitutive_matID(ipc,ip,el) + +if(constitutive_Nresults(ipc,ip,el)==0) return + +do i=1,material_Nslip(matID) + constitutive_post_results(i) = state(i) + tau_slip=dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID))) + constitutive_post_results(i+material_Nslip(matID)) = & + dt*constitutive_g0_slip(i)*sinh((abs(tau_slip)*constitutive_activation_volume(i))/(Kb*Tp))*& + sign(1.0_pReal,tau_slip) +enddo +return + +end function + +END MODULE \ No newline at end of file diff --git a/dislocation_based_subroutine/crystal.f90 b/dislocation_based_subroutine/crystal.f90 new file mode 100644 index 000000000..54aeafb39 --- /dev/null +++ b/dislocation_based_subroutine/crystal.f90 @@ -0,0 +1,282 @@ + +!************************************ +!* Module: CRYSTAL * +!************************************ +!* contains: * +!* - Crystal structure definition * +!* - Slip system definition * +!* - Schmid matrices calculation * +!* - Hardening matrices calculation * +!************************************ + +MODULE crystal + +!*** Include other modules *** +use prec, only: pReal,pInt +implicit none + +!************************************ +!* Crystal structures * +!************************************ +!* Number of crystal structures (1-FCC,2-BCC,3-HCP) +integer(pInt), parameter :: crystal_MaxCrystalStructure = 3 +!* Total number of slip systems per crystal structure +!* (as to be changed according the definition of slip systems) +integer(pInt), dimension(crystal_MaxCrystalStructure), parameter :: crystal_MaxNslipOfStructure = & +reshape((/12,48,12/),(/crystal_MaxCrystalStructure/)) +!* Maximum number of slip systems over crystal structures +integer(pInt), parameter :: crystal_MaxMaxNslipOfStructure = 48 +!* Slip direction, slip normales and Schmid matrices +real(pReal), dimension(3,3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_Sslip +real(pReal), dimension(6,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_Sslip_v +real(pReal), dimension(3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_sn +real(pReal), dimension(3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_sd +real(pReal), dimension(3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_st +!* Slip_slip interaction matrices +integer(pInt), dimension(crystal_MaxMaxNslipOfStructure,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: & +crystal_SlipIntType + +!*** Slip systems for FCC structures (1) *** +!* System {111}<110> Sort according Eisenlohr&Hantcherli +data crystal_sd(:, 1,1)/ 0, 1,-1/ ; data crystal_sn(:, 1,1)/ 1, 1, 1/ +data crystal_sd(:, 2,1)/-1, 0, 1/ ; data crystal_sn(:, 2,1)/ 1, 1, 1/ +data crystal_sd(:, 3,1)/ 1,-1, 0/ ; data crystal_sn(:, 3,1)/ 1, 1, 1/ +data crystal_sd(:, 4,1)/ 0,-1,-1/ ; data crystal_sn(:, 4,1)/-1,-1, 1/ +data crystal_sd(:, 5,1)/ 1, 0, 1/ ; data crystal_sn(:, 5,1)/-1,-1, 1/ +data crystal_sd(:, 6,1)/-1, 1, 0/ ; data crystal_sn(:, 6,1)/-1,-1, 1/ +data crystal_sd(:, 7,1)/ 0,-1, 1/ ; data crystal_sn(:, 7,1)/ 1,-1,-1/ +data crystal_sd(:, 8,1)/-1, 0,-1/ ; data crystal_sn(:, 8,1)/ 1,-1,-1/ +data crystal_sd(:, 9,1)/ 1, 1, 0/ ; data crystal_sn(:, 9,1)/ 1,-1,-1/ +data crystal_sd(:,10,1)/ 0, 1, 1/ ; data crystal_sn(:,10,1)/-1, 1,-1/ +data crystal_sd(:,11,1)/ 1, 0,-1/ ; data crystal_sn(:,11,1)/-1, 1,-1/ +data crystal_sd(:,12,1)/-1,-1, 0/ ; data crystal_sn(:,12,1)/-1, 1,-1/ + +!*** Slip-Slip interactions for FCC structures (1) *** +data crystal_SlipIntType( 1,:,1)/1,2,2,4,6,5,3,5,5,4,5,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 2,:,1)/2,1,2,6,4,5,5,4,6,5,3,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 3,:,1)/2,2,1,5,5,3,5,6,4,6,5,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 4,:,1)/4,6,5,1,2,2,4,5,6,3,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 5,:,1)/6,4,5,2,1,2,5,3,5,5,4,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 6,:,1)/5,5,3,2,2,1,6,5,4,5,6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 7,:,1)/3,5,5,4,5,6,1,2,2,4,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 8,:,1)/5,4,6,5,3,5,2,1,2,6,4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 9,:,1)/5,6,4,6,5,4,2,2,1,5,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType(10,:,1)/4,5,6,3,5,5,4,6,5,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType(11,:,1)/5,3,5,5,4,6,6,4,5,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType(12,:,1)/6,5,4,5,6,4,5,5,3,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ + +!*** Slip systems for BCC structures (2) *** +!* System {110}<111> +!* Sort? +data crystal_sd(:, 1,2)/ 1,-1, 1/ ; data crystal_sn(:, 1,2)/ 0, 1, 1/ +data crystal_sd(:, 2,2)/-1,-1, 1/ ; data crystal_sn(:, 2,2)/ 0, 1, 1/ +data crystal_sd(:, 3,2)/ 1, 1, 1/ ; data crystal_sn(:, 3,2)/ 0,-1, 1/ +data crystal_sd(:, 4,2)/-1, 1, 1/ ; data crystal_sn(:, 4,2)/ 0,-1, 1/ +data crystal_sd(:, 5,2)/-1, 1, 1/ ; data crystal_sn(:, 5,2)/ 1, 0, 1/ +data crystal_sd(:, 6,2)/-1,-1, 1/ ; data crystal_sn(:, 6,2)/ 1, 0, 1/ +data crystal_sd(:, 7,2)/ 1, 1, 1/ ; data crystal_sn(:, 7,2)/-1, 0, 1/ +data crystal_sd(:, 8,2)/ 1,-1, 1/ ; data crystal_sn(:, 8,2)/-1, 0, 1/ +data crystal_sd(:, 9,2)/-1, 1, 1/ ; data crystal_sn(:, 9,2)/ 1, 1, 0/ +data crystal_sd(:,10,2)/-1, 1,-1/ ; data crystal_sn(:,10,2)/ 1, 1, 0/ +data crystal_sd(:,11,2)/ 1, 1, 1/ ; data crystal_sn(:,11,2)/-1, 1, 0/ +data crystal_sd(:,12,2)/ 1, 1,-1/ ; data crystal_sn(:,12,2)/-1, 1, 0/ +!* System {112}<111> +!* Sort? +data crystal_sd(:,13,2)/-1, 1, 1/ ; data crystal_sn(:,13,2)/ 2, 1, 1/ +data crystal_sd(:,14,2)/ 1, 1, 1/ ; data crystal_sn(:,14,2)/-2, 1, 1/ +data crystal_sd(:,15,2)/ 1, 1,-1/ ; data crystal_sn(:,15,2)/ 2,-1, 1/ +data crystal_sd(:,16,2)/ 1,-1, 1/ ; data crystal_sn(:,16,2)/ 2, 1,-1/ +data crystal_sd(:,17,2)/ 1,-1, 1/ ; data crystal_sn(:,17,2)/ 1, 2, 1/ +data crystal_sd(:,18,2)/ 1, 1,-1/ ; data crystal_sn(:,18,2)/-1, 2, 1/ +data crystal_sd(:,19,2)/ 1, 1, 1/ ; data crystal_sn(:,19,2)/ 1,-2, 1/ +data crystal_sd(:,20,2)/-1, 1, 1/ ; data crystal_sn(:,20,2)/ 1, 2,-1/ +data crystal_sd(:,21,2)/ 1, 1,-1/ ; data crystal_sn(:,21,2)/ 1, 1, 2/ +data crystal_sd(:,22,2)/ 1,-1, 1/ ; data crystal_sn(:,22,2)/-1, 1, 2/ +data crystal_sd(:,23,2)/-1, 1, 1/ ; data crystal_sn(:,23,2)/ 1,-1, 2/ +data crystal_sd(:,24,2)/ 1, 1, 1/ ; data crystal_sn(:,24,2)/ 1, 1,-2/ +!* System {123}<111> +!* Sort? +data crystal_sd(:,25,2)/ 1, 1,-1/ ; data crystal_sn(:,25,2)/ 1, 2, 3/ +data crystal_sd(:,26,2)/ 1,-1, 1/ ; data crystal_sn(:,26,2)/-1, 2, 3/ +data crystal_sd(:,27,2)/-1, 1, 1/ ; data crystal_sn(:,27,2)/ 1,-2, 3/ +data crystal_sd(:,28,2)/ 1, 1, 1/ ; data crystal_sn(:,28,2)/ 1, 2,-3/ +data crystal_sd(:,29,2)/ 1,-1, 1/ ; data crystal_sn(:,29,2)/ 1, 3, 2/ +data crystal_sd(:,30,2)/ 1, 1,-1/ ; data crystal_sn(:,30,2)/-1, 3, 2/ +data crystal_sd(:,31,2)/ 1, 1, 1/ ; data crystal_sn(:,31,2)/ 1,-3, 2/ +data crystal_sd(:,32,2)/-1, 1, 1/ ; data crystal_sn(:,32,2)/ 1, 3,-2/ +data crystal_sd(:,33,2)/ 1, 1,-1/ ; data crystal_sn(:,33,2)/ 2, 1, 3/ +data crystal_sd(:,34,2)/ 1,-1, 1/ ; data crystal_sn(:,34,2)/-2, 1, 3/ +data crystal_sd(:,35,2)/-1, 1, 1/ ; data crystal_sn(:,35,2)/ 2,-1, 3/ +data crystal_sd(:,36,2)/ 1, 1, 1/ ; data crystal_sn(:,36,2)/ 2, 1,-3/ +data crystal_sd(:,37,2)/ 1,-1, 1/ ; data crystal_sn(:,37,2)/ 2, 3, 1/ +data crystal_sd(:,38,2)/ 1, 1,-1/ ; data crystal_sn(:,38,2)/-2, 3, 1/ +data crystal_sd(:,39,2)/ 1, 1, 1/ ; data crystal_sn(:,39,2)/ 2,-3, 1/ +data crystal_sd(:,40,2)/-1, 1, 1/ ; data crystal_sn(:,40,2)/ 2, 3,-1/ +data crystal_sd(:,41,2)/-1, 1, 1/ ; data crystal_sn(:,41,2)/ 3, 1, 2/ +data crystal_sd(:,42,2)/ 1, 1, 1/ ; data crystal_sn(:,42,2)/-3, 1, 2/ +data crystal_sd(:,43,2)/ 1, 1,-1/ ; data crystal_sn(:,43,2)/ 3,-1, 2/ +data crystal_sd(:,44,2)/ 1,-1, 1/ ; data crystal_sn(:,44,2)/ 3, 1,-2/ +data crystal_sd(:,45,2)/-1, 1, 1/ ; data crystal_sn(:,45,2)/ 3, 2, 1/ +data crystal_sd(:,46,2)/ 1, 1, 1/ ; data crystal_sn(:,46,2)/-3, 2, 1/ +data crystal_sd(:,47,2)/ 1, 1,-1/ ; data crystal_sn(:,47,2)/ 3,-2, 1/ +data crystal_sd(:,48,2)/ 1,-1, 1/ ; data crystal_sn(:,48,2)/ 3, 2,-1/ + +!*** Slip-Slip interactions for BCC structures (2) *** +data crystal_SlipIntType( 1,:,2)/1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 2,:,2)/2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 3,:,2)/2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 4,:,2)/2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 5,:,2)/2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 6,:,2)/2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 7,:,2)/2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 8,:,2)/2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType( 9,:,2)/2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(10,:,2)/2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(11,:,2)/2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(12,:,2)/2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(13,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(14,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(15,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(16,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(17,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(18,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(19,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(20,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(21,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(22,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(23,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(24,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(25,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(26,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(27,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(28,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(29,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(30,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(31,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(32,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(33,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(34,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(35,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(36,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(37,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(38,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(39,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(40,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2/ +data crystal_SlipIntType(41,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2/ +data crystal_SlipIntType(42,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2/ +data crystal_SlipIntType(43,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2/ +data crystal_SlipIntType(44,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2/ +data crystal_SlipIntType(45,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2/ +data crystal_SlipIntType(46,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2/ +data crystal_SlipIntType(47,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2/ +data crystal_SlipIntType(48,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1/ + +!*** Slip systems for HCP structures (3) *** +!* Basal systems {0001}<1120> (independent of c/a-ratio) +!* 1- (0 0 0 1)[-2 1 1 0] +!* 2- (0 0 0 1)[ 1 -2 1 0] +!* 3- (0 0 0 1)[ 1 1 -2 0] +!* Plane (hkil)->(hkl) +!* Direction [uvtw]->[(u-t) (v-t) w] +!* Automatical transformation from Bravais to Miller +!* not done for the moment +!* Sort? +data crystal_sd(:, 1,3)/-1, 0, 0/ ; data crystal_sn(:, 1,3)/ 0, 0, 1/ +data crystal_sd(:, 2,3)/ 0,-1, 0/ ; data crystal_sn(:, 2,3)/ 0, 0, 1/ +data crystal_sd(:, 3,3)/ 1, 1, 0/ ; data crystal_sn(:, 3,3)/ 0, 0, 1/ +!* 1st type prismatic systems {1010}<1120> (independent of c/a-ratio) +!* 1- ( 0 1 -1 0)[-2 1 1 0] +!* 2- ( 1 0 -1 0)[ 1 -2 1 0] +!* 3- (-1 1 0 0)[ 1 1 -2 0] +!* Sort? +data crystal_sd(:, 4,3)/-1, 0, 0/ ; data crystal_sn(:, 4,3)/ 0, 1, 0/ +data crystal_sd(:, 5,3)/ 0,-1, 0/ ; data crystal_sn(:, 5,3)/ 1, 0, 0/ +data crystal_sd(:, 6,3)/ 1, 1, 0/ ; data crystal_sn(:, 6,3)/-1, 1, 0/ +!* 1st type 1st order pyramidal systems {1011}<1120> +!* plane normales depend on the c/a-ratio +!* 1- ( 0 -1 1 1)[-2 1 1 0] +!* 2- ( 0 1 -1 1)[-2 1 1 0] +!* 3- (-1 0 1 1)[ 1 -2 1 0] +!* 4- ( 1 0 -1 1)[ 1 -2 1 0] +!* 5- (-1 1 0 1)[ 1 1 -2 0] +!* 6- ( 1 -1 0 1)[ 1 1 -2 0] +!* Sort? +data crystal_sd(:, 7,3)/-1, 0, 0/ ; data crystal_sn(:, 7,3)/ 0,-1, 1/ +data crystal_sd(:, 8,3)/ 0,-1, 0/ ; data crystal_sn(:, 8,3)/ 0, 1, 1/ +data crystal_sd(:, 9,3)/ 1, 1, 0/ ; data crystal_sn(:, 9,3)/-1, 0, 1/ +data crystal_sd(:,10,3)/-1, 0, 0/ ; data crystal_sn(:,10,3)/ 1, 0, 1/ +data crystal_sd(:,11,3)/ 0,-1, 0/ ; data crystal_sn(:,11,3)/-1, 1, 1/ +data crystal_sd(:,12,3)/ 1, 1, 0/ ; data crystal_sn(:,12,3)/ 1,-1, 1/ + +!*** Slip-Slip interactions for HCP structures (3) *** +data crystal_SlipIntType( 1,:,3)/1,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 2,:,3)/2,1,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 3,:,3)/2,2,1,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 4,:,3)/2,2,2,1,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 5,:,3)/2,2,2,2,1,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 6,:,3)/2,2,2,2,2,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 7,:,3)/2,2,2,2,2,2,1,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 8,:,3)/2,2,2,2,2,2,2,1,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType( 9,:,3)/2,2,2,2,2,2,2,2,1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType(10,:,3)/2,2,2,2,2,2,2,2,2,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType(11,:,3)/2,2,2,2,2,2,2,2,2,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ +data crystal_SlipIntType(12,:,3)/2,2,2,2,2,2,2,2,2,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/ + +CONTAINS +!**************************************** +!* - crystal_Init +!* - crystal_SchmidMatrices +!* - crystal_HardeningMatrices +!**************************************** + + +subroutine crystal_Init() +!************************************** +!* Module initialization * +!************************************** +call crystal_SchmidMatrices() +end subroutine + + +subroutine crystal_SchmidMatrices() +!************************************** +!* Calculation of Schmid matrices * +!************************************** +use prec, only: pReal,pInt +implicit none + +!* Definition of variables +integer(pInt) i,j,k,l +real(pReal) invNorm + +!* Iteration over the crystal structures +do l=1,3 +!* Iteration over the systems + do k=1,crystal_MaxNslipOfStructure(l) +!* Definition of transverse direction st for the frame (sd,st,sn) + crystal_st(1,k,l)=crystal_sn(2,k,l)*crystal_sd(3,k,l)-crystal_sn(3,k,l)*crystal_sd(2,k,l) + crystal_st(2,k,l)=crystal_sn(3,k,l)*crystal_sd(1,k,l)-crystal_sn(1,k,l)*crystal_sd(3,k,l) + crystal_st(3,k,l)=crystal_sn(1,k,l)*crystal_sd(2,k,l)-crystal_sn(2,k,l)*crystal_sd(1,k,l) +!* Defintion of Schmid matrix + forall (i=1:3,j=1:3) + crystal_Sslip(i,j,k,l)=crystal_sd(i,k,l)*crystal_sn(j,k,l) + endforall +!* Normalization of Schmid matrix + invNorm=dsqrt(1.0_pReal/((crystal_sn(1,k,l)**2+crystal_sn(2,k,l)**2+crystal_sn(3,k,l)**2)*& + (crystal_sd(1,k,l)**2+crystal_sd(2,k,l)**2+crystal_sd(3,k,l)**2))) + crystal_Sslip(:,:,k,l)=crystal_Sslip(:,:,k,l)*invNorm +!* Vectorization of normalized Schmid matrix + crystal_Sslip_v(1,k,l)=crystal_Sslip(1,1,k,l) + crystal_Sslip_v(2,k,l)=crystal_Sslip(2,2,k,l) + crystal_Sslip_v(3,k,l)=crystal_Sslip(3,3,k,l) + !* be compatible with Mandel notation of Tstar + crystal_Sslip_v(4,k,l)=(crystal_Sslip(1,2,k,l)+crystal_Sslip(2,1,k,l))/dsqrt(2.0_pReal) + crystal_Sslip_v(5,k,l)=(crystal_Sslip(2,3,k,l)+crystal_Sslip(3,2,k,l))/dsqrt(2.0_pReal) + crystal_Sslip_v(6,k,l)=(crystal_Sslip(1,3,k,l)+crystal_Sslip(3,1,k,l))/dsqrt(2.0_pReal) + enddo +enddo + +end subroutine + + +END MODULE diff --git a/dislocation_based_subroutine/math.f90 b/dislocation_based_subroutine/math.f90 new file mode 100644 index 000000000..1a7314432 --- /dev/null +++ b/dislocation_based_subroutine/math.f90 @@ -0,0 +1,1730 @@ + +!############################################################## + MODULE math +!############################################################## + + use prec, only: pReal,pInt + implicit none + + real(pReal), parameter :: pi = 3.14159265358979323846264338327950288419716939937510_pReal + real(pReal), parameter :: inDeg = 180.0_pReal/pi + real(pReal), parameter :: inRad = pi/180.0_pReal +! *** 3x3 Identity *** + real(pReal), dimension(3,3), parameter :: math_I3 = & + reshape( (/ & + 1.0_pReal,0.0_pReal,0.0_pReal, & + 0.0_pReal,1.0_pReal,0.0_pReal, & + 0.0_pReal,0.0_pReal,1.0_pReal /),(/3,3/)) +! *** Mandel notation *** + integer(pInt), dimension (2,6), parameter :: mapMandel = & + reshape((/& + 1,1, & + 2,2, & + 3,3, & + 1,2, & + 2,3, & + 1,3 & + /),(/2,6/)) + real(pReal), dimension(6), parameter :: nrmMandel = & + (/1.0_pReal,1.0_pReal,1.0_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal/) + real(pReal), dimension(6), parameter :: invnrmMandel = & + (/1.0_pReal,1.0_pReal,1.0_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal/) +! *** Voigt notation *** + integer(pInt), dimension (2,6), parameter :: mapVoigt = & + reshape((/& + 1,1, & + 2,2, & + 3,3, & + 2,3, & + 1,3, & + 1,2 & + /),(/2,6/)) + real(pReal), dimension(6), parameter :: nrmVoigt = & + (/1.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal/) + real(pReal), dimension(6), parameter :: invnrmVoigt = & + (/1.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal/) + + + CONTAINS + +!************************************************************************** +! initialization of module +!************************************************************************** + SUBROUTINE math_init () + + use prec, only: pReal,pInt + implicit none + + integer (pInt) seed + + call random_seed() + call get_seed(seed) + call halton_seed_set(seed) + call halton_ndim_set(3) + + END SUBROUTINE + +!************************************************************************** +! Quicksort algorithm for two-dimensional integer arrays +! +! Sorting is done with respect to array(1,:) +! and keeps array(2:N,:) linked to it. +!************************************************************************** + RECURSIVE SUBROUTINE qsort(a, istart, iend) + + implicit none + integer(pInt), dimension(:,:) :: a + integer(pInt) :: istart,iend,ipivot + + if (istart < iend) then + ipivot = math_partition(a,istart, iend) + call qsort(a, istart, ipivot-1) + call qsort(a, ipivot+1, iend) + endif + return + + END SUBROUTINE + +!************************************************************************** +! Partitioning required for quicksort +!************************************************************************** + integer(pInt) FUNCTION math_partition(a, istart, iend) + + implicit none + integer(pInt), dimension(:,:) :: a + integer(pInt) :: istart,iend,d,i,j,k,x,tmp + + d = size(a,1) ! number of linked data +! set the starting and ending points, and the pivot point + i = istart + j = iend + x = a(1,istart) + do +! find the first element on the right side less than or equal to the pivot point + do j = j, istart, -1 + if (a(1,j) <= x) exit + enddo +! find the first element on the left side greater than the pivot point + do i = i, iend + if (a(1,i) > x) exit + enddo + if (i < j ) then ! if the indexes do not cross, exchange values + do k = 1,d + tmp = a(k,i) + a(k,i) = a(k,j) + a(k,j) = tmp + enddo + else ! if they do cross, exchange left value with pivot and return with the partition index + do k = 1,d + tmp = a(k,istart) + a(k,istart) = a(k,j) + a(k,j) = tmp + enddo + math_partition = j + return + endif + enddo + + END FUNCTION + + +!************************************************************************** +! second rank identity tensor of specified dimension +!************************************************************************** + FUNCTION math_identity2nd(dimen) + + use prec, only: pReal, pInt + implicit none + + integer(pInt) i,dimen + real(pReal), dimension(dimen,dimen) :: math_identity2nd + + math_identity2nd = 0.0_pReal + forall (i=1:dimen) math_identity2nd(i,i) = 1.0_pReal + return + + END FUNCTION + + +!************************************************************************** +! fourth rank identity tensor of specified dimension +!************************************************************************** + FUNCTION math_identity4th(dimen) + + use prec, only: pReal, pInt + implicit none + + integer(pInt) i,j,k,l,dimen + real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th + + forall (i=1:dimen,j=1:dimen,k=1:dimen,l=1:dimen) math_identity4th(i,j,k,l) = & + 0.5_pReal*(math_I3(i,k)*math_I3(j,k)+math_I3(i,l)*math_I3(j,k)) + return + + END FUNCTION + + +!************************************************************************** +! Cramer inversion of 3x3 matrix +!************************************************************************** + SUBROUTINE math_invert3x3(A, InvA, DetA, error) + +! Bestimmung der Determinanten und Inversen einer 3x3-Matrix + +! A = Matrix A +! InvA = Inverse of A +! DetA = Determinant of A +! error = logical + + use prec, only: pReal,pInt + implicit none + + logical, intent(out) :: error + real(pReal),dimension(3,3),intent(in) :: A + real(pReal),dimension(3,3),intent(out) :: InvA + real(pReal), intent(out) :: DetA + + DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )& + - A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )& + + A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) + + if (DetA <= 0.0000001) then + error = .true. + else + InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA + InvA(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA + InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA + + InvA(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA + InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA + InvA(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA + + InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA + InvA(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA + InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA + + error = .false. + endif + return + + END SUBROUTINE + + +!************************************************************************** +! Gauss elimination to invert 6x6 matrix +!************************************************************************** + SUBROUTINE math_invert6x6(A, InvA, AnzNegEW, error) + +! Invertieren einer 6x6-Matrix + +! A = Matrix A +! InvA = Inverse von A +! AnzNegEW = Anzahl der negativen Eigenwerte von A +! error = logical +! = false: Inversion wurde durchgefuehrt. +! = true: Die Inversion in SymGauss wurde wegen eines verschwindenen +! Pivotelement abgebrochen. + + use prec, only: pReal,pInt + implicit none + + real(pReal),dimension(6,6), intent(in) :: A + real(pReal),dimension(6,6), intent(out) :: InvA + integer(pInt), intent(out) :: AnzNegEW + logical, intent(out) :: error + + integer(pInt) i + real(pReal) LogAbsDetA + real(pReal),dimension(6,6) :: B + + InvA = 0.0_pReal + + forall(i = 1:6) InvA(i,i) = 1.0_pReal + B = A + CALL Gauss (B,InvA,LogAbsDetA,AnzNegEW,error) + + RETURN + + END SUBROUTINE math_invert6x6 + +! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + SUBROUTINE Gauss (A,B,LogAbsDetA,NegHDK,error) + +! Loesung eines linearen Gleichungsssystem A * X = B mit Hilfe des +! GAUSS-Algorithmusses + +! Zur numerischen Stabilisierung wird eine Zeilen- und Spaltenpivotsuche +! durchgefuehrt. + +! Eingabeparameter: +! +! A(6,6) = Koeffizientenmatrix A +! B(6,6) = rechte Seiten B +! +! Ausgabeparameter: +! +! B(6,6) = Matrix der Unbekanntenvektoren X +! LogAbsDetA = 10-Logarithmus des Betrages der Determinanten von A +! NegHDK = Anzahl der negativen Hauptdiagonalkoeffizienten nach der +! Vorwaertszerlegung +! error = logical +! = false: Das Gleichungssystem wurde geloest. +! = true : Matrix A ist singulaer. + +! A und B werden veraendert! + + use prec, only: pReal,pInt + implicit none + + logical error + integer (pInt) NegHDK + real(pReal) LogAbsDetA + real(pReal) A(6,6), B(6,6) + + INTENT (OUT) LogAbsDetA, NegHDK, error + INTENT (INOUT) A, B + + LOGICAL SortX + integer (pInt) PivotZeile, PivotSpalte, StoreI, I, IP1, J, K, L + integer (pInt) XNr(6) + real(pReal) AbsA, PivotWert, EpsAbs, Quote + real(pReal) StoreA(6), StoreB(6) + + error = .true. + NegHDK = 1 + SortX = .FALSE. + +! Unbekanntennumerierung + + DO I = 1, 6 + XNr(I) = I + END DO + +! Genauigkeitsschranke und Bestimmung des groessten Pivotelementes + + PivotWert = ABS(A(1,1)) + PivotZeile = 1 + PivotSpalte = 1 + + DO I = 1, 6 + DO J = 1, 6 + AbsA = ABS(A(I,J)) + IF (AbsA .GT. PivotWert) THEN + PivotWert = AbsA + PivotZeile = I + PivotSpalte = J + END IF + END DO + END DO + + IF (PivotWert .LT. 0.0000001) RETURN ! Pivotelement = 0? + + EpsAbs = PivotWert * 0.1_pReal ** PRECISION(1.0_pReal) + +! V O R W A E R T S T R I A N G U L A T I O N + + DO I = 1, 6 - 1 + +! Zeilentausch? + + IF (PivotZeile .NE. I) THEN + + StoreA(I:6) = A(I,I:6) + A(I,I:6) = A(PivotZeile,I:6) + A(PivotZeile,I:6) = StoreA(I:6) + + StoreB(1:6) = B(I,1:6) + B(I,1:6) = B(PivotZeile,1:6) + B(PivotZeile,1:6) = StoreB(1:6) + + SortX = .TRUE. + + END IF + +! Spaltentausch? + + IF (PivotSpalte .NE. I) THEN + + StoreA(1:6) = A(1:6,I) + A(1:6,I) = A(1:6,PivotSpalte) + A(1:6,PivotSpalte) = StoreA(1:6) + + StoreI = XNr(I) + XNr(I) = XNr(PivotSpalte) + XNr(PivotSpalte) = StoreI + + SortX = .TRUE. + + END IF + +! Triangulation + + DO J = I + 1, 6 + Quote = A(J,I) / A(I,I) + DO K = I + 1, 6 + A(J,K) = A(J,K) - Quote * A(I,K) + END DO + DO K = 1, 6 + B(J,K) = B(J,K) - Quote * B(I,K) + END DO + END DO + +! Bestimmung des groessten Pivotelementes + + IP1 = I + 1 + PivotWert = ABS(A(IP1,IP1)) + PivotZeile = IP1 + PivotSpalte = IP1 + + DO J = IP1, 6 + DO K = IP1, 6 + AbsA = ABS(A(J,K)) + IF (AbsA .GT. PivotWert) THEN + PivotWert = AbsA + PivotZeile = J + PivotSpalte = K + END IF + END DO + END DO + + IF (PivotWert .LT. EpsAbs) RETURN ! Pivotelement = 0? + + END DO + +! R U E C K W A E R T S A U F L O E S U N G + + DO I = 6, 1, -1 + DO L = 1, 6 + DO J = I + 1, 6 + B(I,L) = B(I,L) - A(I,J) * B(J,L) + END DO + B(I,L) = B(I,L) / A(I,I) + END DO + END DO + +! Sortieren der Unbekanntenvektoren? + + IF (SortX) THEN + + DO L = 1, 6 + StoreA(1:6) = B(1:6,L) + DO I = 1, 6 + J = XNr(I) + B(J,L) = StoreA(I) + END DO + END DO + END IF + +! Determinante + + LogAbsDetA = 0.0_pReal + NegHDK = 0 + + DO I = 1, 6 + IF (A(I,I) .LT. 0.0_pReal) NegHDK = NegHDK + 1 + AbsA = ABS(A(I,I)) + LogAbsDetA = LogAbsDetA + LOG10(AbsA) + END DO + + error = .false. + + RETURN + + END SUBROUTINE Gauss + + +!******************************************************************** +! determinant of a 3x3 matrix +!******************************************************************** + real(pReal) FUNCTION math_det3x3(m) + + use prec, only: pReal,pInt + implicit none + + real(pReal) m(3,3) + + math_det3x3 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) & + -m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) & + +m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1)) + return + + END FUNCTION + + +!******************************************************************** +! convert symmetric 3x3 matrix into Mandel vector 6x1 +!******************************************************************** + FUNCTION math_Mandel33to6(m33) + + use prec, only: pReal,pInt + implicit none + + real(pReal), dimension(3,3) :: m33 + real(pReal), dimension(6) :: math_Mandel33to6 + integer(pInt) i + + forall (i=1:6) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i)) + return + + END FUNCTION + + +!******************************************************************** +! convert Mandel 6x1 back to symmetric 3x3 matrix +!******************************************************************** + FUNCTION math_Mandel6to33(v6) + + use prec, only: pReal,pInt + implicit none + + real(pReal), dimension(6) :: v6 + real(pReal), dimension(3,3) :: math_Mandel6to33 + integer(pInt) i + + forall (i=1:6) + math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i) + math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i) + end forall + return + + END FUNCTION + + +!******************************************************************** +! convert symmetric 3x3x3x3 tensor into Mandel matrix 6x6 +!******************************************************************** + FUNCTION math_Mandel3333to66(m3333) + + use prec, only: pReal,pInt + implicit none + + real(pReal), dimension(3,3,3,3) :: m3333 + real(pReal), dimension(6,6) :: math_Mandel3333to66 + integer(pInt) i,j + + forall (i=1:6,j=1:6) math_Mandel3333to66(i,j) = & + nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) + return + + END FUNCTION + + +!******************************************************************** +! convert Mandel matrix 6x6 back to symmetric 3x3x3x3 tensor +!******************************************************************** + FUNCTION math_Mandel66to3333(m66) + + use prec, only: pReal,pInt + implicit none + + real(pReal), dimension(6,6) :: m66 + real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333 + integer(pInt) i,j + + forall (i=1:6,j=1:6) + math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j) + math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j) + math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j) + math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j) + end forall + return + + END FUNCTION + + +!******************************************************************** +! convert Voigt matrix 6x6 back to symmetric 3x3x3x3 tensor +!******************************************************************** + FUNCTION math_Voigt66to3333(m66) + + use prec, only: pReal,pInt + implicit none + + real(pReal), dimension(6,6) :: m66 + real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333 + integer(pInt) i,j + + forall (i=1:6,j=1:6) + math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j) + math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j) + math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j) + math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j) + end forall + return + + END FUNCTION + + +!******************************************************************** +! Euler angles from orientation matrix +!******************************************************************** + FUNCTION math_RtoEuler(R) + + use prec, only: pReal, pInt + implicit none + + real(pReal) R(3,3), sqhkl, squvw, sqhk, val + real(pReal), dimension(3) :: math_RtoEuler + + sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3)) + squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1)) + sqhk=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)) +! calculate PHI + val=R(3,3)/sqhkl + + if(val > 1.0_pReal) val = 1.0_pReal + if(val < -1.0_pReal) val = -1.0_pReal + + math_RtoEuler(2) = acos(val) + + if(math_RtoEuler(2) < 1.0e-30_pReal) then +! calculate phi2 + math_RtoEuler(3) = 0.0_pReal +! calculate phi1 + val=R(1,1)/squvw + if(val > 1.0_pReal) val = 1.0_pReal + if(val < -1.0_pReal) val = -1.0_pReal + + math_RtoEuler(1) = acos(val) + if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1) + else +! calculate phi2 + val=R(2,3)/sqhk + if(val > 1.0_pReal) val = 1.0_pReal + if(val < -1.0_pReal) val = -1.0_pReal + + math_RtoEuler(3) = acos(val) + if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3) +! calculate phi1 + val=-R(3,2)/sin(math_RtoEuler(2)) + if(val > 1.0_pReal) val = 1.0_pReal + if(val < -1.0_pReal) val = -1.0_pReal + + math_RtoEuler(1) = acos(val) + if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1) + end if + return + + END FUNCTION + + +!**************************************************************** +! rotation matrix from axis and angle (in radians) +!**************************************************************** + FUNCTION math_RodrigToR(axis,omega) + + use prec, only: pReal, pInt + implicit none + + real(pReal), dimension(3) :: axis, axisNrm + real(pReal), dimension(3,3) :: math_RodrigToR + real(pReal) omega, s,c + integer(pInt) i + + forall (i=1:3) axisNrm(i) = axis(i)/sqrt(dot_product(axis,axis)) + s = sin(omega) + c = cos(omega) + math_RodrigtoR(1,1) = (1.0_pReal - axisNrm(1)**2)*c + axisNrm(1)**2 + math_RodrigtoR(1,2) = axisNrm(1)*axisNrm(2)*(1.0_pReal - c) + axisNrm(3)*s + math_RodrigtoR(1,3) = axisNrm(1)*axisNrm(3)*(1.0_pReal - c) - axisNrm(2)*s + math_RodrigtoR(2,1) = axisNrm(1)*axisNrm(2)*(1.0_pReal - c) - axisNrm(3)*s + math_RodrigtoR(2,2) = (1.0_pReal - axisNrm(2)**2)*c + axisNrm(2)**2 + math_RodrigtoR(2,3) = axisNrm(2)*axisNrm(3)*(1.0_pReal - c) + axisNrm(1)*s + math_RodrigtoR(3,1) = axisNrm(1)*axisNrm(3)*(1.0_pReal - c) + axisNrm(2)*s + math_RodrigtoR(3,2) = axisNrm(2)*axisNrm(3)*(1.0_pReal - c) - axisNrm(1)*s + math_RodrigtoR(3,3) = (1.0_pReal - axisNrm(3)**2)*c + axisNrm(3)**2 + return + + END FUNCTION + + +!**************************************************************** +! rotation matrix from Euler angles +!**************************************************************** + PURE FUNCTION math_EulerToR (Euler) + + use prec, only: pReal, pInt + implicit none + + real(pReal), dimension(3), intent(in) :: Euler + real(pReal), dimension(3,3) :: math_EulerToR + real(pReal) c1, c, c2, s1, s, s2 + + C1=COS(Euler(1)) + C=COS(Euler(2)) + C2=COS(Euler(3)) + S1=SIN(Euler(1)) + S=SIN(Euler(2)) + S2=SIN(Euler(3)) + math_EulerToR(1,1)=C1*C2-S1*S2*C + math_EulerToR(1,2)=S1*C2+C1*S2*C + math_EulerToR(1,3)=S2*S + math_EulerToR(2,1)=-C1*S2-S1*C2*C + math_EulerToR(2,2)=-S1*S2+C1*C2*C + math_EulerToR(2,3)=C2*S + math_EulerToR(3,1)=S1*S + math_EulerToR(3,2)=-C1*S + math_EulerToR(3,3)=C + return + + END FUNCTION + + +!************************************************************************** +! disorientation angle between two sets of Euler angles +!************************************************************************** + function math_disorient(EulerA,EulerB) + + use prec, only: pReal, pInt + implicit none + + real(pReal), dimension(3):: EulerA,EulerB + real(pReal), dimension(3,3) :: r + real(pReal) math_disorient, tr + + r = matmul(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA))) + tr = (r(1,1)+r(2,2)+r(3,3)-1.0_pReal)*0.4999999_pReal + math_disorient = abs(0.5_pReal*pi-asin(tr)) + return + + END FUNCTION + + +!******************************************************************** +! draw a random sample from Euler space +!******************************************************************** + FUNCTION math_sampleRandomOri() + + use prec, only: pReal, pInt + implicit none + + real(pReal), dimension(3) :: math_sampleRandomOri, rnd + + call halton(3,rnd) + math_sampleRandomOri(1) = rnd(1)*2.0_pReal*pi + math_sampleRandomOri(2) = acos(2.0_pReal*rnd(2)-1.0_pReal) + math_sampleRandomOri(3) = rnd(3)*2.0_pReal*pi + return + + END FUNCTION + + +!******************************************************************** +! draw a random sample from Gauss component +! with noise (in radians) half-width +!******************************************************************** + FUNCTION math_sampleGaussOri(center,noise) + + use prec, only: pReal, pInt + implicit none + + real(pReal), dimension(3) :: math_sampleGaussOri, center, disturb + real(pReal), dimension(3), parameter :: origin = (/0.0_pReal,0.0_pReal,0.0_pReal/) + real(pReal), dimension(5) :: rnd + real(pReal) noise,scatter,cosScatter + integer(pInt) i + +if (noise==0.0) then + math_sampleGaussOri = center + return +endif + +! Helming uses different distribution with Bessel functions +! therefore the gauss scatter width has to be scaled differently + scatter = 0.95_pReal * noise + cosScatter = cos(scatter) + + do + call halton(5,rnd) + forall (i=1:3) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1] + disturb(1) = scatter * rnd(1) ! phi1 + disturb(2) = sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)) ! Phi + disturb(3) = scatter * rnd(2) ! phi2 + if (rnd(5) <= exp(-1.0_pReal*(math_disorient(origin,disturb)/scatter)**2)) exit + enddo + math_sampleGaussOri = math_RtoEuler(matmul(math_EulerToR(disturb),math_EulerToR(center))) + return + + END FUNCTION + + +!******************************************************************** +! draw a random sample from Fiber component +! with noise (in radians) +!******************************************************************** + FUNCTION math_sampleFiberOri(alpha,beta,noise) + + use prec, only: pReal, pInt + implicit none + + real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis + real(pReal), dimension(2) :: alpha,beta, rnd + real(pReal), dimension(3,3) :: oRot,fRot,pRot + real(pReal) noise, scatter, cos2Scatter, angle + integer(pInt), dimension(2,3), parameter :: rotMap = reshape((/2,3, 3,1, 1,2/),(/2,3/)) + integer(pInt) i + +! Helming uses different distribution with Bessel functions +! therefore the gauss scatter width has to be scaled differently + scatter = 0.95_pReal * noise + cos2Scatter = cos(2.0_pReal*scatter) + +! fiber axis in crystal coordinate system + fiberInC(1)=sin(alpha(1))*cos(alpha(2)) + fiberInC(2)=sin(alpha(1))*sin(alpha(2)) + fiberInC(3)=cos(alpha(1)) +! fiber axis in sample coordinate system + fiberInS(1)=sin(beta(1))*cos(beta(2)) + fiberInS(2)=sin(beta(1))*sin(beta(2)) + fiberInS(3)=cos(beta(1)) + +! ---# rotation matrix from sample to crystal system #--- + angle=-acos(dot_product(fiberInC,fiberInS)) + if(angle /= 0.0_pReal) then +! rotation axis between sample and crystal system (cross product) + forall(i=1:3) axis(i) = fiberInC(rotMap(1,i))*fiberInS(rotMap(2,i))-fiberInC(rotMap(2,i))*fiberInS(rotMap(1,i)) + oRot = math_RodrigtoR(axis,angle) + else + oRot = math_I3 + end if + +! ---# rotation matrix about fiber axis (random angle) #--- + call halton(1,rnd) + fRot = math_RodrigToR(fiberInS,axis(3)*2.0_pReal*pi) + +! ---# rotation about random axis perpend to fiber #--- +! random axis pependicular to fiber axis + call halton(2,axis) + if (fiberInS(3) /= 0.0_pReal) then + axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))/fiberInS(3) + else if(fiberInS(2) /= 0.0_pReal) then + axis(3)=axis(2) + axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))/fiberInS(2) + else if(fiberInS(1) /= 0.0_pReal) then + axis(3)=axis(1) + axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))/fiberInS(1) + end if + +! scattered rotation angle + do + call halton(2,rnd) + angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(1)) + if (rnd(2) <= exp(-1.0_pReal*(angle/scatter)**2)) exit + enddo + call halton(1,rnd) + if (rnd(1) <= 0.5) angle = -angle + pRot = math_RodrigtoR(axis,angle) + +! ---# apply the three rotations #--- + math_sampleFiberOri = math_RtoEuler(matmul(pRot,matmul(fRot,oRot))) + return + + END FUNCTION + + +!******************************************************************** +! symmetric Euler angles for given symmetry string +! 'triclinic' or '', 'monoclinic', 'orthotropic' +!******************************************************************** + PURE FUNCTION math_symmetricEulers(sym,Euler) + + use prec, only: pReal, pInt + implicit none + + character(len=80), intent(in) :: sym + real(pReal), dimension(3), intent(in) :: Euler + real(pReal), dimension(3,3) :: math_symmetricEulers + integer(pInt) i,j + + math_symmetricEulers(1,1) = pi+Euler(1) + math_symmetricEulers(2,1) = Euler(2) + math_symmetricEulers(3,1) = Euler(3) + + math_symmetricEulers(1,2) = pi-Euler(1) + math_symmetricEulers(2,2) = pi-Euler(2) + math_symmetricEulers(3,2) = pi+Euler(3) + + math_symmetricEulers(1,3) = 2.0_pReal*pi-Euler(1) + math_symmetricEulers(2,3) = pi-Euler(2) + math_symmetricEulers(3,3) = pi+Euler(3) + + forall (i=1:3,j=1:3) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi) + + select case (sym) + case ('orthotropic') ! all done + + case ('monoclinic') ! return only first + math_symmetricEulers(:,2:3) = 0.0_pReal + case default ! return blank + math_symmetricEulers = 0.0_pReal + end select + return + + END FUNCTION + + +!**************************************************************** + subroutine math_pDecomposition(FE,U,R,error) +!-----FE=RU +!**************************************************************** + use prec, only: pReal, pInt + implicit none + + logical error + real(pReal) FE(3,3),R(3,3),U(3,3),CE(3,3),EW1,EW2,EW3,EB1(3,3),EB2(3,3),EB3(3,3),UI(3,3),det + + error = .false. + ce=matmul(transpose(fe),fe) + CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3) + U=DSQRT(EW1)*EB1+DSQRT(EW2)*EB2+DSQRT(EW3)*EB3 + call math_invert3x3(U,UI,det,error) + if (.not. error) R = matmul(fe,ui) + return + + END SUBROUTINE + + +!********************************************************************** + subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3) +!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M + + use prec, only: pReal, pInt + implicit none + + real(pReal) M(3,3),EB1(3,3),EB2(3,3),EB3(3,3),EW1,EW2,EW3 + real(pReal) HI1M,HI2M,HI3M,TOL,R,S,T,P,Q,RHO,PHI,Y1,Y2,Y3,D1,D2,D3 + real(pReal) C1,C2,C3,M1(3,3),M2(3,3),M3(3,3),arg + TOL=1.e-14_pReal + CALL math_hi(M,HI1M,HI2M,HI3M) + R=-HI1M + S= HI2M + T=-HI3M + P=S-R**2.0_pReal/3.0_pReal + Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T + EB1=0.0_pReal + EB2=0.0_pReal + EB3=0.0_pReal + IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN +! DREI GLEICHE EIGENWERTE + EW1=HI1M/3.0_pReal + EW2=EW1 + EW3=EW1 +! this is not really correct, but this way U is calculated +! correctly in PDECOMPOSITION (correct is EB?=I) + EB1(1,1)=1.0_pReal + EB2(2,2)=1.0_pReal + EB3(3,3)=1.0_pReal + ELSE + RHO=SQRT(-3.0_pReal*P**3.0_pReal)/9.0_pReal + arg=-Q/RHO/2.0_pReal + if(arg.GT.1) arg=1 + if(arg.LT.-1) arg=-1 + PHI=ACOS(arg) + Y1=2*RHO**(1.0_pReal/3.0_pReal)*COS(PHI/3.0_pReal) + Y2=2*RHO**(1.0_pReal/3.0_pReal)*COS(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI) + Y3=2*RHO**(1.0_pReal/3.0_pReal)*COS(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI) + EW1=Y1-R/3.0_pReal + EW2=Y2-R/3.0_pReal + EW3=Y3-R/3.0_pReal + C1=ABS(EW1-EW2) + C2=ABS(EW2-EW3) + C3=ABS(EW3-EW1) + + IF(C1.LT.TOL) THEN +! EW1 is equal to EW2 + D3=1.0_pReal/(EW3-EW1)/(EW3-EW2) + M1=M-EW1*math_I3 + M2=M-EW2*math_I3 + EB3=MATMUL(M1,M2)*D3 + EB1=math_I3-EB3 +! both EB2 and EW2 are set to zero so that they do not +! contribute to U in PDECOMPOSITION + EW2=0.0_pReal + ELSE IF(C2.LT.TOL) THEN +! EW2 is equal to EW3 + D1=1.0_pReal/(EW1-EW2)/(EW1-EW3) + M2=M-math_I3*EW2 + M3=M-math_I3*EW3 + EB1=MATMUL(M2,M3)*D1 + EB2=math_I3-EB1 +! both EB3 and EW3 are set to zero so that they do not +! contribute to U in PDECOMPOSITION + EW3=0.0_pReal + ELSE IF(C3.LT.TOL) THEN +! EW1 is equal to EW3 + D2=1.0_pReal/(EW2-EW1)/(EW2-EW3) + M1=M-math_I3*EW1 + M3=M-math_I3*EW3 + EB2=MATMUL(M1,M3)*D2 + EB1=math_I3-EB2 +! both EB3 and EW3 are set to zero so that they do not +! contribute to U in PDECOMPOSITION + EW3=0.0_pReal + ELSE +! all three eigenvectors are different + D1=1.0_pReal/(EW1-EW2)/(EW1-EW3) + D2=1.0_pReal/(EW2-EW1)/(EW2-EW3) + D3=1.0_pReal/(EW3-EW1)/(EW3-EW2) + M1=M-EW1*math_I3 + M2=M-EW2*math_I3 + M3=M-EW3*math_I3 + EB1=MATMUL(M2,M3)*D1 + EB2=MATMUL(M1,M3)*D2 + EB3=MATMUL(M1,M2)*D3 + END IF + END IF + RETURN + END SUBROUTINE + + +!********************************************************************** +!**** HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M + + SUBROUTINE math_hi(M,HI1M,HI2M,HI3M) + use prec, only: pReal, pInt + implicit none + + real(pReal) M(3,3),HI1M,HI2M,HI3M + + HI1M=M(1,1)+M(2,2)+M(3,3) + HI2M=HI1M**2/2.0_pReal-(M(1,1)**2+M(2,2)**2+M(3,3)**2)/2.0_pReal-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2) + HI3M=math_det3x3(M) +! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES + return + + END SUBROUTINE + + + SUBROUTINE get_seed(seed) +! +!******************************************************************************* +! +!! GET_SEED returns a seed for the random number generator. +! +! +! Discussion: +! +! The seed depends on the current time, and ought to be (slightly) +! different every millisecond. Once the seed is obtained, a random +! number generator should be called a few times to further process +! the seed. +! +! Modified: +! +! 27 June 2000 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Output, integer SEED, a pseudorandom seed value. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, only: pReal, pInt + implicit none + + integer(pInt) seed + real(pReal) temp + character ( len = 10 ) time + character ( len = 8 ) today + integer(pInt) values(8) + character ( len = 5 ) zone + + call date_and_time ( today, time, zone, values ) + + temp = 0.0D+00 + + temp = temp + dble ( values(2) - 1 ) / 11.0D+00 + temp = temp + dble ( values(3) - 1 ) / 30.0D+00 + temp = temp + dble ( values(5) ) / 23.0D+00 + temp = temp + dble ( values(6) ) / 59.0D+00 + temp = temp + dble ( values(7) ) / 59.0D+00 + temp = temp + dble ( values(8) ) / 999.0D+00 + temp = temp / 6.0D+00 + + if ( temp <= 0.0D+00 ) then + temp = 1.0D+00 / 3.0D+00 + else if ( 1.0D+00 <= temp ) then + temp = 2.0D+00 / 3.0D+00 + end if + + seed = int ( dble ( huge ( 1 ) ) * temp , pInt) +! +! Never use a seed of 0 or maximum integer. +! + if ( seed == 0 ) then + seed = 1 + end if + + if ( seed == huge ( 1 ) ) then + seed = seed - 1 + end if + + return + + END SUBROUTINE + + + subroutine halton ( ndim, r ) +! +!******************************************************************************* +! +!! HALTON computes the next element in the Halton sequence. +! +! +! Modified: +! +! 09 March 2003 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input, integer NDIM, the dimension of the element. +! +! Output, real R(NDIM), the next element of the current Halton +! sequence. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, ONLY: pReal, pInt + implicit none + + integer(pInt) ndim + + integer(pInt) base(ndim) + real(pReal) r(ndim) + integer(pInt) seed + integer(pInt) value(1) + + call halton_memory ( 'GET', 'SEED', 1, value ) + seed = value(1) + + call halton_memory ( 'GET', 'BASE', ndim, base ) + + call i_to_halton ( seed, base, ndim, r ) + + value(1) = 1 + call halton_memory ( 'INC', 'SEED', 1, value ) + + return + + END SUBROUTINE + + + subroutine halton_memory ( action, name, ndim, value ) +! +!******************************************************************************* +! +!! HALTON_MEMORY sets or returns quantities associated with the Halton sequence. +! +! +! Modified: +! +! 09 March 2003 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input, character ( len = * ) ACTION, the desired action. +! 'GET' means get the value of a particular quantity. +! 'SET' means set the value of a particular quantity. +! 'INC' means increment the value of a particular quantity. +! (Only the SEED can be incremented.) +! +! Input, character ( len = * ) NAME, the name of the quantity. +! 'BASE' means the Halton base or bases. +! 'NDIM' means the spatial dimension. +! 'SEED' means the current Halton seed. +! +! Input/output, integer NDIM, the dimension of the quantity. +! If ACTION is 'SET' and NAME is 'BASE', then NDIM is input, and +! is the number of entries in VALUE to be put into BASE. +! +! Input/output, integer VALUE(NDIM), contains a value. +! If ACTION is 'SET', then on input, VALUE contains values to be assigned +! to the internal variable. +! If ACTION is 'GET', then on output, VALUE contains the values of +! the specified internal variable. +! If ACTION is 'INC', then on input, VALUE contains the increment to +! be added to the specified internal variable. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, only: pReal, pInt + implicit none + + character ( len = * ) action + integer(pInt), allocatable, save :: base(:) + logical, save :: first_call = .true. + integer(pInt) i + character ( len = * ) name + integer(pInt) ndim + integer(pInt), save :: ndim_save = 0 + integer(pInt), save :: seed = 1 + integer(pInt) value(*) + + if ( first_call ) then + ndim_save = 1 + allocate ( base(ndim_save) ) + base(1) = 2 + first_call = .false. + end if +! +! Set +! + if ( action(1:1) == 'S' .or. action(1:1) == 's' ) then + + if ( name(1:1) == 'B' .or. name(1:1) == 'b' ) then + + if ( ndim_save /= ndim ) then + deallocate ( base ) + ndim_save = ndim + allocate ( base(ndim_save) ) + end if + + base(1:ndim) = value(1:ndim) + + else if ( name(1:1) == 'N' .or. name(1:1) == 'n' ) then + + if ( ndim_save /= value(1) ) then + deallocate ( base ) + ndim_save = value(1) + allocate ( base(ndim_save) ) + do i = 1, ndim_save + base(i) = prime ( i ) + end do + else + ndim_save = value(1) + end if + + else if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then + + seed = value(1) + + end if +! +! Get +! + else if ( action(1:1) == 'G' .or. action(1:1) == 'g' ) then + + if ( name(1:1) == 'B' .or. name(1:1) == 'b' ) then + + if ( ndim /= ndim_save ) then + deallocate ( base ) + ndim_save = ndim + allocate ( base(ndim_save) ) + do i = 1, ndim_save + base(i) = prime(i) + end do + end if + + value(1:ndim_save) = base(1:ndim_save) + + else if ( name(1:1) == 'N' .or. name(1:1) == 'n' ) then + + value(1) = ndim_save + + else if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then + + value(1) = seed + + end if +! +! Increment +! + else if ( action(1:1) == 'I' .or. action(1:1) == 'i' ) then + + if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then + seed = seed + value(1) + end if + + end if + + return + + END SUBROUTINE + + + + subroutine halton_ndim_set ( ndim ) +! +!******************************************************************************* +! +!! HALTON_NDIM_SET sets the dimension for a Halton sequence. +! +! +! Modified: +! +! 26 February 2001 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input, integer NDIM, the dimension of the Halton vectors. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, only: pReal, pInt + implicit none + + integer(pInt) ndim + integer(pInt) value(1) + + value(1) = ndim + call halton_memory ( 'SET', 'NDIM', 1, value ) + + return + + END SUBROUTINE + + + subroutine halton_seed_set ( seed ) +! +!******************************************************************************* +! +!! HALTON_SEED_SET sets the "seed" for the Halton sequence. +! +! +! Discussion: +! +! Calling HALTON repeatedly returns the elements of the +! Halton sequence in order, starting with element number 1. +! An internal counter, called SEED, keeps track of the next element +! to return. Each time the routine is called, the SEED-th element +! is computed, and then SEED is incremented by 1. +! +! To restart the Halton sequence, it is only necessary to reset +! SEED to 1. It might also be desirable to reset SEED to some other value. +! This routine allows the user to specify any value of SEED. +! +! The default value of SEED is 1, which restarts the Halton sequence. +! +! Modified: +! +! 26 February 2001 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input, integer SEED, the seed for the Halton sequence. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, only: pReal, pInt + implicit none + + integer(pInt), parameter :: ndim = 1 + + integer(pInt) seed + integer(pInt) value(ndim) + + value(1) = seed + call halton_memory ( 'SET', 'SEED', ndim, value ) + + return + + END SUBROUTINE + + + subroutine i_to_halton ( seed, base, ndim, r ) +! +!******************************************************************************* +! +!! I_TO_HALTON computes an element of a Halton sequence. +! +! +! Reference: +! +! J H Halton, +! On the efficiency of certain quasi-random sequences of points +! in evaluating multi-dimensional integrals, +! Numerische Mathematik, +! Volume 2, pages 84-90, 1960. +! +! Modified: +! +! 26 February 2001 +! +! Author: +! +! John Burkardt +! +! Parameters: +! +! Input, integer SEED, the index of the desired element. +! Only the absolute value of SEED is considered. SEED = 0 is allowed, +! and returns R = 0. +! +! Input, integer BASE(NDIM), the Halton bases, which should be +! distinct prime numbers. This routine only checks that each base +! is greater than 1. +! +! Input, integer NDIM, the dimension of the sequence. +! +! Output, real R(NDIM), the SEED-th element of the Halton sequence +! for the given bases. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, ONLY: pReal, pInt + implicit none + + integer(pInt) ndim + + integer(pInt) base(ndim) + real(pReal) base_inv(ndim) + integer(pInt) digit(ndim) + integer(pInt) i + real(pReal) r(ndim) + integer(pInt) seed + integer(pInt) seed2(ndim) + + seed2(1:ndim) = abs ( seed ) + + r(1:ndim) = 0.0_pReal + + if ( any ( base(1:ndim) <= 1 ) ) then + write ( *, '(a)' ) ' ' + write ( *, '(a)' ) 'I_TO_HALTON - Fatal error!' + write ( *, '(a)' ) ' An input base BASE is <= 1!' + do i = 1, ndim + write ( *, '(i6,i6)' ) i, base(i) + end do + call flush(6) + stop + end if + + base_inv(1:ndim) = 1.0_pReal / real ( base(1:ndim), pReal ) + + do while ( any ( seed2(1:ndim) /= 0 ) ) + digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim) ) + r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal ) * base_inv(1:ndim) + base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal ) + seed2(1:ndim) = seed2(1:ndim) / base(1:ndim) + end do + + return + + END SUBROUTINE + + + function prime ( n ) +! +!******************************************************************************* +! +!! PRIME returns any of the first PRIME_MAX prime numbers. +! +! +! Note: +! +! PRIME_MAX is 1500, and the largest prime stored is 12553. +! +! Modified: +! +! 21 June 2002 +! +! Author: +! +! John Burkardt +! +! Reference: +! +! Milton Abramowitz and Irene Stegun, +! Handbook of Mathematical Functions, +! US Department of Commerce, 1964, pages 870-873. +! +! Daniel Zwillinger, +! CRC Standard Mathematical Tables and Formulae, +! 30th Edition, +! CRC Press, 1996, pages 95-98. +! +! Parameters: +! +! Input, integer N, the index of the desired prime number. +! N = -1 returns PRIME_MAX, the index of the largest prime available. +! N = 0 is legal, returning PRIME = 1. +! It should generally be true that 0 <= N <= PRIME_MAX. +! +! Output, integer PRIME, the N-th prime. If N is out of range, PRIME +! is returned as 0. +! +! Modified: +! +! 29 April 2005 +! +! Author: +! +! Franz Roters +! + use prec, only: pReal, pInt + implicit none + + integer(pInt), parameter :: prime_max = 1500 + + integer(pInt), save :: icall = 0 + integer(pInt) n + integer(pInt), save, dimension ( prime_max ) :: npvec + integer(pInt) prime + + if ( icall == 0 ) then + + icall = 1 + + npvec(1:100) = (/& + 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, & + 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, & + 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, & + 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, & + 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, & + 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, & + 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, & + 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, & + 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, & + 467, 479, 487, 491, 499, 503, 509, 521, 523, 541 /) + + npvec(101:200) = (/ & + 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, & + 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, & + 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, & + 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, & + 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, & + 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, & + 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, & + 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, & + 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, & + 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223 /) + + npvec(201:300) = (/ & + 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, & + 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, & + 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, & + 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, & + 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, & + 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, & + 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, & + 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, & + 91823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, & + 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987 /) + + npvec(301:400) = (/ & + 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, & + 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, & + 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, & + 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, & + 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, & + 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, & + 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, & + 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, & + 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, & + 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741 /) + + npvec(401:500) = (/ & + 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, & + 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, & + 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, & + 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, & + 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, & + 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, & + 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, & + 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, & + 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, & + 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571 /) + + npvec(501:600) = (/ & + 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, & + 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, & + 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, & + 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, & + 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, & + 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, & + 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, & + 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, & + 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, & + 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409 /) + + npvec(601:700) = (/ & + 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, & + 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, & + 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, & + 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, & + 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, & + 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, & + 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, & + 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, & + 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, & + 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279 /) + + npvec(701:800) = (/ & + 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, & + 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, & + 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, & + 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, & + 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, & + 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, & + 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, & + 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, & + 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, & + 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133 /) + + npvec(801:900) = (/ & + 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, & + 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, & + 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, & + 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, & + 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, & + 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, & + 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, & + 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, & + 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, & + 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997 /) + + npvec(901:1000) = (/ & + 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, & + 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, & + 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, & + 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, & + 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, & + 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, & + 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, & + 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, & + 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, & + 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919 /) + + npvec(1001:1100) = (/ & + 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, & + 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, & + 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, & + 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, & + 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, & + 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, & + 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, & + 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, & + 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, & + 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831 /) + + npvec(1101:1200) = (/ & + 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, & + 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, & + 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, & + 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, & + 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, & + 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, & + 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, & + 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, & + 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, & + 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733 /) + + npvec(1201:1300) = (/ & + 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, & + 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, & + 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, & + 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, & + 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, & + 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, & + 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, & + 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, & + 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, & + 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657 /) + + npvec(1301:1400) = (/ & + 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, & + 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, & + 10861,10867,10883,10889,10891,10903,10909,19037,10939,10949, & + 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, & + 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, & + 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, & + 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, & + 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, & + 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, & + 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657 /) + + npvec(1401:1500) = (/ & + 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, & + 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, & + 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, & + 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, & + 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, & + 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, & + 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, & + 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, & + 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, & + 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553 /) + + end if + + if ( n == -1 ) then + prime = prime_max + else if ( n == 0 ) then + prime = 1 + else if ( n <= prime_max ) then + prime = npvec(n) + else + prime = 0 + write ( 6, '(a)' ) ' ' + write ( 6, '(a)' ) 'PRIME - Fatal error!' + write ( 6, '(a,i6)' ) ' Illegal prime index N = ', n + write ( 6, '(a,i6)' ) ' N must be between 0 and PRIME_MAX =',prime_max + call flush(6) + stop + end if + + return + + END FUNCTION + + + END MODULE math + diff --git a/dislocation_based_subroutine/mattex.mpie b/dislocation_based_subroutine/mattex.mpie new file mode 100644 index 000000000..aafc8d7da --- /dev/null +++ b/dislocation_based_subroutine/mattex.mpie @@ -0,0 +1,24 @@ + +[Aluminium] +temperature 293 +crystal_structure 1 +Nslip 12 +C11 106.75e3 +C12 60.41e3 +C44 28.34e3 +rho0 1.5e11 +bg 2.86e-10 +Qedge 3.0e-19 +tau0 0.0 +c1 0.1 +c2 2.0 +c3 0.4 +c4 0.05 +c5 10.0 +interaction_coefficients 1.0 2.2 3.0 1.6 3.8 4.5 + + +[cube SX] +symmetry monoclinic +Ngrains 1 +(gauss) phi1 0.0 phi 0.0 phi2 0.0 scatter 0.0 fraction 1.0 diff --git a/dislocation_based_subroutine/mesh.f90 b/dislocation_based_subroutine/mesh.f90 new file mode 100644 index 000000000..1865c647e --- /dev/null +++ b/dislocation_based_subroutine/mesh.f90 @@ -0,0 +1,702 @@ + +!############################################################## + MODULE mesh +!############################################################## + + use prec, only: pReal,pInt + implicit none + +! --------------------------- +! _Nelems : total number of elements in mesh +! _NcpElems : total number of CP elements in mesh +! _Nnodes : total number of nodes in mesh +! _maxNnodes : max number of nodes in any CP element +! _maxNips : max number of IPs in any CP element +! _maxNipNeighbors : max number of IP neighbors in any CP element +! _maxNsharedElems : max number of CP elements sharing a node +! +! _element : FEid, type, material, texture, node indices +! _node : x,y,z coordinates (initially!) +! _sharedElem : entryCount and list of elements containing node +! +! _mapFEtoCPelem : [sorted FEid, corresponding CPid] +! _mapFEtoCPnode : [sorted FEid, corresponding CPid] +! +! MISSING: these definitions should actually reside in the +! FE-solver specific part (different for MARC/ABAQUS)..! +! Hence, I suggest to prefix with "FE_" +! +! _mapElementtype : map MARC/ABAQUS elemtype to 1-maxN +! +! _Nnodes : # nodes in a specific type of element +! _Nips : # IPs in a specific type of element +! _NipNeighbors : # IP neighbors in a specific type of element +! _ipNeighbor : +x,-x,+y,-y,+z,-z list of intra-element IPs and +! (negative) neighbor faces per own IP in a specific type of element +! _NfaceNodes : # nodes per face in a specific type of element +! _nodeOnFace : list of node indices on each face of a specific type of element +! _ipAtNode : map node index to IP index in a specific type of element +! _nodeAtIP : map IP index to node index in a specific type of element +! _ipNeighborhood : 6 or less neighboring IPs as [element_num, IP_index] +! order is +x,-x,+y,-y,+z,-z but meaning strongly depends on Elemtype +! --------------------------- + integer(pInt) mesh_Nelems,mesh_NcpElems + integer(pInt) mesh_Nnodes,mesh_maxNnodes,mesh_maxNips,mesh_maxNipNeighbors,mesh_maxNsharedElems + integer(pInt), dimension(:,:), allocatable, target :: mesh_mapFEtoCPelem,mesh_mapFEtoCPnode + integer(pInt), dimension(:,:), allocatable :: mesh_element, mesh_sharedElem + integer(pInt), dimension(:,:,:,:), allocatable :: mesh_ipNeighborhood + real(pReal), allocatable :: mesh_node (:,:) + + integer(pInt) :: hypoelasticTableStyle = 0 + integer(pInt), parameter :: FE_Nelemtypes = 2 + integer(pInt), parameter :: FE_maxNnodes = 8 + integer(pInt), parameter :: FE_maxNips = 8 + integer(pInt), parameter :: FE_maxNneighbors = 6 + integer(pInt), parameter :: FE_maxNfaceNodes = 4 + integer(pInt), parameter :: FE_maxNfaces = 6 + integer(pInt), dimension(200):: FE_mapElemtype + integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_Nnodes = & + (/8, & ! element 7 + 4 & ! element 134 + /) + integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_Nips = & + (/8, & ! element 7 + 1 & ! element 134 + /) + integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_NipNeighbors = & + (/6, & ! element 7 + 4 & ! element 134 + /) + integer(pInt), dimension(FE_maxNfaces,FE_Nelemtypes), parameter :: FE_NfaceNodes = & + reshape((/& + 4,4,4,4,4,4, & ! element 7 + 3,3,3,3,0,0 & ! element 134 + /),(/FE_maxNfaces,FE_Nelemtypes/)) + integer(pInt), dimension(FE_maxNips,FE_Nelemtypes), parameter :: FE_nodeAtIP = & + reshape((/& + 1,2,4,3,5,6,8,7, & ! element 7 + 1,0,0,0,0,0,0,0 & ! element 134 + /),(/FE_maxNips,FE_Nelemtypes/)) + integer(pInt), dimension(FE_maxNnodes,FE_Nelemtypes), parameter :: FE_ipAtNode = & + reshape((/& + 1,2,4,3,5,6,8,7, & ! element 7 + 1,1,1,1,0,0,0,0 & ! element 134 + /),(/FE_maxNnodes,FE_Nelemtypes/)) + integer(pInt), dimension(FE_maxNfaceNodes,FE_maxNfaces,FE_Nelemtypes), parameter :: FE_nodeOnFace = & + reshape((/& + 1,2,3,4 , & ! element 7 + 2,1,5,6 , & + 3,2,6,7 , & + 3,4,8,7 , & + 4,1,5,8 , & + 8,7,6,5 , & + 1,2,3,0 , & ! element 134 + 1,4,2,0 , & + 2,3,4,0 , & + 1,3,4,0 , & + 0,0,0,0 , & + 0,0,0,0 & + /),(/FE_maxNfaceNodes,FE_maxNfaces,FE_Nelemtypes/)) + integer(pInt), dimension(FE_maxNneighbors,FE_maxNips,FE_Nelemtypes), parameter :: FE_ipNeighbor = & + reshape((/& + 2,-5, 3,-2, 5,-1 , & ! element 7 + -3, 1, 4,-2, 6,-1 , & + 4,-5,-4, 1, 7,-1 , & + -3, 3,-4, 2, 8,-1 , & + 6,-5, 7,-2,-6, 1 , & + -3, 5, 8,-2,-6, 2 , & + 8,-5,-4, 5,-6, 3 , & + -3, 7,-4, 6,-6, 4 , & + -1,-2,-3,-4, 0, 0 , & ! element 134 + 0, 0, 0, 0, 0, 0 , & + 0, 0, 0, 0, 0, 0 , & + 0, 0, 0, 0, 0, 0 , & + 0, 0, 0, 0, 0, 0 , & + 0, 0, 0, 0, 0, 0 , & + 0, 0, 0, 0, 0, 0 , & + 0, 0, 0, 0, 0, 0 & + /),(/FE_maxNneighbors,FE_maxNips,FE_Nelemtypes/)) + + CONTAINS +! --------------------------- +! subroutine mesh_init() +! function mesh_FEtoCPelement(FEid) +! function mesh_build_ipNeighorhood() +! subroutine mesh_parse_inputFile() +! --------------------------- + + +!*********************************************************** +! initialization +!*********************************************************** + SUBROUTINE mesh_init () + + use prec, only: pInt + use IO, only: IO_error,IO_open_InputFile + implicit none + + integer(pInt), parameter :: fileUnit = 222 + + mesh_Nelems = 0_pInt + mesh_NcpElems = 0_pInt + mesh_Nnodes = 0_pInt + mesh_maxNips = 0_pInt + mesh_maxNnodes = 0_pInt + mesh_maxNsharedElems = 0_pInt + + FE_mapElemtype = 1 ! MISSING this should be zero... + FE_mapElemtype( 7) = 1 + FE_mapElemtype(134) = 2 + +! call to various subrountes to parse the stuff from the input file... + if (IO_open_inputFile(fileUnit)) then + call mesh_get_meshDimensions(fileUnit) + call mesh_build_nodeMapping(fileUnit) + call mesh_build_elemMapping(fileUnit) + call mesh_get_nodeElemDimensions(fileUnit) + call mesh_build_nodes(fileUnit) + call mesh_build_elements(fileUnit) + call mesh_build_sharedElems(fileUnit) + call mesh_build_ipNeighborhood() + close (fileUnit) + else + call IO_error(100) + endif + + END SUBROUTINE + + +!*********************************************************** +! FE to CP id mapping by binary search thru lookup array +! +! valid questions are 'elem', 'node' +!*********************************************************** + FUNCTION mesh_FEasCP(what,id) + + use prec, only: pInt + use IO, only: IO_lc + implicit none + + character(len=*), intent(in) :: what + integer(pInt), intent(in) :: id + integer(pInt), dimension(:,:), pointer :: lookupMap + integer(pInt) mesh_FEasCP, lower,upper,center + + mesh_FEasCP = 0_pInt + select case(IO_lc(what(1:4))) + case('elem') + lookupMap => mesh_mapFEtoCPelem + case('node') + lookupMap => mesh_mapFEtoCPnode + case default + return + end select + + lower = 1_pInt + upper = size(lookupMap,2) + + ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds? + if (lookupMap(1,lower) == id) then + mesh_FEasCP = lookupMap(2,lower) + return + elseif (lookupMap(1,upper) == id) then + mesh_FEasCP = lookupMap(2,upper) + return + endif + + ! binary search in between bounds + do while (upper-lower > 1) + center = (lower+upper)/2 + if (lookupMap(1,center) < id) then + lower = center + elseif (lookupMap(1,center) > id) then + upper = center + else + mesh_FEasCP = lookupMap(2,center) + exit + end if + end do + return + + END FUNCTION + + +!*********************************************************** +! find face-matching element of same type +!!*********************************************************** + FUNCTION mesh_faceMatch(face,elem) + + use prec, only: pInt + implicit none + + integer(pInt) face,elem + integer(pInt) mesh_faceMatch + integer(pInt), dimension(FE_NfaceNodes(face,FE_mapElemtype(mesh_element(2,elem)))) :: nodeMap + integer(pInt) minN,NsharedElems,lonelyNode,faceNode,i,n,t + + minN = mesh_maxNsharedElems+1 ! init to worst case + mesh_faceMatch = 0_pInt ! intialize to "no match found" + t = FE_mapElemtype(mesh_element(2,elem)) ! figure elemType + + do faceNode=1,FE_NfaceNodes(face,t) ! loop over nodes on face + nodeMap(faceNode) = mesh_FEasCP('node',mesh_element(4+FE_nodeOnFace(faceNode,face,t),elem)) ! CP id of face node + NsharedElems = mesh_sharedElem(1,nodeMap(faceNode)) ! figure # shared elements for this node + if (NsharedElems < minN) then + minN = NsharedElems ! remember min # shared elems + lonelyNode = faceNode ! remember most lonely node + endif + end do +candidate: do i=1,minN ! iterate over lonelyNode's shared elements + mesh_faceMatch = mesh_sharedElem(1+i,nodeMap(lonelyNode)) ! present candidate elem + if (mesh_faceMatch == elem) then ! my own element ? + mesh_faceMatch = 0_pInt ! disregard + cycle candidate + endif + do faceNode=1,FE_NfaceNodes(face,t) ! check remaining face nodes to match + if (faceNode == lonelyNode) cycle ! disregard lonely node (matches anyway) + n = nodeMap(faceNode) + if (all(mesh_sharedElem(2:1+mesh_sharedElem(1,n),n) /= mesh_faceMatch)) then ! no ref to candidate elem? + mesh_faceMatch = 0_pInt ! set to "no match" (so far) + cycle candidate ! next candidate elem + endif + end do + exit ! surviving candidate + end do candidate + + return + + END FUNCTION + + +!******************************************************************** +! get count of elements, nodes, and cp elements in mesh +! for subsequent array allocations +! +! assign globals: +! _Nelems, _Nnodes, _NcpElems +!******************************************************************** + SUBROUTINE mesh_get_meshDimensions (unit) + + use prec, only: pInt + use IO + implicit none + + integer(pInt) unit,i,pos(41) + character*300 line + +610 FORMAT(A300) + + rewind(unit) + do + read (unit,610,END=620) line + pos = IO_stringPos(line,20) + + select case ( IO_lc(IO_Stringvalue(line,pos,1))) + case('table') + if (pos(1) == 6) hypoelasticTableStyle = IO_IntValue (line,pos,5) ! only recognize header entry for "table" + case('sizing') + mesh_Nelems = IO_IntValue (line,pos,3) + mesh_Nnodes = IO_IntValue (line,pos,4) + case('hypoelastic') + do i=1,4+hypoelasticTableStyle + read (unit,610,END=620) line + end do + pos = IO_stringPos(line,20) + if( IO_lc(IO_Stringvalue(line,pos,2)).eq.'to' )then + mesh_NcpElems = IO_IntValue(line,pos,3)-IO_IntValue(line,pos,1)+1 + else + mesh_NcpElems = mesh_NcpElems + pos(1) + do while( IO_lc(IO_Stringvalue(line,pos,pos(1))).eq.'c' ) + mesh_NcpElems = mesh_NcpElems - 1 ! Counted the c character from the line + read (unit,610,END=620) line + pos = IO_stringPos(line,20) + mesh_NcpElems = mesh_NcpElems + pos(1) + end do + end if + + end select + + end do + +620 return + + END SUBROUTINE + + +!******************************************************************** +! get maximum count of nodes, IPs, IP neighbors, and shared elements +! for subsequent array allocations +! +! assign globals: +! _maxNnodes, _maxNips, _maxNipNeighbors, _maxNsharedElems +!******************************************************************** + SUBROUTINE mesh_get_nodeElemDimensions (unit) + + use prec, only: pInt + use IO + implicit none + + integer(pInt), dimension (mesh_Nnodes) :: node_count + integer(pInt) unit,i,j,n,t,e + integer(pInt), dimension (133) :: pos + character*300 line + +610 FORMAT(A300) + + node_count = 0_pInt + + rewind(unit) + do + read (unit,610,END=630) line + pos = IO_stringPos(line,1) + if( IO_lc(IO_stringValue(line,pos,1)) == 'connectivity' ) then + read (unit,610,END=630) line ! Garbage line + do i=1,mesh_Nelems ! read all elements + read (unit,610,END=630) line + pos = IO_stringPos(line,66) ! limit to 64 nodes max (plus ID, type) + e = mesh_FEasCP('elem',IO_intValue(line,pos,1)) + if (e /= 0) then + t = FE_mapElemtype(IO_intValue(line,pos,2)) + mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t)) + mesh_maxNips = max(mesh_maxNips,FE_Nips(t)) + mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(t)) + do j=1,FE_Nnodes(t) + n = mesh_FEasCP('node',IO_IntValue (line,pos,j+2)) + node_count(n) = node_count(n)+1 + end do + end if + end do + exit + end if + end do + +630 mesh_maxNsharedElems = maxval(node_count) + + return + END SUBROUTINE + + +!******************************************************************** +! Build node mapping from FEM to CP +! +! allocate globals: +! _mapFEtoCPnode +!******************************************************************** + SUBROUTINE mesh_build_nodeMapping (unit) + + use prec, only: pInt + use math, only: qsort + use IO + implicit none + + integer(pInt), dimension (mesh_Nnodes) :: node_count + integer(pInt) unit,i + integer(pInt), dimension (133) :: pos + character*300 line + +610 FORMAT(A300) + + allocate (mesh_mapFEtoCPnode(2,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt + node_count(:) = 0_pInt + + rewind(unit) + do + read (unit,610,END=620) line + pos = IO_stringPos(line,1) + if( IO_lc(IO_stringValue(line,pos,1)) == 'coordinates' ) then + read (unit,610,END=620) line ! skip crap line + do i=1,mesh_Nnodes + read (unit,610,END=620) line + mesh_mapFEtoCPnode(1,i) = IO_fixedIntValue (line,(/0,10/),1) + mesh_mapFEtoCPnode(2,i) = i + end do + exit + end if + end do + +620 call qsort(mesh_mapFEtoCPnode,1,size(mesh_mapFEtoCPnode,2)) + + return + END SUBROUTINE + + +!******************************************************************** +! Build element mapping from FEM to CP +! +! allocate globals: +! _mapFEtoCPelem +!******************************************************************** + SUBROUTINE mesh_build_elemMapping (unit) + + use prec, only: pInt + use math, only: qsort + use IO + + implicit none + + integer unit, i,CP_elem + character*300 line + integer(pInt), dimension (3) :: pos + integer(pInt), dimension (1+mesh_NcpElems) :: contInts + + +610 FORMAT(A300) + + allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt + CP_elem = 0_pInt + + rewind(unit) + do + read (unit,610,END=620) line + pos = IO_stringPos(line,1) + if( IO_lc(IO_stringValue(line,pos,1)) == 'hypoelastic' ) then + do i=1,3+hypoelasticTableStyle ! skip three (or four if new table style!) lines + read (unit,610,END=620) line + end do + contInts = IO_continousIntValues(unit,mesh_NcpElems) + do i = 1,contInts(1) + CP_elem = CP_elem+1 + mesh_mapFEtoCPelem(1,CP_elem) = contInts(1+i) + mesh_mapFEtoCPelem(2,CP_elem) = CP_elem + enddo + end if + end do + +620 call qsort(mesh_mapFEtoCPelem,1,size(mesh_mapFEtoCPelem,2)) ! should be mesh_NcpElems + + return + END SUBROUTINE + + +!******************************************************************** +! store x,y,z coordinates of all nodes in mesh +! +! allocate globals: +! _node +!******************************************************************** + SUBROUTINE mesh_build_nodes (unit) + + use prec, only: pInt + use IO + implicit none + + integer unit,i,j,m + integer(pInt), dimension(3) :: pos + integer(pInt), dimension(5), parameter :: node_ends = (/0,10,30,50,70/) + character*300 line + + allocate ( mesh_node (3,mesh_Nnodes) ) + mesh_node(:,:) = 0_pInt + +610 FORMAT(A300) + + rewind(unit) + do + read (unit,610,END=620) line + pos = IO_stringPos(line,1) + if( IO_lc(IO_stringValue(line,pos,1)) == 'coordinates' ) then + read (unit,610,END=620) line ! skip crap line + do i=1,mesh_Nnodes + read (unit,610,END=620) line + m = mesh_FEasCP('node',IO_fixedIntValue (line,node_ends,1)) + do j=1,3 + mesh_node(j,m) = IO_fixedNoEFloatValue (line,node_ends,j+1) + end do + end do + exit + end if + end do + +620 return + + END SUBROUTINE + + +!******************************************************************** +! store FEid, type, mat, tex, and node list per element +! +! allocate globals: +! _element +!******************************************************************** + SUBROUTINE mesh_build_elements (unit) + + use prec, only: pInt + use IO + implicit none + + integer unit,i,j,sv,val,CP_elem + integer(pInt), dimension(133) :: pos + integer(pInt), dimension(1+mesh_NcpElems) :: contInts + character*300 line + + allocate (mesh_element (4+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt + +610 FORMAT(A300) + + + rewind(unit) + do + read (unit,610,END=620) line + pos = IO_stringPos(line,2) + if( IO_lc(IO_stringValue(line,pos,1)) == 'connectivity' ) then + read (unit,610,END=620) line ! Garbage line + do i=1,mesh_Nelems + read (unit,610,END=620) line + pos = IO_stringPos(line,66) ! limit to 64 nodes max (plus ID, type) + CP_elem = mesh_FEasCP('elem',IO_intValue(line,pos,1)) + if (CP_elem /= 0) then ! disregard non CP elems + mesh_element (1,CP_elem) = IO_IntValue (line,pos,1) ! FE id + mesh_element (2,CP_elem) = IO_IntValue (line,pos,2) ! elem type + do j=1,FE_Nnodes(FE_mapElemtype(mesh_element(2,CP_elem))) + mesh_element(j+4,CP_elem) = IO_IntValue (line,pos,j+2) ! copy FE ids of nodes + end do + end if + end do + exit + endif + enddo + + rewind(unit) ! just in case "initial state" apears before "connectivity" + do ! fast forward to first "initial state" section + read (unit,610,END=620) line + pos = IO_stringPos(line,2) + if( (IO_lc(IO_stringValue(line,pos,1)) == 'initial').and. & + (IO_lc(IO_stringValue(line,pos,2)) == 'state') ) exit + enddo + + do ! parse initial state section(s) + if( (IO_lc(IO_stringValue(line,pos,1)) == 'initial').and. & + (IO_lc(IO_stringValue(line,pos,2)) == 'state') ) then + read (unit,610,END=620) line + pos = IO_stringPos(line,1) + sv = IO_IntValue (line,pos,1) ! figure state variable index + if( (sv == 2).or.(sv == 3) ) then ! only state vars 2 and 3 of interest + read (unit,610,END=620) line + pos = IO_stringPos(line,1) + do while (scan(IO_stringValue(line,pos,1),'+-',back=.true.)>1) + val = NINT(IO_fixedNoEFloatValue (line,(/0,20/),1)) ! state var's value + contInts = IO_continousIntValues(unit,mesh_Nelems) ! get affected elements + do i = 1,contInts(1) + CP_elem = mesh_FEasCP('elem',contInts(1+i)) + mesh_element(1+sv,CP_elem) = val + enddo + read (unit,610,END=620) line ! ignore IP range + pos = IO_stringPos(line,1) + enddo + endif + endif + read (unit,610,END=620) line ! read ahead (check in do loop) + pos = IO_stringPos(line,2) + enddo + +620 return + + END SUBROUTINE + + +!******************************************************************** +! build list of elements shared by each node in mesh +! +! allocate globals: +! _sharedElem +!******************************************************************** + SUBROUTINE mesh_build_sharedElems (unit) + + use prec, only: pInt + use IO + implicit none + + integer unit,i,j,CP_node,CP_elem + integer(pInt), dimension (133) :: pos + character*300 line + +610 FORMAT(A300) + + allocate ( mesh_sharedElem( 1+mesh_maxNsharedElems,mesh_Nnodes) ) + mesh_sharedElem(:,:) = 0_pInt + + rewind(unit) + do + read (unit,610,END=620) line + pos = IO_stringPos(line,1) + if( IO_lc(IO_stringValue(line,pos,1)) == 'connectivity' ) then + read (unit,610,END=620) line ! Garbage line + do i=1,mesh_Nelems + read (unit,610,END=620) line + pos = IO_stringPos(line,66) ! limit to 64 nodes max (plus ID, type) + CP_elem = mesh_FEasCP('elem',IO_IntValue(line,pos,1)) + if (CP_elem /= 0) then ! disregard non CP elems + do j = 1,FE_Nnodes(FE_mapElemtype(IO_intValue(line,pos,2))) + CP_node = mesh_FEasCP('node',IO_IntValue (line,pos,j+2)) + mesh_sharedElem(1,CP_node) = mesh_sharedElem(1,CP_node) + 1 + mesh_sharedElem(1+mesh_sharedElem(1,CP_node),CP_node) = CP_elem + enddo + end if + end do + exit + end if + end do + +620 return + + END SUBROUTINE + + +!*********************************************************** +! build up of IP neighborhood +! +! allocate globals +! _ipNeighborhood +!*********************************************************** + SUBROUTINE mesh_build_ipNeighborhood() + + use prec, only: pInt + implicit none + + integer(pInt) e,t,i,j,k,n + integer(pInt) neighbor,neighboringElem,neighboringIP,matchingElem,faceNode,linkingNode + + allocate(mesh_ipNeighborhood(2,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipNeighborhood = 0_pInt + + do e = 1,mesh_NcpElems ! loop over cpElems + t = FE_mapElemtype(mesh_element(2,e)) ! get elemType + do i = 1,FE_Nips(t) ! loop over IPs of elem + do n = 1,FE_NipNeighbors(t) ! loop over neighbors of IP + neighbor = FE_ipNeighbor(n,i,t) + if (neighbor > 0) then ! intra-element IP + neighboringElem = e + neighboringIP = neighbor + else ! neighboring element's IP + neighboringElem = 0_pInt + neighboringIP = 0_pInt + matchingElem = mesh_faceMatch(-neighbor,e) ! get CP elem id of face match + if (matchingElem > 0 .and. & + FE_mapElemtype(mesh_element(2,matchingElem)) == t) then ! found match of same type? +matchFace: do j = 1,FE_NfaceNodes(-neighbor,t) ! count over nodes on matching face + faceNode = FE_nodeOnFace(j,-neighbor,t) ! get face node id + if (i == FE_ipAtNode(faceNode,t)) then ! ip linked to face node is me? + linkingNode = mesh_element(4+faceNode,e) ! FE id of this facial node + do k = 1,FE_Nnodes(t) ! loop over nodes in matching element + if (linkingNode == mesh_element(4+k,matchingElem)) then + neighboringElem = matchingElem + neighboringIP = FE_ipAtNode(k,t) + exit matchFace + endif + end do + endif + end do matchFace + endif + endif + mesh_ipNeighborhood(1,n,i,e) = neighboringElem + mesh_ipNeighborhood(2,n,i,e) = neighboringIP + end do + end do + end do + + return + + END SUBROUTINE + + + END MODULE mesh + \ No newline at end of file diff --git a/dislocation_based_subroutine/mpie_cpfem_marc.f90 b/dislocation_based_subroutine/mpie_cpfem_marc.f90 new file mode 100644 index 000000000..8f44160a7 --- /dev/null +++ b/dislocation_based_subroutine/mpie_cpfem_marc.f90 @@ -0,0 +1,275 @@ +!******************************************************************** +! Material subroutine for MSC.Marc Version 0.1 +! +! written by F. Roters, P. Eisenlohr, L. Hantcherli, W.A. Counts +! MPI fuer Eisenforschung, Duesseldorf +! +! last modified: 28.03.2007 +!******************************************************************** +! Usage: +! - choose material as hypela2 +! - set statevariable 2 to index of material +! - set statevariable 3 to index of texture +! - choose output of user variables if desired +! - make sure the file "mattex.mpie" exists in the working +! directory +! - use nonsymmetric option for solver (e.g. direct +! profile or multifrontal sparse, the latter seems +! to be faster!) +!******************************************************************** +! Marc subroutines used: +! - hypela2 +! - plotv +! - quit +!******************************************************************** +! Marc common blocks included: +! - concom: lovl, ncycle, inc, incsub +! - creeps: timinc +!******************************************************************** +! + include "prec.f90" + include "math.f90" + include "IO.f90" + include "mesh.f90" + include "crystal.f90" + include "constitutive.f90" + include "CPFEM.f90" +! + SUBROUTINE hypela2(d,g,e,de,s,t,dt,ngens,n,nn,kcus,matus,ndi,& + nshear,disp,dispt,coord,ffn,frotn,strechn,eigvn,ffn1,& + frotn1,strechn1,eigvn1,ncrd,itel,ndeg,ndm,& + nnode,jtype,lclass,ifr,ifu) +!******************************************************************** +! This is the Marc material routine +!******************************************************************** +! +! ************* user subroutine for defining material behavior ************** +! +! +! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and +! Rotation tensors at previous and current states, the analysis can be +! computationally expensive. Please use the user subroutine -> hypela +! if these kinematic quantities are not needed in the constitutive model +! +! +! IMPORTANT NOTES : +! +! (1) F,R,U are only available for continuum and membrane elements (not for +! shells and beams). +! +! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(= +! total Lagrange with large disp) in the parameter section of input deck. +! For updated Lagrangian formulation use the -> 'Plasticity,3' card(= +! update+finite+large disp+constant d) in the parameter section of +! input deck. +! +! +! d stress strain law to be formed +! g change in stress due to temperature effects +! e total elastic strain +! de increment of strain +! s stress - should be updated by user +! t state variables (comes in at t=n, must be updated +! to have state variables at t=n+1) +! dt increment of state variables +! ngens size of stress - strain law +! n element number +! nn integration point number +! kcus(1) layer number +! kcus(2) internal layer number +! matus(1) user material identification number +! matus(2) internal material identification number +! ndi number of direct components +! nshear number of shear components +! disp incremental displacements +! dispt displacements at t=n (at assembly, lovl=4) and +! displacements at t=n+1 (at stress recovery, lovl=6) +! coord coordinates +! ncrd number of coordinates +! ndeg number of degrees of freedom +! itel dimension of F and R, either 2 or 3 +! nnode number of nodes per element +! jtype element type +! lclass element class +! ifr set to 1 if R has been calculated +! ifu set to 1 if strech has been calculated +! +! at t=n : +! +! ffn deformation gradient +! frotn rotation tensor +! strechn square of principal stretch ratios, lambda(i) +! eigvn(i,j) i principal direction components for j eigenvalues +! +! at t=n+1 : +! +! ffn1 deformation gradient +! frotn1 rotation tensor +! strechn1 square of principal stretch ratios, lambda(i) +! eigvn1(i,j) i principal direction components for j eigenvalues +! +! The following operation obtains U (stretch tensor) at t=n+1 : +! +! call scla(un1,0.d0,itel,itel,1) +! do 3 k=1,3 +! do 2 i=1,3 +! do 1 j=1,3 +! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k) +!1 continue +!2 continue +!3 continue +! +! + use prec, only: pReal,pInt + use math, only: invnrmMandel, nrmMandel + use mesh, only: mesh_FEasCP + use CPFEM, only: CPFEM_general,CPFEM_stress_all, CPFEM_jaco_old + implicit real(pReal) (a-h,o-z) +! +! Marc common blocks are in fixed format so they have to be pasted in here +! Beware of changes in newer Marc versions -- these are from 2005r3 +! concom is needed for inc, subinc, ncycle, lovl +! include 'concom' + common/concom/ & + iacous, iasmbl, iautth, ibear, icompl, iconj, icreep, ideva(50), idyn, idynt,& + ielas, ielcma, ielect, iform, ifour, iharm, ihcps, iheat, iheatt, ihresp,& + ijoule, ilem, ilnmom, iloren, inc, incext, incsub, ipass, iplres, ipois,& + ipoist, irpflo, ismall, ismalt, isoil, ispect, ispnow, istore, iswep, ithcrp,& + itherm, iupblg, iupdat, jacflg, jel, jparks, largst, lfond, loadup, loaduq,& + lodcor, lovl, lsub, magnet, ncycle, newtnt, newton, noshr, linear, ivscpl,& + icrpim, iradrt, ipshft, itshr, iangin, iupmdr, iconjf, jincfl, jpermg, jhour,& + isolvr, jritz, jtable, jshell, jdoubl, jform, jcentr, imini, kautth, iautof,& + ibukty, iassum, icnstd, icnstt, kmakmas, imethvp,iradrte,iradrtp, iupdate,iupdatp,& + ncycnt, marmen ,idynme, ihavca, ispf, kmini, imixed, largtt, kdoela, iautofg,& + ipshftp,idntrc, ipore, jtablm, jtablc, isnecma,itrnspo,imsdif, jtrnspo,mcnear,& + imech, imecht, ielcmat, ielectt,magnett, imsdift,noplas, jtabls, jactch, jtablth,& + kgmsto ,jpzo, ifricsh, iremkin,iremfor, ishearp,jspf, machining, jlshell,icompsol,& + iupblgfo,jcondir,nstcrp, nactive,ipassref, nstspnt,ibeart,icheckmpc, noline, icuring,& + ishrink,ioffsflg,isetoff, iharmt, inc_incdat, iautspc,ibrake +! creeps is needed for timinc (time increment) +! include 'creeps' + common/creeps/ & + cptim,timinc,timinc_p,timinc_s,timincm,timinc_a,timinc_b,creept(33),icptim,icfte,icfst,& + icfeq,icftm,icetem,mcreep,jcreep,icpa,icftmp,icfstr,icfqcp,icfcpm,icrppr,icrcha,icpb,iicpmt,iicpa +! + integer(pInt) cp_en, i +! + dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),& + frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2) +! +! call general material routine only in cycle 0 and for lovl==6 (stress recovery) + +! subroutine cpfem_general(mpie_ffn, mpie_ffn1, mpie_cn, mpie_tinc, mpie_enp, mpie_in) +!******************************************************************** +! This routine calculates the material behaviour +!******************************************************************** +! mpie_ffn deformation gradient for t=t0 +! mpie_ffn1 deformation gradient for t=t1 +! mpie_cn number of cycle +! mpie_tinc time increment +! mpie_en element number +! mpie_in intergration point number +!******************************************************************** + if ((lovl==6).or.(ncycle==0)) then + call CPFEM_general(ffn, ffn1, t(1), inc, incsub, ncycle, timinc, n(1), nn) + endif +! return stress and jacobi +! Mandel: 11, 22, 33, 12, 23, 13 +! Marc: 11, 22, 33, 12, 23, 13 + cp_en = mesh_FEasCP('elem', n(1)) + s(1:ngens)=invnrmMandel(1:ngens)*CPFEM_stress_all(1:ngens, nn, cp_en) + d(1:ngens,1:ngens)=CPFEM_jaco_old(1:ngens,1:ngens, nn, cp_en) + forall(i=1:ngens) d(1:ngens,i)=d(1:ngens,i)*invnrmMandel(1:ngens) + return + + END SUBROUTINE +! +! + SUBROUTINE plotv(v,s,sp,etot,eplas,ecreep,t,m,nn,layer,ndi,nshear,jpltcd) +!******************************************************************** +! This routine sets user defined output variables for Marc +!******************************************************************** +! +! select a variable contour plotting (user subroutine). +! +! v variable +! s (idss) stress array +! sp stresses in preferred direction +! etot total strain (generalized) +! eplas total plastic strain +! ecreep total creep strain +! t current temperature +! m element number +! nn integration point number +! layer layer number +! ndi (3) number of direct stress components +! nshear (3) number of shear stress components +! +!******************************************************************** + use prec, only: pReal,pInt + use CPFEM, only: CPFEM_results, CPFEM_Nresults + use constitutive, only: constitutive_maxNresults + use mesh, only: mesh_FEasCP + implicit none +! + real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*) + real(pReal) v, t(*) + integer(pInt) m, nn, layer, ndi, nshear, jpltcd +! +! assign result variable + v=CPFEM_results(mod(jpltcd, CPFEM_Nresults+constitutive_maxNresults),& + int(jpltcd/(CPFEM_Nresults+constitutive_maxNresults)),& + nn, mesh_FEasCP('elem', m)) + return + END SUBROUTINE +! +! +! subroutine utimestep(timestep,timestepold,icall,time,timeloadcase) +!******************************************************************** +! This routine modifies the addaptive time step of Marc +!******************************************************************** +! use prec, only: pReal,pInt +! use CPFEM, only : CPFEM_timefactor_max +! implicit none +! +! real(pReal) timestep, timestepold, time,timeloadcase +! integer(pInt) icall +! +! user subroutine for modifying the time step in auto step +! +! timestep : the current time step as suggested by marc +! to be modified in this routine +! timestepold : the current time step before it was modified by marc +! icall : =1 for setting the initial time step +! =2 if this routine is called during an increment +! =3 if this routine is called at the beginning +! of the increment +! time : time at the start of the current increment +! timeloadcase: time period of the current load case +! +! it is in general not recommended to increase the time step +! during the increment. +! this routine is called right after the time step has (possibly) +! been updated by marc. +! +! user coding +! reduce timestep during increment in case mpie_timefactor is too large +! if(icall==2_pInt) then +! if(mpie_timefactor_max>1.25_pReal) then +! timestep=min(timestep,timestepold*0.8_pReal) +! end if +! return +! modify timestep at beginning of new increment +! else if(icall==3_pInt) then +! if(mpie_timefactor_max<=0.8_pReal) then +! timestep=min(timestep,timestepold*1.25_pReal) +! else if (mpie_timefactor_max<=1.0_pReal) then +! timestep=min(timestep,timestepold/mpie_timefactor_max) +! else if (mpie_timefactor_max<=1.25_pReal) then +! timestep=min(timestep,timestepold*1.01_pReal) +! else +! timestep=min(timestep,timestepold*0.8_pReal) +! end if +! end if +! return +! end diff --git a/dislocation_based_subroutine/prec.f90 b/dislocation_based_subroutine/prec.f90 new file mode 100644 index 000000000..097967ad3 --- /dev/null +++ b/dislocation_based_subroutine/prec.f90 @@ -0,0 +1,31 @@ + +!############################################################## + MODULE prec +!############################################################## + + implicit none +! *** Precision of real and integer variables *** + integer, parameter :: pReal = 8 + integer, parameter :: pInt = 4 +! *** Numerical parameters *** +! *** How frequently the jacobian is recalculated *** + integer (pInt), parameter :: ijaco = 5_pInt +! *** Maximum number of internal cutbacks in time step *** + integer(pInt), parameter :: nCutback = 7_pInt +! *** Maximum number of regularization attempts for Jacobi inversion *** + integer(pInt), parameter :: nReg = 1_pInt +! *** Perturbation of strain array for numerical calculation of FEM Jacobi matrix *** + real(pReal), parameter :: pert_e=1.0e-5_pReal +! *** Maximum number of iterations in outer (state variables) loop *** + integer(pInt), parameter :: nState = 50_pInt +! *** Convergence criteria for outer (state variables) loop *** + real(pReal), parameter :: tol_State = 1.0e-6_pReal +! *** Maximum number of iterations in inner (stress) loop *** + integer(pInt), parameter :: nStress = 500_pInt +! *** Convergence criteria for inner (stress) loop *** + real(pReal), parameter :: tol_Stress = 1.0e-6_pReal +! *** Factor for maximum stress correction in inner (stress) loop *** +! real(pReal), parameter :: crite = 0.1_pReal + + + END MODULE prec diff --git a/dislocation_based_subroutine/test.f90 b/dislocation_based_subroutine/test.f90 new file mode 100644 index 000000000..8ecd277e5 --- /dev/null +++ b/dislocation_based_subroutine/test.f90 @@ -0,0 +1,34 @@ + +!use prec +!use IO +!use constitutive + +implicit none + +integer, dimension(4) :: array,m + +real a,twopi +integer i + +array = (/10,2,3,4/) +m = (/1,1,0,0/) + +write(*,*) maxval(array,m /= 0) + +twopi=2.0*3.1415926 +a=1.234 + +do i=0,-3,-1 + write(*,*) a+i*twopi,modulo(a+i*twopi,twopi) +enddo + + +!call constitutive_parse_MatTexDat('materials_textures.mpie') + +!write(*,*) 'materials_maxN ', materials_maxN +!write(*,*) 'textures_maxN ', textures_maxN + + + + +end \ No newline at end of file