polishing, replace variables calculation with arrays calculation.

This commit is contained in:
Haiming Zhang 2015-03-27 17:58:49 +00:00
parent 151d4ff75b
commit 72c2ead277
1 changed files with 234 additions and 444 deletions

View File

@ -38,22 +38,19 @@ def principalStresses(sigmas):
lambdas = np.transpose(lambdas.reshape(np.shape(sigmas)[1],3))
return lambdas
def stressInvariants(lambdas):
'''
computes stress invariants (i.e. eigenvalues) for a set of principal Cauchy stresses.
'''
Is=np.zeros(0,'d')
for i in xrange(np.shape(lambdas)[1]):
I = np.array([lambdas[0,i]+lambdas[1,i]+lambdas[2,i],\
lambdas[0,i]*lambdas[1,i]+lambdas[1,i]*lambdas[2,i]+lambdas[2,i]*lambdas[0,i],\
lambdas[0,i]*lambdas[1,i]*lambdas[2,i]])
Is = np.append(Is,I)
Is = Is.reshape(3,np.shape(lambdas)[1])
return Is
def invariant(sigmas):
s11,s22,s33,s12,s23,s31 = sigmas
I1 = s11 + s22 + s33
I2 = s11*s22 + s22*s33 + s33*s11 - s12**2 - s23**2 - s31**2
I3 = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22
return (I1,I2,I3)
def formatOutput(n, type='%-14.6f'):
return ''.join([type for i in xrange(n)])
def math_ln(x):
return np.log(x + 1.0e-32)
def sym6to33(sigma6):
''' Shape the symmetric stress tensor(6,1) into (3,3) '''
sigma33 = np.empty((3,3))
@ -98,9 +95,9 @@ class vonMises(object):
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, sigma0, ydata, sigmas):
return HosfordBasis(sigma0, 1.0,1.0,1.0, 2.0, sigmas)
return HosfordBasis(sigma0, (0.5,0.5,0.5), 2.0, sigmas)
def jac(self, sigma0, ydata, sigmas):
return HosfordBasis(sigma0, 1.0,1.0,1.0, 2.0, sigmas, Jac=True, nParas=1)
return HosfordBasis(sigma0, (0.5,0.5,0.5), 2.0, sigmas, Jac=True, nParas=1)
class Drucker(object):
'''
@ -131,26 +128,20 @@ class Hosford(object):
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (sigma0, a), ydata, sigmas):
return HosfordBasis(sigma0, 1.0,1.0,1.0, a, sigmas)
return HosfordBasis(sigma0, (0.5,0.5,0.5), a, sigmas)
def jac(self, (sigma0, a), ydata, sigmas):
return HosfordBasis(sigma0, 1.0,1.0,1.0, a, sigmas, Jac=True, nParas=2)
return HosfordBasis(sigma0, (0.5,0.5,0.5), a, sigmas, Jac=True, nParas=2)
class Hill1948(object):
'''
residuum of Hill 1948 quadratic yield criterion (eq. 2.48)
residuum of Hill 1948 quadratic yield criterion (eq. 2.48) Right
'''
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (F,G,H,L,M,N), ydata, sigmas):
r = F*(sigmas[1]-sigmas[2])**2.0 + G*(sigmas[2]-sigmas[0])**2.0 + H*(sigmas[0]-sigmas[1])**2.0\
+ 2.0*L*sigmas[4]**2.0 + 2.0*M*sigmas[5]**2.0 + 2.0*N*sigmas[3]**2.0 - 1.0
return r.ravel()/2.0
return Hill1948Basis((F,G,H,L,M,N),sigmas)
def jac(self, (F,G,H,L,M,N), ydata, sigmas):
jF=(sigmas[1]-sigmas[2])**2.0; jG=(sigmas[2]-sigmas[0])**2.0; jH=(sigmas[0]-sigmas[1])**2.0
jL=2.0*sigmas[4]**2.0; jM=2.0*sigmas[5]**2.0; jN=2.0*sigmas[3]**2.0
jaco = []
for jacv in zip(jF, jG, jH, jL, jM, jN): jaco.append(jacv)
return np.array(jaco)
return Hill1948Basis((F,G,H,L,M,N),sigmas, Jac=True)
class Hill1979(object):
'''
@ -159,9 +150,9 @@ class Hill1979(object):
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (f,g,h,a,b,c,m), ydata, sigmas):
return Hill1979Basis(self.stress0, f,g,h,a,b,c,m, sigmas)
return Hill1979Basis(self.stress0, (f,g,h,a,b,c),m, sigmas)
def jac(self, (f,g,h,a,b,c,m), ydata, sigmas):
return Hill1979Basis(self.stress0, f,g,h,a,b,c,m, sigmas, Jac=True)
return Hill1979Basis(self.stress0, (f,g,h,a,b,c),m, sigmas, Jac=True)
class generalHosford(object):
'''
@ -169,10 +160,10 @@ class generalHosford(object):
'''
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (sigma0, F, G, H, a), ydata, sigmas, nParas=5):
return HosfordBasis(sigma0, F, G, H, a, sigmas)
def jac(self, (sigma0, F, G, H, a), ydata, sigmas):
return HosfordBasis(sigma0, F,G,H, a, sigmas, Jac=True, nParas=5)
def fun(self, (F, G, H, a), ydata, sigmas, nParas=4):
return HosfordBasis(self.stress0, (F, G, H), a, sigmas)
def jac(self, (F, G, H, a), ydata, sigmas):
return HosfordBasis(self.stress0, (F, G, H), a, sigmas, Jac=True, nParas=4)
class Barlat1991iso(object):
'''
@ -181,9 +172,9 @@ class Barlat1991iso(object):
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (sigma0, m), ydata, sigmas):
return Barlat1991Basis(sigma0, 1.0,1.0,1.0,1.0,1.0,1.0, m, sigmas)
return Barlat1991Basis(sigma0, np.ones(6), m, sigmas)
def jac(self, (sigma0, m), ydata, sigmas):
return Barlat1991Basis(sigma0, 1.0,1.0,1.0,1.0,1.0,1.0, m, sigmas, Jac=True, nParas=2)
return Barlat1991Basis(sigma0, np.ones(6), m, sigmas, Jac=True, nParas=2)
class Barlat1991aniso(object):
'''
@ -191,10 +182,10 @@ class Barlat1991aniso(object):
'''
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (sigma0, a,b,c,f,g,h, m), ydata, sigmas):
return Barlat1991Basis(sigma0, a,b,c,f,g,h, m, sigmas)
def jac(self, (sigma0, a,b,c,f,g,h, m), ydata, sigmas):
return Barlat1991Basis(sigma0, a,b,c,f,g,h, m, sigmas, Jac=True, nParas=8)
def fun(self, (a,b,c,f,g,h, m), ydata, sigmas):
return Barlat1991Basis(self.stress0, (a,b,c,f,g,h), m, sigmas)
def jac(self, (a,b,c,f,g,h, m), ydata, sigmas):
return Barlat1991Basis(self.stress0, (a,b,c,f,g,h), m, sigmas, Jac=True, nParas=7)
class Yld200418p(object):
'''
@ -202,14 +193,14 @@ class Yld200418p(object):
'''
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (sigma0, c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m), ydata, sigmas):
return Yld200418pBasis(sigma0, c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m, sigmas)
def jac(self, (sigma0, c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m), ydata, sigmas):
return Yld200418pBasis(sigma0, c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m, sigmas, Jac=True)
def fun(self, (c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m), ydata, sigmas):
return Yld200418pBasis(self.stress0, (c12,c21,c23,c32,c31,c13,c44,c55,c66),
(d12,d21,d23,d32,d31,d13,d44,d55,d66), m, sigmas)
def jac(self, (c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m), ydata, sigmas):
return Yld200418pBasis(self.stress0, (c12,c21,c23,c32,c31,c13,c44,c55,c66),
(d12,d21,d23,d32,d31,d13,d44,d55,d66), m, sigmas, Jac=True)
class KarafillisBoyce(object):
'''
@ -219,12 +210,12 @@ class KarafillisBoyce(object):
self.stress0 = uniaxialStress
def fun(self, (c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,
b1, b2, a, alpha), ydata, sigmas):
return KarafillisBoyceBasis(self.stress0, c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,
b1, b2, a, alpha, sigmas)
return KarafillisBoyceBasis(self.stress0, (c11,c12,c13,c14,c15,c16),
(c21,c22,c23,c24,c25,c26), b1, b2, a, alpha, sigmas)
def jac(self, (c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,
b1, b2, a, alpha), ydata, sigmas):
return KarafillisBoyceBasis(self.stress0, c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,
b1, b2, a, alpha, sigmas, Jac=True)
return KarafillisBoyceBasis(self.stress0, (c11,c12,c13,c14,c15,c16),
(c21,c22,c23,c24,c25,c26), b1, b2, a, alpha, sigmas, Jac=True)
class BBC2003(object):
'''
@ -232,10 +223,10 @@ class BBC2003(object):
'''
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (sigma0, a,b,c, d,e,f,g, k), ydata, sigmas):
return BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas)
def jac(self, (sigma0, a,b,c, d,e,f,g, k), ydata, sigmas):
return BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas, Jac=True)
def fun(self, (a,b,c, d,e,f,g, k), ydata, sigmas):
return BBC2003Basis(self.stress0, a,b,c, d,e,f,g, k, sigmas)
def jac(self, (a,b,c, d,e,f,g, k), ydata, sigmas):
return BBC2003Basis(self.stress0, a,b,c, d,e,f,g, k, sigmas, Jac=True)
class BBC2005(object):
'''
@ -254,11 +245,11 @@ class Cazacu_Barlat2D(object):
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (a1,a2,a3,a4,b1,b2,b3,b4,b5,b10,c), ydata, sigmas):
return Cazacu_Barlat2DBasis(a1,a2,a3,a4,b1,b2,b3,b4,b5,b10,c,
self.stress0, sigmas)
return Cazacu_BarlatBasis(self.stress0, (a1,a2,a3,a4),
(b1,b2,b3,b4,b5,b10),c,sigmas, nDim = 2)
def jac(self, (a1,a2,a3,a4,b1,b2,b3,b4,b5,b10,c), ydata, sigmas):
return Cazacu_Barlat2DBasis(a1,a2,a3,a4,b1,b2,b3,b4,b5,b10,c,
self.stress0, sigmas,Jac=True)
return Cazacu_BarlatBasis(self.stress0, (a1,a2,a3,a4),
(b1,b2,b3,b4,b5,b10),c,sigmas,Jac=True, nDim = 2)
class Cazacu_Barlat3D(object):
'''
@ -266,11 +257,11 @@ class Cazacu_Barlat3D(object):
def __init__(self, uniaxialStress):
self.stress0 = uniaxialStress
def fun(self, (a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,c),ydata, sigmas):
return Cazacu_Barlat3DBasis(a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,c,
self.stress0, sigmas)
return Cazacu_BarlatBasis(self.stress0, (a1,a2,a3,a4,a5,a6),
(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11),c,sigmas)
def jac(self, (a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,c),ydata, sigmas):
return Cazacu_Barlat3DBasis(a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,c,
self.stress0, sigmas,Jac=True)
return Cazacu_BarlatBasis(self.stress0, (a1,a2,a3,a4,a5,a6),
(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11),c,sigmas,Jac=True)
class Vegter(object):
'''
Vegter yield criterion
@ -358,271 +349,147 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
vegter = Vegter(refPts, refNormals)
def Cazacu_Barlat3DBasis(a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,c,
sigma0,sigmas, Jac = False):
def Cazacu_BarlatBasis(sigma0,coeffa,coeffb,c,sigmas, Jac = False, nDim = 3):
'''
residuum of the 3D CazacuBarlat (CZ) yield criterion
residuum of the 3D CazacuBarlat (CB) yield criterion
'''
s11 = sigmas[0]; s22 = sigmas[1]; s33 = sigmas[2]
s12 = sigmas[3]; s23 = sigmas[4]; s31 = sigmas[5]
s123, s321 = s11*s22*s33, s12*s23*s31
s1_2, s2_2, s3_2 = s11**2, s22**2, s33**2
s1_3, s2_3, s3_3 = s11*s1_2, s22*s2_2, s33*s3_2
s12_2, s23_2, s31_2 = s12**2, s23**2, s31**2
d12_2, d23_2, d31_2 = (s11-s22)**2, (s22-s33)**2, (s33-s11)**2
s11,s22,s33,s12,s23,s31 = sigmas
if nDim == 2: s33=s23=s31 = np.zeros_like(s11)
s1_2, s2_2, s3_2, s12_2, s23_2, s31_2 = np.array([s11,s22,s33,s12,s23,s31])**2
s1_3, s2_3, s3_3, s123, s321 = s11*s1_2, s22*s2_2, s33*s3_2,s11*s22*s33, s12*s23*s31
d12,d23,d31 = s11-s22, s22-s33, s33-s11
jb1 = (s1_3 + 2.0*s3_3)/27.0 - s22*s1_2/9.0 - (s11+s22)*s3_2/9.0 + s123/4.5
jb2 = (s1_3 - s3_3)/27.0 - s33*s1_2/9.0 + s11 *s3_2/9.0
jb3 = (s2_3 - s3_3)/27.0 - s33*s2_2/9.0 + s22 *s3_2/9.0
jb4 = (s2_3 + 2.0*s3_3)/27.0 - s11*s2_2/9.0 - (s11+s22)*s3_2/9.0 + s123/4.5
J20 = ( a1*d12_2 + a2*d23_2 + a3*d31_2 )/6.0 + a4*s12_2 + a5*s23_2 + a6*s31_2
J30 = ( (b1 +b2 )*s1_3 + (b3 +b4 )*s2_3 + ( b1+b4-b2 + b1+b4-b3 )*s3_3 )/27.0- \
( (b1*s22+b2*s33)*s1_2 + (b3*s33+b4*s11)*s2_2 + ((b1+b4-b2)*s11 + (b1+b4-b3)*s22)*s3_2 )/9.0 + \
( (b1+b4)*s123/9.0 + b11*s321 )*2.0 - \
( ( 2.0*b9 *s22 - b8*s33 - (2.0*b9 -b8)*s11 )*s31_2 +
( 2.0*b10*s33 - b5*s22 - (2.0*b10-b5)*s11 )*s12_2 +
( (b6+b7)*s11 - b6*s22 - b7*s33 )*s23_2
)/3.0
jb5, jb10 = -d12*s12_2/3.0, -d31*s12_2/1.5
jb6, jb7 = -d12*s23_2/3.0, d31*s23_2/3.0
jb8, jb9 = d31*s31_2/3.0, d12*s31_2/1.5
jb11 = s321*2.0
if nDim == 3:
dJ2da = np.array([d12**2/6.0, d23**2/6.0, d31**2/6.0, s12_2,s23_2,s31_2])
dJ3db = np.array([jb1,jb2,jb3,jb4,jb5,jb6,jb7,jb8,jb9,jb10,jb11])
else: # plane stress
dJ2da = np.array([d12**2/6.0, s2_2/6.0, s1_2/6.0, s12_2])
dJ3db = np.array([jb1,jb2,jb3,jb4,jb5,jb10])
J20 = np.dot(coeffa,dJ2da)
J30 = np.dot(coeffb,dJ3db)
f0 = (J20**3 - c*J30**2)/18.0
r = f0**(1.0/6.0)*(3.0/sigma0)
if not Jac:
return (r - 1.0).ravel()
else:
drdf = r/f0/108.0
dj2 = drdf*3.0*J20**2.0
dj3 = -drdf*2.0*J30*c
jc = -drdf*J30**2
ja1,ja2,ja3 = dj2*d12_2/6.0, dj2*d23_2/6.0, dj2*d31_2/6.0
ja4,ja5,ja6 = dj2*s12_2, dj2*s23_2, dj2*s31_2
jb1 = dj3*( (s1_3 + 2.0*s3_3)/27.0 - s22*s1_2/9.0 - (s11+s22)*s3_2/9.0 + s123/4.5 )
jb2 = dj3*( (s1_3 - s3_3)/27.0 - s33*s1_2/9.0 + s11 *s3_2/9.0 )
jb3 = dj3*( (s2_3 - s3_3)/27.0 - s33*s2_2/9.0 + s22 *s3_2/9.0 )
jb4 = dj3*( (s2_3 + 2.0*s3_3)/27.0 - s11*s2_2/9.0 - (s11+s22)*s3_2/9.0 + s123/4.5 )
jb5, jb10 = dj3*(s22 - s11)*s12_2/3.0, dj3*(s11 - s33)*s12_2/3.0*2.0
jb6, jb7 = dj3*(s22 - s11)*s23_2/3.0, dj3*(s33 - s11)*s23_2/3.0
jb8, jb9 = dj3*(s33 - s11)*s31_2/3.0, dj3*(s11 - s22)*s31_2/3.0*2.0
jb11 = dj3*s321*2.0
jaco = []
for jacv in zip(ja1,ja2,ja3,ja4,ja5,ja6,jb1,jb2,jb3,jb4,jb5,jb6,jb7,jb8,jb9,jb10,jb11,jc):
jaco.append(jacv)
return np.array(jaco)
def Cazacu_Barlat2DBasis(a1,a2,a3,a4,b1,b2,b3,b4,b5,b10,c,
sigma0,sigmas, Jac = False):
'''
residuum of the 2D CazacuBarlat (CZ) yield criterion for plain stress
'''
s11 = sigmas[0]; s22 = sigmas[1]; s12 = sigmas[3]
s1_2, s2_2 = s11**2, s22**2
s1_3, s2_3 = s11*s1_2, s22*s2_2
s12_2 = s12**2
J20 = ( a1*(s11-s22)**2 + a2*s2_2 + a3*s1_2 )/6.0 + a4*s12_2
J30 = ( (b1+b2)*s1_3 + (b3+b4)*s2_3 )/27.0 - ( (b1*s11 + b4*s22)*s11*s22 )/9.0 + \
( b5*s22 + (2*b10-b5)*s11 )*s12_2/3.0
f0 = (J20**3 - c*J30**2)/18.0
r = f0**(1.0/6.0)*(3.0/sigma0)
if not Jac:
return (r - 1.0).ravel()
else:
drdf = r/f0/108.0
dj2 = drdf*3.0*J20**2.0
dj3 = -drdf*2.0*J30*c
jc = -drdf*J30**2
ja1,ja2,ja3,ja4 = dj2*(s11-s22)**2/6.0, dj2*s2_2/6.0, dj2*s1_2/6.0, dj2*s12_2
jb1, jb2 = s1_3/27.0 - s1_2*s22/9.0, s1_3/27.0
jb4, jb3 = s2_3/27.0 - s2_2*s11/9.0, s2_3/27.0
jb5, jb10= -s12_2*(s11 - s22)/3.0, s12_2*s11*2.0/3.0
jaco = []
for jacv in zip(ja1,ja2,ja3,ja4,jb1,jb2,jb3,jb4,jb5,jb10,jc):
jaco.append(jacv)
return np.array(jaco)
df = r/f0/108.0
return np.vstack((df*3.0*J20**2.0*dJ2da, -df*2.0*J30*c*dJ3db, -df*J30**2)).T
def DruckerBasis(sigma0, C_D, p, sigmas, Jac=False, nParas=2):
s11 = sigmas[0]; s22 = sigmas[1]; s33 = sigmas[2]
s12 = sigmas[3]; s23 = sigmas[4]; s31 = sigmas[5]
I1 = s11 + s22 + s33
I2 = s11*s22 + s22*s33 + s33*s11 - s12**2 - s23**2 - s31**2
I3 = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22
I1,I2,I3 = invariant(sigmas)
J2 = I1**2/3.0 - I2
J3 = I1**3/13.5 - I1*I2/3.0 + I3
left= J2**(3.0*p) - C_D*J3**(2.0*p); right = 3.0**(0.5)/sigma0
expo= 1.0/(6.0*p)
J2_3p = J2**(3.0*p); J3_2p = J3**(2.0*p)
left = J2_3p - C_D*J3_2p
r = left**(1.0/(6.0*p))*3.0**0.5/sigma0
if not Jac:
return (left**expo*right - 1.0).ravel()
return (r - 1.0).ravel()
else:
jaco = []
dfdl = expo*left**(expo-1.0)
js = -left**expo*right/sigma0
jC = -dfdl*J3**(2*p)*right
drdl = r/left/(6.0*p)
if nParas == 2:
for jacv in zip(js, jC): jaco.append(jacv)
return np.array(jaco)
return np.vstack((-r/sigma0, -drdl*J3_2p)).T
else:
ln = lambda x : np.log(x + 1.0e-32)
dldp = 3.0*J2**(3.0*p)*ln(J2) - 2.0*C_D*J3**(2.0*p)*ln(J3)
jp = dfdl*dldp*right + (left**expo)*ln(left)*expo/(-p)*right
for jacv in zip(js, jC, jp): jaco.append(jacv)
return np.array(jaco)
dldp = 3.0*J2_3p*math_ln(J2) - 2.0*C_D*J3_2p*math_ln(J3)
jp = drdl*dldp + r*math_ln(left)/(-6.0*p*p)
return np.vstack((-r/sigma0, -drdl*J3_2p, jp)).T
def Hill1979Basis(sigma0, f,g,h,a,b,c,m, sigmas, Jac=False):
def Hill1948Basis(coeff, sigmas, Jac=False):
s11,s22,s33,s12,s23,s31 = sigmas
jac = np.array([(s22-s33)**2,(s33-s11)**2,(s11-s22)**2, 2.0*s23**2,2.0*s31**2,2.0*s12**2])
if not Jac:
return (np.dot(coeff,jac)/2.0-0.5).ravel()
else:
return jac.T
s1,s2,s3 = principalStresses(sigmas)
d23 = s2-s3; d123 = 2.0*s1 - s2 - s3
d31 = s3-s1; d231 = 2.0*s2 - s3 - s1
d12 = s1-s2; d312 = 2.0*s3 - s1 - s2
d23s = d23**2; d123s = d123**2
d31s = d31**2; d231s = d231**2
d12s = d12**2; d312s = d312**2
m2 = m/2.0; mi = 1.0/m
base = f* d23s**m2 + g* d31s**m2 + h* d12s**m2 + \
a*d123s**m2 + b*d231s**m2 + c*d312s**m2
left = base**mi
r = left/sigma0
def Hill1979Basis(sigma0, coeff,m, sigmas, Jac=False):
s1,s2,s3 = principalStresses(sigmas)
diffs = np.array([s2-s3, s3-s1, s1-s2, 2.0*s1-s2-s3, 2.0*s2-s3-s1, 2.0*s3-s1-s2])**2
diffsm = diffs**(m/2.0)
base = np.dot(coeff,diffsm)
r = base**(1.0/m)/sigma0 #left = base**mi
if not Jac:
return (r-1.0).ravel()
else:
ln = lambda x : np.log(x + 1.0e-32)
drdb = r/base*mi
dbdm = ( f* d23s**m2*ln( d23s) + g* d31s**m2*ln( d31s) + h*d12s**m2*ln( d12s) +
a*d123s**m2*ln(d123s) + b*d231s**m2*ln(d231s) + c*d312s**m2*ln(d312s) )*0.5
jf = drdb*d23s**m2; ja = drdb*d123s**m2
jg = drdb*d31s**m2; jb = drdb*d231s**m2
jh = drdb*d12s**m2; jc = drdb*d312s**m2
jm = drdb*dbdm + r*ln(base)*(-mi*mi)
drdb = r/base/m
dbdm = np.dot(coeff,diffsm*math_ln(diffs)) #****0.5
jm = drdb*dbdm + r*math_ln(base)/(-m**2)
return np.vstack((drdb*diffsm, jm)).T
jaco = []
for jacv in zip(jf,jg,jh,ja,jb,jc,jm):
jaco.append(jacv)
return np.array(jaco)
def HosfordBasis(sigma0, F,G,H, a, sigmas, Jac=False, nParas=1):
def HosfordBasis(sigma0, coeff, a, sigmas, Jac=False, nParas=1):
'''
residuum of Hershey yield criterion (eq. 2.43, Y = sigma0)
'''
lambdas = principalStresses(sigmas)
diff23 = abs(lambdas[1,:] - lambdas[2,:])
diff31 = abs(lambdas[2,:] - lambdas[0,:])
diff12 = abs(lambdas[0,:] - lambdas[1,:])
base = F*diff23**a + G*diff31**a + H*diff12**a; expo = 1.0/a
left = base**expo
right = 2.0**expo*sigma0
s1,s2,s3 = principalStresses(sigmas)
diffs = np.abs(np.array([s2-s3, s3-s1, s1-s2]))
diffsm = diffs**a
base = np.dot(coeff,diffsm)
r = base**(1.0/a)/sigma0
if not Jac:
if nParas == 1: return (left - right).ravel()
else: return (left/right - 1.0).ravel()
return (r - 1.0).ravel()
else:
ones = np.ones(np.shape(sigmas)[1])
if nParas > 1:
ln = lambda x : np.log(x + 1.0e-32)
dbda = F*ln(diff23)*diff23**a + G*ln(diff31)*diff31**a + H*ln(diff12)*diff12**a
deda = -expo*expo
drda = sigma0*(2.0**expo)*ln(2.0)*deda
dldb = expo*left/base
jaco = []
if nParas == 1: # von Mises
return ones*(-2.0**0.5)
elif nParas == 2: # isotropic Hosford
js = ones*(-2.0**expo) # d[]/dsigma0
ja = dldb*dbda + left*ln(base)*deda - drda # d[]/da
for jacv in zip(js, ja):
jaco.append(jacv)
return np.array(jaco)
elif nParas == 5: # anisotropic Hosford
js = -left/right/sigma0 #ones*(-2.0**expo) # d[]/dsigma0
jF = dldb*diff23**a/right
jG = dldb*diff31**a/right
jH = dldb*diff12**a/right
ja =(dldb*dbda + left*ln(base)*deda)/right + left*(-right**(-2))*drda # d[]/da
for jacv in zip(js, jF,jG,jH,ja):
jaco.append(jacv)
return np.array(jaco)
def Barlat1991Basis(sigma0, a, b, c, f, g, h, m, sigmas, Jac=False, nParas=2):
if nParas == 1: # von Mises
return -r/sigma0
else:
dbda = np.dot(coeff,diffsm*math_ln(diffs))
dldb = r/base/a
ja = dldb*dbda + r*math_ln(base)/(-a**a)
if nParas == 2: # isotropic Hosford
return np.vstack((-r/sigma0, ja)).T
else: # anisotropic Hosford
return np.vstack((dldb*diffsm, ja)).T
def Barlat1991Basis(sigma0, coeff, m, sigmas, Jac=False, nParas=2):
'''
residuum of Barlat 1997 yield criterion
'''
cos = np.cos; sin = np.sin; pi = np.pi; abs = np.abs
dAda = sigmas[1] - sigmas[2]; A = a*dAda
dBdb = sigmas[2] - sigmas[0]; B = b*dBdb
dCdc = sigmas[0] - sigmas[1]; C = c*dCdc
dFdf = sigmas[4]; F = f*dFdf
dGdg = sigmas[5]; G = g*dGdg
dHdh = sigmas[3]; H = h*dHdh
cos = np.cos; sin = np.sin; pi = np.pi; abs = np.abs
s1,s2,s3,s4,s5,s6 = sigmas
dXdx = np.array([s2-s3,s3-s1,s1-s2,s5,s6,s4])
A,B,C,F,G,H = np.array(coeff)[:,None]*dXdx
I2 = (F*F + G*G + H*H)/3.0 + ((A-C)**2+(C-B)**2+(B-A)**2)/54.0
I3 = (C-B)*(A-C)*(B-A)/54.0 + F*G*H - \
( (C-B)*F*F + (A-C)*G*G + (B-A)*H*H )/6.0
theta = np.arccos(I3/I2**1.5)
phi1 = (2.0*theta + pi)/6.0
phi2 = (2.0*theta + pi*3.0)/6.0
phi3 = (2.0*theta + pi*5.0)/6.0
cos1 = 2.0*cos(phi1); absc1 = abs(cos1)
cos2 = 2.0*cos(phi2); absc2 = abs(cos2)
cos3 = 2.0*cos(phi3); absc3 = abs(cos3)
ratio= np.sqrt(3.0*I2)/sigma0; expo = 1.0/m
I2 = (F*F + G*G + H*H)/3.0+ ((A-C)**2+(C-B)**2+(B-A)**2)/54.0
I3 = (C-B)*(A-C)*(B-A)/54.0 + F*G*H - ((C-B)*F*F + (A-C)*G*G + (B-A)*H*H)/6.0
phi1 = np.arccos(I3/I2**1.5)/3.0 + pi/6.0; absc1 = 2.0*abs(cos(phi1))
phi2 = phi1 + pi/3.0; absc2 = 2.0*abs(cos(phi2))
phi3 = phi2 + pi/3.0; absc3 = 2.0*abs(cos(phi3))
left = ( absc1**m + absc2**m + absc3**m )/2.0
leftNorm = left**expo
r = ratio*leftNorm - 1.0
r = left**(1.0/m)*np.sqrt(3.0*I2)/sigma0
if not Jac:
return r.ravel()
return (r - 1.0).ravel()
else:
ln = lambda x : np.log(x + 1.0e-32)
jaco = []
dfdl = expo*leftNorm/left
js = -(r + 1.0)/sigma0
jm = (r+1.0)*ln(left)*(-expo*expo) + ratio*dfdl*0.5*(
absc1**m*ln(absc1) + absc2**m*ln(absc2) + absc3**m*ln(absc3) )
dfdl = r/left/m
jm = r*math_ln(left)/(-m**2) + dfdl*0.5*(
absc1**m*math_ln(absc1) + absc2**m*math_ln(absc2) + absc3**m*math_ln(absc3) )
if nParas == 2:
for jacv in zip(js, jm): jaco.append(jacv)
return np.array(jaco)
js = -(r + 1.0)/sigma0
return np.vstack((js,jm)).T
else:
dI2da = (2.0*A-B-C)*dAda/27.0
dI2db = (2.0*B-C-A)*dBdb/27.0
dI2dc = (2.0*C-A-B)*dCdc/27.0
dI2df = 2.0*F*dFdf/3.0
dI2dg = 2.0*G*dGdg/3.0
dI2dh = 2.0*H*dHdh/3.0
dI3da = dI2da*(B-C)/2.0 + (H**2 - G**2)*dAda/6.0
dI3db = dI2db*(C-A)/2.0 + (F**2 - H**2)*dBdb/6.0
dI3dc = dI2dc*(A-B)/2.0 + (G**2 - F**2)*dCdc/6.0
dI3df = ( (H*G + (B-C)) * F/3.0 )*dFdf
dI3dg = ( (F*H + (C-A)) * G/3.0 )*dGdg
dI3dh = ( (G*F + (A-B)) * H/3.0 )*dHdh
da,db,dc = (2.0*A-B-C)/18.0, (2.0*B-C-A)/18.0, (2.0*C-A-B)/18.0
dI2dx = np.array([da, db, dc, F,G,H])/1.5*dXdx
dI3dx = np.array([da*(B-C) + (H**2-G**2)/2.0, db*(C-A) + (F**2-H**2)/2.0, dc*(A-B) + (G**2-F**2)/2.0,
(H*G + (B-C))*F, (F*H + (C-A))*G, (G*F + (A-B))*H])/3.0*dXdx
darccos = -(1.0 - I3**2/I2**3)**(-0.5)
dthedI2 = darccos*I3*(-1.5)*I2**(-2.5)
dthedI3 = darccos*I2**(-1.5)
dc1dthe = -sin(phi1)/3.0
dc2dthe = -sin(phi2)/3.0
dc3dthe = -sin(phi3)/3.0
dfdc = ratio * dfdl * 0.5 * m
dfdc1 = dfdc* absc1**(expo-1.0)*np.sign(cos1)
dfdc2 = dfdc* absc2**(expo-1.0)*np.sign(cos2)
dfdc3 = dfdc* absc3**(expo-1.0)*np.sign(cos3)
dfdthe= (dfdc1*dc1dthe + dfdc2*dc2dthe + dfdc2*dc2dthe)*2.0
dfdI2 = dfdthe*dthedI2; dfdI3 = dfdthe*dthedI3
ja = dfdI2*dI2da + dfdI3*dI3da
jb = dfdI2*dI2db + dfdI3*dI3db
jc = dfdI2*dI2dc + dfdI3*dI3dc
jf = dfdI2*dI2df + dfdI3*dI3df
jg = dfdI2*dI2dg + dfdI3*dI3dg
jh = dfdI2*dI2dh + dfdI3*dI3dh
for jacv in zip(js,ja,jb,jc,jf,jg,jh,jm):
jaco.append(jacv)
return np.array(jaco)
dfdc = dfdl*0.5*m
dfdcos = lambda phi : dfdc*(2.0*abs(cos(phi)))**(1.0/m-1.0)*np.sign(cos(phi))*(-sin(phi)/1.5)
dfdthe= (dfdcos(phi1) + dfdcos(phi2) + dfdcos(phi3))
dfdI2 = dfdthe*darccos*I3*(-1.5)*I2**(-2.5); dfdI3 = dfdthe*darccos*I2**(-1.5)
return np.vstack((dfdI2*dI2dx + dfdI3*dI3dx, jm)).T
def BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas, Jac=False):
'''
@ -634,8 +501,10 @@ def BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas, Jac=False):
Gamma = M*s11 + N*s22
Psi = ( (P*s11 + Q*s22)**2 + s12**2*R )**0.5
l1 = b*Gamma + c*Psi; l2 = b*Gamma - c*Psi; l3 = 2.0*c*Psi
l1s = l1**2; l2s = l2**2; l3s = l3**2
l1 = b*Gamma + c*Psi; l1s = l1**2
l2 = b*Gamma - c*Psi; l2s = l2**2
l3 = 2.0*c*Psi; l3s = l3**2
left = a*l1s**k + a*l2s**k + (1-a)*l3s**k
sBar = left**(1.0/k2); r = sBar/sigma0 - 1.0
if not Jac:
@ -644,7 +513,7 @@ def BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas, Jac=False):
temp = (P*s11 + Q*s22)/Psi
dPsidP = temp*s11; dPsidQ = temp*s22; dPsidR = 0.5*s12**2/Psi
ln = lambda x : np.log(x + 1.0e-32)
jaco = []
expo = 0.5/k; k1 = k-1.0
dsBardl = expo*sBar/left/sigma0
@ -661,7 +530,6 @@ def BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas, Jac=False):
dldc = dldl1*Psi - dldl2*Psi + dldl3*2.0*Psi
dldk = a*ln(l1s)*l1s**k + a*ln(l2s)*l2s**k + (1-a)*ln(l3s)*l3s**k
js = -(r + 1.0)/sigma0
ja = dsBardl * dlda
jb = dsBardl * dldb
jc = dsBardl * dldc
@ -670,10 +538,7 @@ def BBC2003Basis(sigma0, a,b,c, d,e,f,g, k, sigmas, Jac=False):
jf = dsBardl *(dldGama*s22 + dldPsi*dPsidQ*(-0.5))
jg = dsBardl * dldPsi * dPsidR * 2.0*g
jk = dsBardl * dldk + dsBarde * dedk
for jacv in zip(js,ja,jb,jc,jd, je, jf,jg,jk):
jaco.append(jacv)
return np.array(jaco)
return np.vstack((ja,jb,jc,jd, je, jf,jg,jk)).T
def BBC2005Basis(sigma0, a,b,L, M, N, P, Q, R, k, sigmas, Jac=False):
'''
@ -693,7 +558,6 @@ def BBC2005Basis(sigma0, a,b,L, M, N, P, Q, R, k, sigmas, Jac=False):
return r.ravel()
else:
ln = lambda x : np.log(x + 1.0e-32)
jaco = []
expo = 0.5/k; k1 = k-1.0
dsBardl = expo*sBar/left/sigma0
@ -702,7 +566,7 @@ def BBC2005Basis(sigma0, a,b,L, M, N, P, Q, R, k, sigmas, Jac=False):
dldl2 = a*k*(l2s**k1)*(2.0*l2)
dldl3 = b*k*(l3s**k1)*(2.0*l3)
dldl4 = b*k*(l4s**k1)*(2.0*l4)
dldLambda = dldl1 + dldl2 + dldl3 + dldl4
dldGama = dldl1 - dldl2
dldPsi = dldl3 - dldl4
@ -711,28 +575,15 @@ def BBC2005Basis(sigma0, a,b,L, M, N, P, Q, R, k, sigmas, Jac=False):
temp = (Q*s11 - R*s22)/Psi
dPsidQ = s11*temp; dPsidR = -s22*temp
dldk = a*ln(l1s)*l1s**k + a*ln(l2s)*l2s**k + b*ln(l3s)*l3s**k + b*ln(l4s)*l4s**k
ja = dsBardl * (l1s**k + l2s**k)
jb = dsBardl * (l3s**k + l4s**k)
jL = dsBardl * dldGama*s11
jM = dsBardl * dldGama*s22
jN = dsBardl * dldLambda*dLambdadN
jP = dsBardl * dldLambda*dLambdadP
jQ = dsBardl * dldPsi*dPsidQ
jR = dsBardl * dldPsi*dPsidR
jk = dsBardl * dldk + dsBarde * dedk
for jacv in zip(ja,jb,jL,jM, jN, jP,jQ,jR,jk):
jaco.append(jacv)
return np.array(jaco)
J = dsBardl * np.array( [
l1s**k+l2s**k, l3s**k+l4s**k,dldGama*s11,dldGama*s22,dldLambda*dLambdadN,
dldLambda*dLambdadP, dldPsi*dPsidQ, dldPsi*dPsidR, dldk+dsBarde*dedk ])
return np.vstack(J).T
def principalStress(p):
sin = np.sin; cos = np.cos
s11 = p[0]; s22 = p[1]; s33 = p[2]
s12 = p[3]; s23 = p[4]; s31 = p[5]
I1 = s11 + s22 + s33
I2 = s11*s22 + s22*s33 + s33*s11 - s12**2 - s23**2 - s31**2
I3 = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22
I1,I2,I3 = invariant(p)
third = 1.0/3.0
I1s3I2= (I1**2 - 3.0*I2)**0.5
@ -741,12 +592,11 @@ def principalStress(p):
cs = 0.5*numer*denom
phi = np.arccos(cs)/3.0
t1 = I1/3.0; t2 = 2.0/3.0*I1s3I2
S = np.array( [t1 + t2*cos(phi), t1+t2*cos(phi+np.pi*2.0/3.0), t1+t2*cos(phi+np.pi*4.0/3.0)])
return S, np.array([I1,I2,I3])
return np.array( [t1 + t2*cos(phi), t1+t2*cos(phi+np.pi*2.0/3.0), t1+t2*cos(phi+np.pi*4.0/3.0)])
def principalStrs_Der(p, Invariant, s1, s2, s3, s4, s5, s6, Karafillis=False):
def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), Karafillis=False):
sin = np.sin; cos = np.cos
I1 = Invariant[0,:]; I2 = Invariant[1,:]; I3 = Invariant[2,:]
I1,I2,I3 = invariant(p)
third = 1.0/3.0
I1s3I2= (I1**2 - 3.0*I2)**0.5
@ -771,156 +621,96 @@ def principalStrs_Der(p, Invariant, s1, s2, s3, s4, s5, s6, Karafillis=False):
dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3
# calculate the derivation of principal stress with regards to the anisotropic coefficients
one = np.ones_like(p[0]); zero = np.zeros_like(p[0])
dIdp = np.array([ [one, one, one, zero, zero, zero],
[p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]],
[p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2,
-2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]]
])
one = np.ones_like(s1); zero = np.zeros_like(s1); dim = len(s1)
dIdp = np.array([[one, one, one, zero, zero, zero],
[p[1]+p[2], p[2]+p[0], p[0]+p[1], -2.0*p[3], -2.0*p[4], -2.0*p[5]],
[p[1]*p[2]-p[4]**2, p[2]*p[0]-p[5]**2, p[0]*p[1]-p[3]**2,
-2.0*p[3]*p[2]+2.0*p[4]*p[5], -2.0*p[4]*p[0]+2.0*p[5]*p[3], -2.0*p[5]*p[1]+2.0*p[3]*p[4]] ])
if Karafillis:
dSdp = np.empty_like(dIdp)
dSdc = np.empty_like(dIdp)
zero = np.zeros_like(s1)
dpdc = np.array([[zero,s2-s3,s3-s2], [s1-s3,zero,s3-s1], [s1-s2,s2-s1,zero]])
for i in xrange(3):
for j in xrange(6):
dSdp[i,j] = dSdI[i,0]*dIdp[0,j]+dSdI[i,1]*dIdp[1,j]+dSdI[i,2]*dIdp[2,j]
for j in xrange(3):
dSdc[i,j] = (dSdp[i,0]*dpdc[j,0]+dSdp[i,1]*dpdc[j,1]+dSdp[i,2]*dpdc[j,2])/3.0
dSdc[i,3:6] = dSdp[i,3]*s4,dSdp[i,4]*s5,dSdp[i,5]*s6
return dSdc
dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in xrange(dim)]).T
return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i].T).T/3.0 for i in xrange(dim)]).T,
np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(dim,3,3).T), axis=1)
else:
dIdc = np.empty([3,9,len(s1)])
dSdc = np.empty_like(dIdc)
for i in xrange(3):
dIdc[i]=np.array([dIdp[i,0]*(-s2), dIdp[i,1]*(-s1), dIdp[i,1]*(-s3),
dIdp[i,2]*(-s2), dIdp[i,2]*(-s1), dIdp[i,0]*(-s3),
dIdp[i,3]* s4, dIdp[i,4]* s5, dIdp[i,5]* s6 ])
for i in xrange(3):
for j in xrange(9):
dSdc[i,j] = dSdI[i,0]*dIdc[0,j]+dSdI[i,1]*dIdc[1,j]+dSdI[i,2]*dIdc[2,j]
return dSdc
def Yld200418pBasis(sigma0, c12,c21,c23,c32,c31,c13,c44,c55,c66,
d12,d21,d23,d32,d31,d13,d44,d55,d66, m, sigmas, Jac=False):
dIdc=np.array([[-dIdp[i,0]*s2, -dIdp[i,1]*s1, -dIdp[i,1]*s3,
-dIdp[i,2]*s2, -dIdp[i,2]*s1, -dIdp[i,0]*s3,
dIdp[i,3]*s4, dIdp[i,4]*s5, dIdp[i,5]*s6 ] for i in xrange(3)])
return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in xrange(dim)]).T
def Yld200418pBasis(sigma0, C, D, m, sigmas, Jac=False):
'''
C: c12,c21,c23,c32,c13,c31,c44,c55,c66
D: d12,d21,d23,d32,d31,d13,d44,d55,d66
'''
sv = (sigmas[0] + sigmas[1] + sigmas[2])/3.0
s1 = sigmas[0]-sv; s2 = sigmas[1]-sv; s3 = sigmas[2]-sv
s4 = sigmas[3]; s5 = sigmas[4]; s6 = sigmas[5]
ys = lambda s1,s2,s3,s4,s5,s6,c12,c21,c23,c32,c13,c31,c44,c55,c66: np.array( [
-c12*s2-c13*s3, -c21*s1-c23*s3, -c31*s1-c32*s2, c44*s4, c55*s5, c66*s6 ])
p = ys(s1,s2,s3,s4,s5,s6,c12,c21,c23,c32,c13,c31,c44,c55,c66)
q = ys(s1,s2,s3,s4,s5,s6,d12,d21,d23,d32,d13,d31,d44,d55,d66)
sdev = np.vstack((sigmas[0:3]-sv,sigmas[3:6]))
ys = lambda sdev, C: np.array([-C[0]*sdev[1]-C[5]*sdev[2], -C[1]*sdev[0]-C[2]*sdev[2],
-C[4]*sdev[0]-C[3]*sdev[1], C[6]*sdev[3],C[7]*sdev[4], C[8]*sdev[5]])
p,q = ys(sdev, C), ys(sdev, D)
pLambdas, qLambdas = principalStress(p), principalStress(q) # no sort
plambdas, pInvariant = principalStress(p) # no sort
qlambdas, qInvariant = principalStress(q) # no sort
P1 = plambdas[0,:]; P2 = plambdas[1,:]; P3 = plambdas[2,:]
Q1 = qlambdas[0,:]; Q2 = qlambdas[1,:]; Q3 = qlambdas[2,:]
m2 = m/2.0; m1 = 1.0/m; m21 = m2-1.0
P1Q1s = (P1-Q1)**2; P1Q2s = (P1-Q2)**2; P1Q3s = (P1-Q3)**2
P2Q1s = (P2-Q1)**2; P2Q2s = (P2-Q2)**2; P2Q3s = (P2-Q3)**2
P3Q1s = (P3-Q1)**2; P3Q2s = (P3-Q2)**2; P3Q3s = (P3-Q3)**2
phi= P1Q1s**m2 + P1Q2s**m2 + P1Q3s**m2 + \
P2Q1s**m2 + P2Q2s**m2 + P2Q3s**m2 + \
P3Q1s**m2 + P3Q2s**m2 + P3Q3s**m2
m2 = m/2.0; m1 = 1.0/m; m21 = m2-1.0; x3 = xrange(3); dim = len(sv)
PiQj = np.array([(pLambdas[i,:]-qLambdas[j,:]) for i in x3 for j in x3])
QiPj = np.array([(qLambdas[i,:]-pLambdas[j,:]) for i in x3 for j in x3]).reshape(3,3,dim)
PiQjs = PiQj**2
phi = np.sum(PiQjs**m2,axis=0)
r = (0.25*phi)**m1/sigma0 - 1.0
if not Jac:
return r.ravel()
else:
ln = lambda x : np.log(x + 1.0e-32)
drdphi = (r+1.0)*m1/phi
dphidm =( (P1Q1s**m2)*ln(P1Q1s) + (P1Q2s**m2)*ln(P1Q2s) + (P1Q3s**m2)*ln(P1Q3s) +
(P2Q1s**m2)*ln(P2Q1s) + (P2Q2s**m2)*ln(P2Q2s) + (P2Q3s**m2)*ln(P2Q3s) +
(P3Q1s**m2)*ln(P3Q1s) + (P3Q2s**m2)*ln(P3Q2s) + (P3Q3s**m2)*ln(P3Q3s) )*0.5
jm = drdphi*dphidm + (r+1.0)*ln(0.25*phi)*(-m1*m1)
dphidm = np.sum(PiQjs**m2*math_ln(PiQjs),axis=0)*0.5
dPdc, dQdd = principalStrs_Der(p, sdev), principalStrs_Der(q, sdev)
PiQjs3d = (PiQjs**m21).reshape(3,3,dim)
dphidP = -m*np.array([np.diag(np.dot(PiQjs3d[:,:,i], QiPj [:,:,i])) for i in xrange(dim)]).T
dphidQ = m*np.array([np.diag(np.dot(QiPj [:,:,i], PiQjs3d[:,:,i])) for i in xrange(dim)]).T
dPdc = principalStrs_Der(p, pInvariant, s1,s2,s3,s4,s5,s6)
dQdd = principalStrs_Der(q, qInvariant, s1,s2,s3,s4,s5,s6)
dphidP = m*np.array([ P1Q1s**m21*(P1-Q1) + P1Q2s**m21*(P1-Q2) + P1Q3s**m21*(P1-Q3),
P2Q1s**m21*(P2-Q1) + P2Q2s**m21*(P2-Q2) + P2Q3s**m21*(P2-Q3),
P3Q1s**m21*(P3-Q1) + P3Q2s**m21*(P3-Q2) + P3Q3s**m21*(P3-Q3) ])
dphidQ = m*np.array([ P1Q1s**m21*(Q1-P1) + P2Q1s**m21*(Q1-P2) + P3Q1s**m21*(Q1-P3),
P1Q2s**m21*(Q2-P1) + P2Q2s**m21*(Q2-P2) + P3Q2s**m21*(Q2-P3),
P1Q3s**m21*(Q3-P1) + P2Q3s**m21*(Q3-P2) + P3Q3s**m21*(Q3-P3)])
jc = drdphi*(dphidP[0]*dPdc[0]+dphidP[1]*dPdc[1]+dphidP[2]*dPdc[2])
jd = drdphi*(dphidQ[0]*dQdd[0]+dphidQ[1]*dQdd[1]+dphidQ[2]*dQdd[2])
jm = drdphi*dphidm + (r+1.0)*math_ln(0.25*phi)*(-m1*m1)
jc = drdphi*np.sum([dphidP[i]*dPdc[i] for i in x3],axis=0)
jd = drdphi*np.sum([dphidQ[i]*dQdd[i] for i in x3],axis=0)
return np.vstack((jc,jd, jm)).T
def KarafillisBoyceBasis(sigma0, c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,
b1, b2, a, alpha , sigmas, Jac=False):
s1 = sigmas[0]; s2 = sigmas[1]; s3 = sigmas[2]
s4 = sigmas[3]; s5 = sigmas[4]; s6 = sigmas[5]
def KarafillisBoyceBasis(sigma0, C1,C2, b1, b2, a, alpha , sigmas, Jac=False):
ks = lambda (s1,s2,s3,s4,s5,s6),(c1,c2,c3,c4,c5,c6): np.array( [
((c2+c3)*s1-c3*s2-c2*s3)/3.0, ((c3+c1)*s2-c3*s1-c1*s3)/3.0,
((c1+c2)*s3-c2*s1-c1*s2)/3.0, c4*s4, c5*s5, c6*s6 ])
p,q = ks(sigmas, C1), ks(sigmas, C2)
plambdas,qlambdas = principalStress(p), principalStress(q)
b1i,b2i,ai,rb2 = 1.0/b1, 1.0/b2, 1.0/a, 3.0**b2/(2.0**b2+2.0)
ks = lambda s1,s2,s3,s4,s5,s6,c11,c12,c13,c14,c15,c16: np.array( [
((c12+c13)*s1-c13*s2-c12*s3)/3.0, ((c13+c11)*s2-c13*s1-c11*s3)/3.0,
((c11+c12)*s3-c12*s1-c11*s2)/3.0, c14*s4, c15*s5, c16*s6 ])
p = ks(s1,s2,s3,s4,s5,s6,c11,c12,c13,c14,c15,c16)
q = ks(s1,s2,s3,s4,s5,s6,c21,c22,c23,c24,c25,c26)
difP = np.array([plambdas[1]-plambdas[2], plambdas[2]-plambdas[0], plambdas[0]-plambdas[1]])
difPs = difP**2; difPb1 = difPs**(b1/2.0-1.0)
Qs = qlambdas**2
plambdas, pInvariant = principalStress(p)
qlambdas, qInvariant = principalStress(q)
P1 = plambdas[0,:]; P2 = plambdas[1,:]; P3 = plambdas[2,:]
Q1 = qlambdas[0,:]; Q2 = qlambdas[1,:]; Q3 = qlambdas[2,:]
b1h = b1/2.0; b1h1 = b1h-1.0; b2h = b2/2.0; b2h1 = b2h-1.0
b1i = 1.0/b1; b2i = 1.0/b2
ai = 1.0/a
P2P3s = (P2-P3)**2; Q1s = Q1**2
P3P1s = (P3-P1)**2; Q2s = Q2**2
P1P2s = (P1-P2)**2; Q3s = Q3**2
phi10 = P2P3s**b1h + P3P1s**b1h + P1P2s**b1h
phi20 = Q1s**b2h+Q2s**b2h+Q3s**b2h; rb2 = 3.0**b2/(2.0**b2+2.0)
phi1 = (0.5*phi10)**b1i
phi2 = (rb2*phi20)**b2i
Stress = alpha*phi1**a + (1.0-alpha)*phi2**a; EqStress = Stress**ai
r = EqStress/sigma0 - 1.0
phi10, phi20 = np.sum(difPs**(b1/2.0),axis = 0), np.sum(Qs**(b2/2.0),axis = 0)
phi1, phi2 = (0.5*phi10)**b1i, (rb2*phi20)**b2i
Stress = alpha*phi1**a + (1.0-alpha)*phi2**a
r = Stress**ai/sigma0
if not Jac:
return r.ravel()
return (r-1.0).ravel()
else:
ln = lambda x : np.log(x + 1.0e-32)
drds = r*ai/Stress
dsda = alpha*phi1**a*math_ln(phi1) + (1.0-alpha)*phi2**a*math_ln(phi2)
drds = (r+1.0)*ai/Stress
drdphi1 = drds* alpha *a*phi1**(a-1.0)
drdphi2 = drds*(1.0-alpha)*a*phi2**(a-1.0)
dsda = alpha*phi1**a*ln(phi1) + (1.0-alpha)*phi2**a*ln(phi2)
dphi1dP = phi1/phi10*np.array([ -difPb1[1]*difP[1]+difPb1[2]*difP[2],
difPb1[0]*difP[0]-difPb1[2]*difP[2], difPb1[1]*difP[1]-difPb1[0]*difP[0]])
dphi2dQ = phi2/phi20*Qs*qlambdas*(b2/2.0-1.0)
dPdc = principalStrs_Der(p, sigmas, Karafillis=True)
dQdc = principalStrs_Der(q, sigmas, Karafillis=True)
dphi10db1 = np.sum(difPs**(b1/2.0)*math_ln(difPs), axis=0)*0.5
dphi20db2 = np.sum( Qs**(b2/2.0)*math_ln( Qs), axis=0)*0.5
dphi1dphi10 = phi1/phi10/b1; dphi2dphi20 = phi2/phi20/b2
dphi1dP = np.array([ dphi1dphi10*b1*( P3P1s**b1h1*(P1-P3) + P1P2s**b1h1*(P1-P2)),
dphi1dphi10*b1*( P2P3s**b1h1*(P2-P3) + P1P2s**b1h1*(P2-P1)),
dphi1dphi10*b1*( P3P1s**b1h1*(P3-P1) + P2P3s**b1h1*(P3-P2)) ])
dphi2dQ = np.array([ dphi2dphi20*b2*Q1s*b2h1*Q1,
dphi2dphi20*b2*Q2s*b2h1*Q2,
dphi2dphi20*b2*Q3s*b2h1*Q3 ])
dPdc= principalStrs_Der(p, pInvariant, s1,s2,s3,s4,s5,s6, Karafillis=True)
dQdc= principalStrs_Der(q, qInvariant, s1,s2,s3,s4,s5,s6, Karafillis=True)
dphi10db1 = ( (P2P3s**b1h)*ln(P2P3s)+(P3P1s**b1h)*ln(P3P1s)+(P1P2s**b1h)*ln(P1P2s) )*0.5
dphi20db2 = ( (P2P3s**b1h)*ln(P2P3s)+(P3P1s**b1h)*ln(P3P1s)+(P1P2s**b1h)*ln(P1P2s) )*0.5
drb2db2 = rb2*ln(3.0) - rb2*ln(2.0)/(1.0+2.0**(1.0-b2))
dphi1db1 = phi1*ln(phi10)*(-b1i*b1i) + b1i*phi1/(0.5*phi10)* 0.5*dphi10db1
dphi2db2 = phi2*ln(phi20)*(-b2i*b2i) + b2i*phi2/(rb2*phi20)*(rb2*dphi20db2 + drb2db2*phi20)
ja = drds*dsda - (r+1.0)*ln(Stress)/a/a #drda
jb1 = drds * ( alpha *a*phi1**(a-1)) * dphi1db1
jb2 = drds * ((1.0-alpha)*a*phi2**(a-1)) * dphi2db2
drb2db2 = rb2*math_ln(3.0) - rb2*math_ln(2.0)/(1.0+2.0**(1.0-b2))
dphi1db1 = phi1*math_ln(phi10)*(-b1i*b1i) + b1i*phi1/(0.5*phi10)* 0.5*dphi10db1
dphi2db2 = phi2*math_ln(phi20)*(-b2i*b2i) + b2i*phi2/(rb2*phi20)*(rb2*dphi20db2 + drb2db2*phi20)
ja = drds*dsda - r*math_ln(Stress)/a/a #drda
jb1 = dphi1db1*(drds*a*phi1**(a-1)*alpha )
jb2 = dphi2db2*(drds*a*phi2**(a-1)*(1.0-alpha))
jc1 = np.sum([dphi1dP[i]*dPdc[i] for i in xrange(3)],axis=0)*drds*a*phi1**(a-1.0)*alpha
jc2 = np.sum([dphi2dQ[i]*dQdc[i] for i in xrange(3)],axis=0)*drds*a*phi2**(a-1.0)*(1.0-alpha)
jalpha = drds * (phi1**a - phi2**a)
jc1 = drdphi1*(dphi1dP[0]*dPdc[0]+dphi1dP[1]*dPdc[1]+dphi1dP[2]*dPdc[2])
jc2 = drdphi2*(dphi2dQ[0]*dQdc[0]+dphi2dQ[1]*dQdc[1]+dphi2dQ[2]*dQdc[2])
return np.vstack((jc1,jc2,jb1,jb2,ja,jalpha)).T