* in nonlocal model: dislocation flux now with valid description also for large angle grain boundaries; transfer of dislocations from one slip system to the other according to new variable "constitutive_nonlocal_compatibility" which depends on the angle between slip plane normals and slip directions and is updated once per cycle in function "crystallite_orientations"
* reactivated debugging functionality for "non-standard" integration methods
This commit is contained in:
parent
efd92d9b51
commit
724960686f
|
@ -403,7 +403,7 @@ return
|
|||
endfunction
|
||||
|
||||
|
||||
subroutine constitutive_microstructure(Temperature,Tstar_v,Fe,Fp,disorientation,ipc,ip,el)
|
||||
subroutine constitutive_microstructure(Temperature,Tstar_v,Fe,Fp,ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* This function calculates from state needed variables *
|
||||
!* INPUT: *
|
||||
|
@ -432,7 +432,6 @@ integer(pInt), intent(in) :: ipc,ip,el
|
|||
real(pReal), intent(in) :: Temperature
|
||||
real(pReal), dimension(6) :: Tstar_v
|
||||
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: Fe, Fp
|
||||
real(pReal), dimension(4,mesh_maxNipNeighbors), intent(in) :: disorientation
|
||||
|
||||
select case (phase_constitution(material_phase(ipc,ip,el)))
|
||||
|
||||
|
@ -449,7 +448,7 @@ real(pReal), dimension(4,mesh_maxNipNeighbors), intent(in) :: disorientation
|
|||
call constitutive_dislotwin_microstructure(Temperature,constitutive_state,ipc,ip,el)
|
||||
|
||||
case (constitutive_nonlocal_label)
|
||||
call constitutive_nonlocal_microstructure(constitutive_state, Temperature, Tstar_v, Fe, Fp, disorientation, ipc, ip, el)
|
||||
call constitutive_nonlocal_microstructure(constitutive_state, Temperature, Tstar_v, Fe, Fp, ipc, ip, el)
|
||||
|
||||
end select
|
||||
|
||||
|
@ -509,7 +508,7 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar, Tstar_v, Temperature, ip
|
|||
endsubroutine
|
||||
|
||||
|
||||
subroutine constitutive_collectDotState(Tstar_v, subTstar0_v, Fe, Fp, Temperature, disorientation, subdt, ipc, ip, el)
|
||||
subroutine constitutive_collectDotState(Tstar_v, subTstar0_v, Fe, Fp, Temperature, subdt, ipc, ip, el)
|
||||
!*********************************************************************
|
||||
!* This subroutine contains the constitutive equation for *
|
||||
!* calculating the rate of change of microstructure *
|
||||
|
@ -548,8 +547,6 @@ implicit none
|
|||
integer(pInt), intent(in) :: ipc, ip, el
|
||||
real(pReal), intent(in) :: Temperature, &
|
||||
subdt
|
||||
real(pReal), dimension(4,mesh_maxNipNeighbors), intent(in) :: &
|
||||
disorientation
|
||||
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
||||
Fe, &
|
||||
Fp
|
||||
|
@ -579,7 +576,7 @@ select case (phase_constitution(material_phase(ipc,ip,el)))
|
|||
constitutive_dotState(ipc,ip,el)%p = constitutive_dislotwin_dotState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
|
||||
|
||||
case (constitutive_nonlocal_label)
|
||||
call constitutive_nonlocal_dotState(constitutive_dotState, Tstar_v, subTstar0_v, Fe, Fp, Temperature, disorientation, subdt, &
|
||||
call constitutive_nonlocal_dotState(constitutive_dotState, Tstar_v, subTstar0_v, Fe, Fp, Temperature, subdt, &
|
||||
constitutive_state, constitutive_subState0, constitutive_relevantState, subdt, ipc, ip, el)
|
||||
|
||||
end select
|
||||
|
|
|
@ -81,6 +81,8 @@ real(pReal), dimension(:,:), allocatable :: constitutive_nonlocal_
|
|||
constitutive_nonlocal_interactionSlipSlip ! coefficients for slip-slip interaction for each interaction type and instance
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: constitutive_nonlocal_v, & ! dislocation velocity
|
||||
constitutive_nonlocal_rhoDotFlux ! dislocation convection term
|
||||
real(pReal), dimension(:,:,:,:,:,:), allocatable :: constitutive_nonlocal_compatibility, & ! slip system compatibility between me and my neighbors
|
||||
constitutive_nonlocal_transmissivity ! transmissivity between me and my neighbors
|
||||
real(pReal), dimension(:,:,:), allocatable :: constitutive_nonlocal_forestProjectionEdge, & ! matrix of forest projections of edge dislocations for each instance
|
||||
constitutive_nonlocal_forestProjectionScrew, & ! matrix of forest projections of screw dislocations for each instance
|
||||
constitutive_nonlocal_interactionMatrixSlipSlip ! interaction matrix of the different slip systems for each instance
|
||||
|
@ -116,7 +118,8 @@ use IO, only: IO_lc, &
|
|||
IO_intValue, &
|
||||
IO_error
|
||||
use mesh, only: mesh_NcpElems, &
|
||||
mesh_maxNips
|
||||
mesh_maxNips, &
|
||||
FE_maxNipNeighbors
|
||||
use material, only: homogenization_maxNgrains, &
|
||||
phase_constitution, &
|
||||
phase_constitutionInstance, &
|
||||
|
@ -422,6 +425,12 @@ constitutive_nonlocal_v = 0.0_pReal
|
|||
allocate(constitutive_nonlocal_rhoDotFlux(maxTotalNslip, 8, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
|
||||
constitutive_nonlocal_rhoDotFlux = 0.0_pReal
|
||||
|
||||
allocate(constitutive_nonlocal_compatibility(maxTotalNslip, 2, maxTotalNslip, FE_maxNipNeighbors, mesh_maxNips, mesh_NcpElems))
|
||||
constitutive_nonlocal_compatibility = 0.0_pReal
|
||||
|
||||
allocate(constitutive_nonlocal_transmissivity(maxTotalNslip, 2, maxTotalNslip, FE_maxNipNeighbors, mesh_maxNips, mesh_NcpElems))
|
||||
constitutive_nonlocal_transmissivity = 0.0_pReal
|
||||
|
||||
do i = 1,maxNinstance
|
||||
|
||||
myStructure = constitutive_nonlocal_structure(i) ! lattice structure of this instance
|
||||
|
@ -742,7 +751,7 @@ endfunction
|
|||
!*********************************************************************
|
||||
!* calculates quantities characterizing the microstructure *
|
||||
!*********************************************************************
|
||||
subroutine constitutive_nonlocal_microstructure(state, Temperature, Tstar_v, Fe, Fp, disorientation, g, ip, el)
|
||||
subroutine constitutive_nonlocal_microstructure(state, Temperature, Tstar_v, Fe, Fp, g, ip, el)
|
||||
|
||||
use prec, only: pReal, &
|
||||
pInt, &
|
||||
|
@ -769,6 +778,7 @@ use mesh, only: mesh_NcpElems, &
|
|||
mesh_ipCenterOfGravity
|
||||
use material, only: homogenization_maxNgrains, &
|
||||
material_phase, &
|
||||
phase_localConstitution, &
|
||||
phase_constitutionInstance
|
||||
use lattice, only: lattice_Sslip, &
|
||||
lattice_Sslip_v, &
|
||||
|
@ -791,8 +801,6 @@ real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)
|
|||
Fp ! plastic deformation gradient
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Tstar_v ! 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
real(pReal), dimension(4,mesh_maxNipNeighbors), intent(in) :: &
|
||||
disorientation ! crystal disorientation between me and my neighbor as quaternion
|
||||
|
||||
|
||||
!*** input/output variables
|
||||
|
@ -825,6 +833,8 @@ real(pReal), dimension(3,3) :: sigma, & ! dislocation stre
|
|||
invPositionDifference ! inverse of a 3x3 matrix containing finite differences of pairs of position vectors
|
||||
real(pReal), dimension(6) :: transmissivity, & ! transmissivity factor for each interface
|
||||
Tdislocation_v ! dislocation stress (resulting from the neighboring excess dislocation densities) as 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
real(pReal), dimension(2,constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
rhoExcess ! central excess density
|
||||
real(pReal), dimension(6,2,constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el)))) :: &
|
||||
neighboring_rhoExcess ! excess density for each neighbor, dislo character and slip system
|
||||
real(pReal), dimension(6,3) :: neighboring_position ! position vector of each neighbor when seen from the centreal material point's lattice frame
|
||||
|
@ -879,28 +889,49 @@ F = math_mul33x33(Fe(:,:,g,ip,el), Fp(:,:,g,ip,el))
|
|||
invFe = math_inv3x3(Fe(:,:,g,ip,el))
|
||||
nu = constitutive_nonlocal_nu(myInstance)
|
||||
|
||||
forall (s = 1:ns, c = 1:2) &
|
||||
rhoExcess(c,s) = state(g,ip,el)%p((2*c-2)*ns+s) + abs(state(g,ip,el)%p((2*c+2)*ns+s)) &
|
||||
- state(g,ip,el)%p((2*c-1)*ns+s) - abs(state(g,ip,el)%p((2*c+3)*ns+s))
|
||||
do n = 1,6
|
||||
|
||||
neighboring_el = mesh_ipNeighborhood(1,n,ip,el)
|
||||
neighboring_ip = mesh_ipNeighborhood(2,n,ip,el)
|
||||
if ( neighboring_ip == 0 .or. constitutive_nonlocal_transmissivity(disorientation(:,n)) < 1.0_pReal ) then
|
||||
neighboring_el = el
|
||||
if ( neighboring_ip == 0 .or. neighboring_el == 0 ) then ! at free surfaces ...
|
||||
neighboring_el = el ! ... use central values instead of neighboring values
|
||||
neighboring_ip = ip
|
||||
neighboring_F = F
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
neighboring_rhoExcess(n,:,:) = rhoExcess
|
||||
elseif (.not. phase_localConstitution(material_phase(1,neighboring_ip,neighboring_el))) then ! for neighbors with local constitution
|
||||
neighboring_el = el ! ... use central values instead of neighboring values
|
||||
neighboring_ip = ip
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
neighboring_rhoExcess(n,:,:) = rhoExcess
|
||||
elseif (myStructure /= &
|
||||
constitutive_nonlocal_structure(phase_constitutionInstance(material_phase(1,neighboring_ip,neighboring_el)))) then ! for neighbors with different crystal structure
|
||||
neighboring_el = el ! ... use central values instead of neighboring values
|
||||
neighboring_ip = ip
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
neighboring_rhoExcess(n,:,:) = rhoExcess
|
||||
else
|
||||
neighboring_F = math_mul33x33(Fe(:,:,g,neighboring_ip,neighboring_el), Fp(:,:,g,neighboring_ip,neighboring_el))
|
||||
forall (s = 1:ns, c = 1:2) &
|
||||
neighboring_rhoExcess(n,c,s) = state(g,neighboring_ip,neighboring_el)%p((2*c-2)*ns+s) &
|
||||
+ abs(state(g,neighboring_ip,neighboring_el)%p((2*c+2)*ns+s)) &
|
||||
- state(g,neighboring_ip,neighboring_el)%p((2*c-1)*ns+s) &
|
||||
- abs(state(g,neighboring_ip,neighboring_el)%p((2*c+3)*ns+s))
|
||||
if ( any( neighboring_rhoExcess(n,:,:)*rhoExcess < 0.0_pReal &
|
||||
.and. abs(neighboring_rhoExcess(n,:,:)) > 1.0_pReal ) ) then ! at grain boundary (=significant change of sign in any excess density) ...
|
||||
neighboring_el = el ! ... use central values instead of neighboring values
|
||||
neighboring_ip = ip
|
||||
neighboring_position(n,:) = 0.0_pReal
|
||||
neighboring_rhoExcess(n,:,:) = rhoExcess
|
||||
else
|
||||
neighboring_F = math_mul33x33(Fe(:,:,g,neighboring_ip,neighboring_el), Fp(:,:,g,neighboring_ip,neighboring_el))
|
||||
neighboring_position(n,:) = &
|
||||
0.5_pReal * math_mul33x3( math_mul33x33(invFe,neighboring_F) + Fp(:,:,g,ip,el), &
|
||||
mesh_ipCenterOfGravity(:,neighboring_ip,neighboring_el) - mesh_ipCenterOfGravity(:,ip,el) )
|
||||
endif
|
||||
endif
|
||||
|
||||
neighboring_position(n,:) = &
|
||||
0.5_pReal * math_mul33x3( math_mul33x33(invFe,neighboring_F) + Fp(:,:,g,ip,el), &
|
||||
mesh_ipCenterOfGravity(:,neighboring_ip,neighboring_el) - mesh_ipCenterOfGravity(:,ip,el) )
|
||||
|
||||
forall (s = 1:ns, c = 1:2) &
|
||||
neighboring_rhoExcess(n,c,s) = state(g,neighboring_ip,neighboring_el)%p((2*c-2)*ns+s) &
|
||||
+ abs(state(g,neighboring_ip,neighboring_el)%p((2*c+2)*ns+s)) &
|
||||
- state(g,neighboring_ip,neighboring_el)%p((2*c-1)*ns+s) &
|
||||
- abs(state(g,neighboring_ip,neighboring_el)%p((2*c+3)*ns+s))
|
||||
|
||||
enddo
|
||||
|
||||
invPositionDifference = math_inv3x3(neighboring_position((/1,3,5/),:) - neighboring_position((/2,4,6/),:))
|
||||
|
@ -1192,7 +1223,7 @@ endsubroutine
|
|||
!*********************************************************************
|
||||
!* rate of change of microstructure *
|
||||
!*********************************************************************
|
||||
subroutine constitutive_nonlocal_dotState(dotState, Tstar_v, previousTstar_v, Fe, Fp, Temperature, disorientation, dt_previous, &
|
||||
subroutine constitutive_nonlocal_dotState(dotState, Tstar_v, previousTstar_v, Fe, Fp, Temperature, dt_previous, &
|
||||
state, previousState, relevantState, timestep, g,ip,el)
|
||||
|
||||
use prec, only: pReal, &
|
||||
|
@ -1245,8 +1276,6 @@ real(pReal), intent(in) :: Temperature, & ! temperat
|
|||
dt_previous ! time increment between previous and current state
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v, & ! current 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
previousTstar_v ! previous 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
real(pReal), dimension(4,mesh_maxNipNeighbors), intent(in) :: &
|
||||
disorientation ! crystal disorientation between me and my neighbor as quaternion
|
||||
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
||||
Fe, & ! elastic deformation gradient
|
||||
Fp ! plastic deformation gradient
|
||||
|
@ -1265,6 +1294,7 @@ type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), in
|
|||
integer(pInt) myInstance, & ! current instance of this constitution
|
||||
myStructure, & ! current lattice structure
|
||||
ns, & ! short notation for the total number of active slip systems
|
||||
neighboring_n, & ! neighbor index of myself when seen from my neighbor
|
||||
neighboring_el, & ! element number of my neighbor
|
||||
neighboring_ip, & ! integration point of my neighbor
|
||||
c, & ! character of dislocation
|
||||
|
@ -1273,7 +1303,9 @@ integer(pInt) myInstance, & ! current
|
|||
opposite_ip, & ! ip of my opposite neighbor
|
||||
opposite_el, & ! element index of my opposite neighbor
|
||||
t, & ! type of dislocation
|
||||
topp, & ! type of dislocation with opposite sign to t
|
||||
s, & ! index of my current slip system
|
||||
s2, &
|
||||
sLattice, & ! index of my current slip system according to lattice order
|
||||
i
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_constitutionInstance(material_phase(g,ip,el))),10) :: &
|
||||
|
@ -1318,7 +1350,8 @@ real(pReal), dimension(3) :: surfaceNormal, & ! surface
|
|||
surfaceNormal_currentconf ! surface normal in current configuration
|
||||
real(pReal) area, & ! area of the current interface
|
||||
detFe, & ! determinant of elastic defornmation gradient
|
||||
transmissivity, & ! transmissivity of interfaces for dislocation flux
|
||||
transmissivity, & ! transmissivity of dislocation flux for different slip systems in neighboring material points for a specific charcter of dislocations
|
||||
compatibility, & ! compatibility of different slip systems in neighboring material points for a specific charcter of dislocations
|
||||
lineLength, & ! dislocation line length leaving the current interface
|
||||
D ! self diffusion
|
||||
logical, dimension(3) :: periodicSurfaceFlux ! flag indicating periodic fluxes at surfaces when surface normal points mainly in x, y and z direction respectively (in reference configuration)
|
||||
|
@ -1365,7 +1398,7 @@ previousTdislocation_v = previousState(g,ip,el)%p(12*ns+1:12*ns+6)
|
|||
!*** sanity check for timestep
|
||||
|
||||
if (timestep <= 0.0_pReal) then ! if illegal timestep...
|
||||
dotState(1,ip,el)%p(1:10*ns) = 0.0_pReal ! ...return without doing anything (-> zero dotState)
|
||||
dotState(g,ip,el)%p = 0.0_pReal ! ...return without doing anything (-> zero dotState)
|
||||
return
|
||||
endif
|
||||
|
||||
|
@ -1470,6 +1503,14 @@ do n = 1,FE_NipNeighbors(mesh_element(2,el))
|
|||
opposite_el = mesh_ipNeighborhood(1,opposite_n,ip,el)
|
||||
opposite_ip = mesh_ipNeighborhood(2,opposite_n,ip,el)
|
||||
|
||||
if ( neighboring_el > 0_pInt .and. neighboring_ip > 0_pInt ) then ! if neighbor exists ...
|
||||
do neighboring_n = 1,FE_NipNeighbors(mesh_element(2,neighboring_el)) ! find neighboring index that points from my neighbor to myself
|
||||
if ( el == mesh_ipNeighborhood(1,opposite_n,ip,neighboring_el) & ! special case if no neighbor at all...
|
||||
.and. ip == mesh_ipNeighborhood(2,opposite_n,ip,neighboring_el) ) &
|
||||
exit ! ...exit without any flux calculation
|
||||
enddo
|
||||
endif
|
||||
|
||||
if ( neighboring_el > 0_pInt .and. neighboring_ip > 0_pInt ) then ! if neighbor exists, average deformation gradient
|
||||
neighboring_F = math_mul33x33(Fe(:,:,g,neighboring_ip,neighboring_el), Fp(:,:,g,neighboring_ip,neighboring_el))
|
||||
Favg = 0.5_pReal * (F + neighboring_F)
|
||||
|
@ -1482,8 +1523,6 @@ do n = 1,FE_NipNeighbors(mesh_element(2,el))
|
|||
area = mesh_ipArea(n,ip,el) * math_norm3(surfaceNormal)
|
||||
surfaceNormal = surfaceNormal / math_norm3(surfaceNormal) ! normalize the surface normal to unit length
|
||||
|
||||
transmissivity = constitutive_nonlocal_transmissivity(disorientation(:,n))
|
||||
|
||||
if ( neighboring_el > 0 .and. neighboring_ip > 0 ) then ! if neighbor exists...
|
||||
if ( .not. phase_localConstitution(material_phase(1,neighboring_ip,neighboring_el))) then ! ... and is of nonlocal constitution...
|
||||
forall (t = 1:4) & ! ... then calculate neighboring flux density
|
||||
|
@ -1503,20 +1542,25 @@ do n = 1,FE_NipNeighbors(mesh_element(2,el))
|
|||
|
||||
do s = 1,ns
|
||||
do t = 1,4
|
||||
c = (t + 1) / 2 ! dislocation character
|
||||
if ( fluxdensity(s,t) * math_mul3x3(m(:,s,t), surfaceNormal) > 0.0_pReal ) then ! outgoing flux
|
||||
transmissivity = sum(constitutive_nonlocal_transmissivity(:,c,s,n,ip,el)) ! overall transmissivity between my system s and all neighboring systems s2 for this dislocation character
|
||||
lineLength = fluxdensity(s,t) * math_mul3x3(m(:,s,t), surfaceNormal) * area ! line length that wants to leave this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract positive dislocation flux that leaves the material point
|
||||
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) + lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
|
||||
* sign(1.0_pReal, fluxdensity(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
||||
! if (selectiveDebugger .and. s==1) &
|
||||
! write(6,'(a22,i2,a15,i2,a3,e20.10)') 'outgoing flux of type ',t,' to neighbor ',n,' : ', &
|
||||
! -lineLength / mesh_ipVolume(ip,el)
|
||||
else ! incoming flux
|
||||
lineLength = neighboring_fluxdensity(s,t) * math_mul3x3(m(:,s,t), surfaceNormal) * area ! line length that wants to leave this interface
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) * transmissivity ! subtract negative dislocation flux that enters the material point
|
||||
! if (selectiveDebugger .and. s==1) &
|
||||
! write(6,'(a22,i2,a15,i2,a3,e20.10)') 'incoming flux of type ',t,' from neighbor ',n,' : ', &
|
||||
! -lineLength / mesh_ipVolume(ip,el) * transmissivity
|
||||
do s2 = 1,ns
|
||||
compatibility = constitutive_nonlocal_compatibility(s,c,s2,neighboring_n,neighboring_ip,neighboring_el) ! compatibility of system s2 of my neighbor to system s in my material point
|
||||
transmissivity = constitutive_nonlocal_transmissivity(s,c,s2,neighboring_n,neighboring_ip,neighboring_el)
|
||||
lineLength = neighboring_fluxdensity(s2,t) * math_mul3x3(m(:,s,t), surfaceNormal) * area ! line length that wants to leave this interface
|
||||
if (compatibility > 0.0_pReal) then ! compatible with equally signed dislocation density
|
||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) * transmissivity * compatibility ! subtract negative dislocation flux that enters the material point
|
||||
elseif (compatibility < 0.0_pReal) then ! compatible with inversely signed dislocation density
|
||||
topp = t + mod(t,2) - mod(t+1,2)
|
||||
rhoDotFlux(s,topp) = rhoDotFlux(s,topp) - lineLength / mesh_ipVolume(ip,el) * transmissivity * abs(compatibility) ! subtract negative dislocation flux that enters the material point
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
@ -1664,40 +1708,137 @@ endsubroutine
|
|||
|
||||
|
||||
!*********************************************************************
|
||||
!* transmissivity of IP interface *
|
||||
!* TRANSMISSIVITY AND COMPATIBILITY UPDATE *
|
||||
!* Transmissivity is defined as absolute minimum of the cosine of *
|
||||
!* the angle between the slip directions and the cosine of the angle *
|
||||
!* between the slip plane normals. Compatibility is defined as *
|
||||
!* product of cosine of the angle between the slip plane normals and *
|
||||
!* signed cosine of the angle between the slip directions *
|
||||
!*********************************************************************
|
||||
function constitutive_nonlocal_transmissivity(disorientation)
|
||||
subroutine constitutive_nonlocal_updateCompatibility(orientation,i,e)
|
||||
|
||||
use prec, only: pReal, &
|
||||
pInt
|
||||
use math, only: math_QuaternionToAxisAngle
|
||||
use prec, only: pReal, &
|
||||
pInt
|
||||
use math, only: math_QuaternionDisorientation, &
|
||||
math_mul3x3, &
|
||||
math_qRot
|
||||
use material, only: material_phase, &
|
||||
phase_constitution, &
|
||||
phase_localConstitution, &
|
||||
phase_constitutionInstance, &
|
||||
homogenization_maxNgrains
|
||||
use mesh, only: mesh_element, &
|
||||
mesh_ipNeighborhood, &
|
||||
FE_NipNeighbors, &
|
||||
mesh_maxNips, &
|
||||
mesh_NcpElems
|
||||
use lattice, only: lattice_sn, &
|
||||
lattice_sd, &
|
||||
lattice_st, &
|
||||
lattice_maxNslip
|
||||
use debug, only: debugger, &
|
||||
debug_e, debug_i, debug_g, &
|
||||
verboseDebugger, &
|
||||
selectiveDebugger
|
||||
|
||||
implicit none
|
||||
|
||||
!* input variables
|
||||
real(pReal), dimension(4), intent(in) :: disorientation ! disorientation as quaternion
|
||||
integer(pInt), intent(in) :: i, & ! ip index
|
||||
e ! element index
|
||||
real(pReal), dimension(4,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
||||
orientation ! crystal orientation in quaternions
|
||||
|
||||
!* output variables
|
||||
real(pReal) constitutive_nonlocal_transmissivity ! transmissivity of an IP interface for dislocations
|
||||
|
||||
!* local variables
|
||||
real(pReal) disorientationAngle
|
||||
real(pReal), dimension(3) :: disorientationAxis
|
||||
real(pReal), dimension(4) :: disorientationAxisAngle
|
||||
integer(pInt) n, & ! neighbor index
|
||||
neighboring_e, & ! element index of my neighbor
|
||||
neighboring_i, & ! integration point index of my neighbor
|
||||
myPhase, & ! phase
|
||||
neighboringPhase, &
|
||||
myInstance, & ! instance of constitution
|
||||
neighboringInstance, &
|
||||
myStructure, & ! lattice structure
|
||||
neighboringStructure, &
|
||||
myNSlipSystems, & ! number of active slip systems
|
||||
neighboringNSlipSystems, &
|
||||
c, & ! dislocation character index (1=edge, 2=screw)
|
||||
s1, & ! slip system index (me)
|
||||
s2 ! slip system index (my neighbor)
|
||||
integer(pInt), dimension(lattice_maxNslip) :: mySlipSystems, & ! slip system numbering according to lattice
|
||||
neighboringSlipSystems
|
||||
real(pReal), dimension(4) :: absoluteMisorientation ! absolute misorientation (without symmetry) between me and my neighbor
|
||||
real(pReal), dimension(3,lattice_maxNslip) :: myNormals, & ! slip plane normals
|
||||
neighboringNormals
|
||||
real(pReal), dimension(3,lattice_maxNslip,2) :: mySlipDirections, & ! slip directions for positive edge and screws
|
||||
neighboringSlipDirections
|
||||
|
||||
|
||||
disorientationAxisAngle = math_QuaternionToAxisAngle(disorientation)
|
||||
myPhase = material_phase(1,i,e)
|
||||
myInstance = phase_constitutionInstance(myPhase)
|
||||
myStructure = constitutive_nonlocal_structure(myInstance)
|
||||
myNSlipSystems = constitutive_nonlocal_totalNslip(myInstance)
|
||||
mySlipSystems(1:myNSlipSystems) = constitutive_nonlocal_slipSystemLattice(1:myNSlipSystems,myInstance)
|
||||
myNormals = lattice_sn(:, mySlipSystems, myStructure)
|
||||
mySlipDirections(:,:,1) = lattice_sd(:, mySlipSystems, myStructure) ! direction of positive edges
|
||||
mySlipDirections(:,:,2) = lattice_st(:, mySlipSystems, myStructure) ! direction of positive screws
|
||||
|
||||
disorientationAxis = disorientationAxisAngle(1:3)
|
||||
disorientationAngle = disorientationAxisAngle(4)
|
||||
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
|
||||
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
||||
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
||||
|
||||
if (disorientationAngle < 5.0_pReal) then
|
||||
constitutive_nonlocal_transmissivity = 1.0_pReal
|
||||
else
|
||||
constitutive_nonlocal_transmissivity = 0.5_pReal
|
||||
endif
|
||||
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
|
||||
neighboringPhase = material_phase(1,neighboring_i,neighboring_e)
|
||||
|
||||
endfunction
|
||||
if (.not. phase_localConstitution(neighboringPhase)) then ! neighbor got also nonlocal constitution
|
||||
neighboringInstance = phase_constitutionInstance(neighboringPhase)
|
||||
neighboringStructure = constitutive_nonlocal_structure(neighboringInstance)
|
||||
neighboringNSlipSystems = constitutive_nonlocal_totalNslip(neighboringInstance)
|
||||
neighboringSlipSystems(1:neighboringNSlipSystems) = constitutive_nonlocal_slipSystemLattice(1:neighboringNSlipSystems,&
|
||||
neighboringInstance)
|
||||
neighboringNormals = lattice_sn(:, neighboringSlipSystems, neighboringStructure)
|
||||
neighboringSlipDirections(:,:,1) = lattice_sd(:, neighboringSlipSystems, neighboringStructure) ! direction of positive edges
|
||||
neighboringSlipDirections(:,:,2) = lattice_st(:, neighboringSlipSystems, neighboringStructure) ! direction of positive screws
|
||||
|
||||
if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me
|
||||
absoluteMisorientation = math_QuaternionDisorientation( orientation(:,1,i,e), &
|
||||
orientation(:,1,neighboring_i,neighboring_e), 0_pInt)
|
||||
|
||||
do s1 = 1,myNSlipSystems ! loop through my slip systems
|
||||
do c = 1,2 ! loop through edge and screw character
|
||||
do s2 = 1,neighboringNSlipSystems ! loop through my neighbors' slip systems
|
||||
constitutive_nonlocal_transmissivity(s2,c,s1,n,i,e) = &
|
||||
min(abs(math_mul3x3(mySlipDirections(:,s1,c), &
|
||||
math_qRot(absoluteMisorientation, neighboringSlipDirections(:,s2,c)))), &
|
||||
abs(math_mul3x3(myNormals(:,s1), math_qRot(absoluteMisorientation, neighboringNormals(:,s2)))) )
|
||||
constitutive_nonlocal_compatibility(s2,c,s1,n,i,e) = &
|
||||
abs(math_mul3x3(myNormals(:,s1), math_qRot(absoluteMisorientation, neighboringNormals(:,s2)))) &
|
||||
* math_mul3x3(mySlipDirections(:,s1,c), math_qRot(absoluteMisorientation, neighboringSlipDirections(:,s2,c)))
|
||||
enddo
|
||||
if (any(abs(constitutive_nonlocal_compatibility(:,c,s1,n,i,e)) > 0.0_pReal)) then
|
||||
constitutive_nonlocal_compatibility(:,c,s1,n,i,e) = constitutive_nonlocal_compatibility(:,c,s1,n,i,e) &
|
||||
/ sum(abs(constitutive_nonlocal_compatibility(:,c,s1,n,i,e))) ! normalize to a total of one
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo
|
||||
else ! neighbor has different crystal structure
|
||||
constitutive_nonlocal_transmissivity(:,:,:,n,i,e) = 0.0_pReal ! no transmissivity...
|
||||
constitutive_nonlocal_compatibility(:,:,:,n,i,e) = 0.0_pReal ! ...and compatibility
|
||||
endif
|
||||
else ! neighbor has local constitution
|
||||
constitutive_nonlocal_transmissivity(:,:,:,n,i,e) = 1.0_pReal ! assume perfectly transmissive...
|
||||
constitutive_nonlocal_compatibility(:,:,:,n,i,e) = 1.0_pReal ! ...and compatible
|
||||
endif
|
||||
else ! no neighbor present
|
||||
constitutive_nonlocal_transmissivity(:,:,:,n,i,e) = 1.0_pReal ! perfectly transmissive...
|
||||
constitutive_nonlocal_compatibility(:,:,:,n,i,e) = 1.0_pReal ! ...and compatible
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
endsubroutine
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -184,7 +184,7 @@ subroutine crystallite_init(Temperature)
|
|||
allocate(crystallite_statedamper(gMax,iMax,eMax)); crystallite_statedamper = 1.0_pReal
|
||||
allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0.0_pReal !NEW
|
||||
allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
|
||||
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
|
||||
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation0 = 0.0_pReal
|
||||
allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal
|
||||
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal
|
||||
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
|
||||
|
@ -342,7 +342,7 @@ subroutine crystallite_init(Temperature)
|
|||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_subF: ', shape(crystallite_subF)
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID) !NEW
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
|
||||
write(6,'(a35,x,7(i5,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
|
||||
|
@ -483,7 +483,6 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
|||
logical forceLocalStiffnessCalculation ! flag indicating that stiffness calculation is always done locally
|
||||
forceLocalStiffnessCalculation = .true.
|
||||
|
||||
|
||||
! --+>> INITIALIZE TO STARTING CONDITION <<+--
|
||||
|
||||
crystallite_subStep = 0.0_pReal
|
||||
|
@ -564,7 +563,7 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
|||
crystallite_Lp(:,:,g,i,e) = crystallite_subLp0(:,:,g,i,e) ! ...plastic velocity grad
|
||||
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
|
||||
crystallite_Tstar_v(:,g,i,e) = crystallite_subTstar0_v(:,g,i,e) ! ...2nd PK stress
|
||||
! canÕt restore dotState here, since not yet calculated in first cutback after initialization
|
||||
! can<EFBFBD>t restore dotState here, since not yet calculated in first cutback after initialization
|
||||
if (debugger .and. selectiveDebugger) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,'(a78,f10.8)') 'cutback step in crystallite_stressAndItsTangent with new crystallite_subStep: ',&
|
||||
|
@ -907,7 +906,7 @@ endif
|
|||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -919,10 +918,9 @@ RK4dotTemperature = 0.0_pReal
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -968,8 +966,8 @@ do n = 1,4
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -980,7 +978,7 @@ do n = 1,4
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
if (crystallite_integrateStress(mode,g,i,e,timeStepFraction(n))) then ! fraction of original times step
|
||||
if (n == 4) then ! final integration step
|
||||
if (mode==1 .and. verboseDebugger .and. e == debug_e .and. i == debug_i .and. g == debug_g) then
|
||||
|
@ -1020,10 +1018,9 @@ do n = 1,4
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), &
|
||||
timeStepFraction(n)*crystallite_subdt(g,i,e), g,i,e) ! fraction of original timestep
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
|
@ -1201,8 +1198,8 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1213,10 +1210,9 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -1268,8 +1264,8 @@ do n = 1,5
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1279,7 +1275,7 @@ do n = 1,5
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
if (.not. crystallite_integrateStress(mode,g,i,e,c(n))) then ! fraction of original time step
|
||||
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
||||
|
@ -1299,11 +1295,11 @@ do n = 1,5
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), c(n)*crystallite_subdt(g,i,e), g,i,e) ! fraction of original timestep
|
||||
c(n)*crystallite_subdt(g,i,e), g,i,e) ! fraction of original timestep
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -1402,8 +1398,8 @@ relTemperatureResiduum = 0.0_pReal
|
|||
if (crystallite_todo(g,i,e)) then
|
||||
sizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
if ( all(relStateResiduum(1:sizeDotState,g,i,e) < 1.0_pReal) .and. relTemperatureResiduum(g,i,e) < 1.0_pReal ) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
|
@ -1415,7 +1411,7 @@ relTemperatureResiduum = 0.0_pReal
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
sizeDotState = constitutive_sizeDotState(g,i,e)
|
||||
if ( all(relStateResiduum(1:sizeDotState,g,i,e) < 1.0_pReal) .and. relTemperatureResiduum(g,i,e) < 1.0_pReal ) then
|
||||
|
||||
|
@ -1544,8 +1540,8 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1556,11 +1552,10 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
|
||||
|
@ -1602,8 +1597,8 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1613,7 +1608,7 @@ endif
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
if (.not. crystallite_integrateStress(mode,g,i,e)) then
|
||||
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
||||
|
@ -1633,11 +1628,10 @@ endif
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -1800,8 +1794,8 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1812,10 +1806,9 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g,i,e)
|
||||
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Temperature(g,i,e),g,i,e)
|
||||
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
||||
|
@ -1865,8 +1858,8 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1876,7 +1869,7 @@ endif
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
if (crystallite_integrateStress(mode,g,i,e)) then
|
||||
crystallite_converged(g,i,e) = .true.
|
||||
|
@ -1984,8 +1977,8 @@ endif
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -1995,13 +1988,12 @@ endif
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
|
||||
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g, i, e)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g, i, e)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -2039,7 +2031,7 @@ do while (any(crystallite_todo) .and. NiterationState < nState )
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
crystallite_todo(g,i,e) = crystallite_integrateStress(mode,g,i,e)
|
||||
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e)) then ! if broken non-local...
|
||||
|
@ -2062,13 +2054,12 @@ do while (any(crystallite_todo) .and. NiterationState < nState )
|
|||
|
||||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
selectiveDebugger = .false. !(e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p ! wind forward dotStates
|
||||
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g, i, e)
|
||||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), g, i, e)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -2117,8 +2108,8 @@ do while (any(crystallite_todo) .and. NiterationState < nState )
|
|||
!$OMP PARALLEL DO
|
||||
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
||||
if (crystallite_todo(g,i,e)) then
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||||
crystallite_Fp, crystallite_disorientation(:,:,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
||||
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
@ -2656,7 +2647,9 @@ use FEsolving, only: FEsolving_execElem, &
|
|||
use IO, only: IO_warning
|
||||
use material, only: material_phase, &
|
||||
homogenization_Ngrains, &
|
||||
phase_constitution
|
||||
phase_constitution, &
|
||||
phase_localConstitution, &
|
||||
phase_constitutionInstance
|
||||
use mesh, only: mesh_element, &
|
||||
mesh_ipNeighborhood, &
|
||||
FE_NipNeighbors
|
||||
|
@ -2664,7 +2657,8 @@ use debug, only: debugger, &
|
|||
debug_e, debug_i, debug_g, &
|
||||
verboseDebugger, &
|
||||
selectiveDebugger
|
||||
use constitutive_nonlocal, only: constitutive_nonlocal_label
|
||||
use constitutive_nonlocal, only: constitutive_nonlocal_structure, &
|
||||
constitutive_nonlocal_updateCompatibility
|
||||
|
||||
implicit none
|
||||
|
||||
|
@ -2677,75 +2671,87 @@ integer(pInt) e, & ! element index
|
|||
i, & ! integration point index
|
||||
g, & ! grain index
|
||||
n, & ! neighbor index
|
||||
myPhase, & ! phase
|
||||
neighboring_e, & ! element index of my neighbor
|
||||
neighboring_i, & ! integration point index of my neighbor
|
||||
neighboringPhase, & ! phase of my neighbor
|
||||
neighboringStructure ! lattice structure of my neighbor
|
||||
myPhase, & ! phase
|
||||
neighboringPhase, &
|
||||
myInstance, & ! instance of constitution
|
||||
neighboringInstance, &
|
||||
myStructure, & ! lattice structure
|
||||
neighboringStructure
|
||||
real(pReal), dimension(3,3) :: U, R
|
||||
logical error
|
||||
|
||||
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
|
||||
|
||||
!$OMP PARALLEL DO
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
do g = 1,homogenization_Ngrains(mesh_element(3,e))
|
||||
|
||||
! calculate orientation in terms of rotation matrix and euler angles
|
||||
call math_pDecomposition(crystallite_Fe(:,:,g,i,e), U, R, error) ! polar decomposition of Fe
|
||||
call math_pDecomposition(crystallite_Fe(:,:,g,i,e), U, R, error) ! polar decomposition of Fe
|
||||
if (error) then
|
||||
call IO_warning(650, e, i, g)
|
||||
crystallite_orientation(:,g,i,e) = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! fake orientation
|
||||
crystallite_orientation(:,g,i,e) = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! fake orientation
|
||||
else
|
||||
crystallite_orientation(:,g,i,e) = math_RtoQuaternion(transpose(R))
|
||||
endif
|
||||
|
||||
crystallite_rotation(:,g,i,e) = &
|
||||
math_QuaternionDisorientation( math_qConj(crystallite_orientation(:,g,i,e)), & ! calculate grainrotation
|
||||
math_QuaternionDisorientation( math_qConj(crystallite_orientation(:,g,i,e)), & ! calculate grainrotation
|
||||
math_qConj(crystallite_orientation0(:,g,i,e)), &
|
||||
0_pInt ) ! we don't want symmetry here
|
||||
0_pInt ) ! we don't want symmetry here
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMPEND PARALLEL DO
|
||||
|
||||
|
||||
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
|
||||
! --- we use crystallite_orientation from above, so need a seperate loop
|
||||
|
||||
!$OMP PARALLEL DO
|
||||
! Another loop for nonlocal material which uses the orientations from the first one.
|
||||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||||
selectiveDebugger = (e == debug_e .and. i == debug_i)
|
||||
myPhase = material_phase(1,i,e) ! get my crystal structure
|
||||
if (phase_constitution(myPhase) == constitutive_nonlocal_label) then ! if nonlocal model
|
||||
myPhase = material_phase(1,i,e) ! get my phase
|
||||
if (.not. phase_localConstitution(myPhase)) then ! if nonlocal model
|
||||
myInstance = phase_constitutionInstance(myPhase)
|
||||
myStructure = constitutive_nonlocal_structure(myInstance) ! get my crystal structure
|
||||
|
||||
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
|
||||
|
||||
! --- calculate disorientation between me and my neighbor ---
|
||||
|
||||
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
|
||||
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
||||
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
||||
|
||||
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
|
||||
|
||||
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's crystal structure
|
||||
if (myPhase == neighboringPhase) then ! if my neighbor has same phase like me
|
||||
|
||||
crystallite_disorientation(:,n,1,i,e) = &
|
||||
math_QuaternionDisorientation( crystallite_orientation(:,1,i,e), &
|
||||
crystallite_orientation(:,1,neighboring_i,neighboring_e), &
|
||||
crystallite_symmetryID(1,i,e)) ! calculate disorientation
|
||||
|
||||
else ! for neighbor with different phase
|
||||
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
|
||||
|
||||
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
|
||||
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
|
||||
if (.not. phase_localConstitution(neighboringPhase)) then ! neighbor got also nonlocal constitution
|
||||
neighboringInstance = phase_constitutionInstance(neighboringPhase)
|
||||
neighboringStructure = constitutive_nonlocal_structure(neighboringInstance) ! get my neighbor's crystal structure
|
||||
if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me
|
||||
crystallite_disorientation(:,n,1,i,e) = &
|
||||
math_QuaternionDisorientation( crystallite_orientation(:,1,i,e), &
|
||||
crystallite_orientation(:,1,neighboring_i,neighboring_e), &
|
||||
crystallite_symmetryID(1,i,e)) ! calculate disorientation
|
||||
else ! for neighbor with different phase
|
||||
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
|
||||
endif
|
||||
else ! for neighbor with local constitution
|
||||
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
||||
endif
|
||||
else ! no existing neighbor
|
||||
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
||||
endif
|
||||
if (verboseDebugger .and. selectiveDebugger) then
|
||||
!$OMP CRITICAL (write2out)
|
||||
write(6,'(a27,i2,a3,4(f12.5,x))') 'disorientation to neighbor ',n,' : ',crystallite_disorientation(:,n,1,i,e)
|
||||
!$OMP END CRITICAL (write2out)
|
||||
else ! no existing neighbor
|
||||
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
! --- calculate compatibility and transmissivity between me and my neighbor ---
|
||||
|
||||
call constitutive_nonlocal_updateCompatibility(crystallite_orientation,i,e)
|
||||
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue