updated option --label for addCurl/Div/Grad
This commit is contained in:
parent
1d71a52133
commit
710970d728
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
||||||
Subproject commit 1c1e8008489d81773a13a247604144a8d7ee3723
|
Subproject commit bdbf2da71cd9e0825d17f673ec2fbabc2c8027f8
|
|
@ -109,7 +109,7 @@ class Test():
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.critical('exception during variant execution: "{}"'.format(str(e)))
|
logging.critical('exception during variant execution: "{}"'.format(str(e)))
|
||||||
return variant+1 # return culprit
|
return variant+1 # return culprit
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def feasible(self):
|
def feasible(self):
|
||||||
|
|
|
@ -66,7 +66,7 @@ parser.add_option('-p','--pos','--periodiccellcenter',
|
||||||
dest = 'pos',
|
dest = 'pos',
|
||||||
type = 'string', metavar = 'string',
|
type = 'string', metavar = 'string',
|
||||||
help = 'label of coordinates [%default]')
|
help = 'label of coordinates [%default]')
|
||||||
parser.add_option('-d','--data',
|
parser.add_option('-l','--label',
|
||||||
dest = 'data',
|
dest = 'data',
|
||||||
action = 'extend', metavar = '<string LIST>',
|
action = 'extend', metavar = '<string LIST>',
|
||||||
help = 'label(s) of field values')
|
help = 'label(s) of field values')
|
||||||
|
|
|
@ -9,36 +9,43 @@ import damask
|
||||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||||
scriptID = ' '.join([scriptName,damask.version])
|
scriptID = ' '.join([scriptName,damask.version])
|
||||||
|
|
||||||
|
def merge_dicts(*dict_args):
|
||||||
|
"""Given any number of dicts, shallow copy and merge into a new dict, with precedence going to key value pairs in latter dicts."""
|
||||||
|
result = {}
|
||||||
|
for dictionary in dict_args:
|
||||||
|
result.update(dictionary)
|
||||||
|
return result
|
||||||
|
|
||||||
def divFFT(geomdim,field):
|
def divFFT(geomdim,field):
|
||||||
shapeFFT = np.array(np.shape(field))[0:3]
|
"""Calculate divergence of a vector or tensor field by transforming into Fourier space."""
|
||||||
grid = np.array(np.shape(field)[2::-1])
|
shapeFFT = np.array(np.shape(field))[0:3]
|
||||||
N = grid.prod() # field size
|
grid = np.array(np.shape(field)[2::-1])
|
||||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
N = grid.prod() # field size
|
||||||
|
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||||
|
|
||||||
if n == 3: dataType = 'vector'
|
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||||
elif n == 9: dataType = 'tensor'
|
div_fourier = np.empty(field_fourier.shape[0:len(np.shape(field))-1],'c16')
|
||||||
|
|
||||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
# differentiation in Fourier space
|
||||||
div_fourier = np.empty(field_fourier.shape[0:len(np.shape(field))-1],'c16')
|
TWOPIIMG = 2.0j*math.pi
|
||||||
|
einsums = {
|
||||||
|
3:'ijkl,ijkl->ijk', # vector, 3 -> 1
|
||||||
|
9:'ijkm,ijklm->ijkl', # tensor, 3x3 -> 3
|
||||||
|
}
|
||||||
|
k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0]
|
||||||
|
if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
|
||||||
|
|
||||||
# differentiation in Fourier space
|
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1]
|
||||||
TWOPIIMG = 2.0j*math.pi
|
if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
|
||||||
k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0]
|
|
||||||
if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
|
||||||
|
|
||||||
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1]
|
k_si = np.arange(grid[0]//2+1)/geomdim[2]
|
||||||
if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
|
||||||
|
|
||||||
k_si = np.arange(grid[0]//2+1)/geomdim[2]
|
kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
|
||||||
|
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16')
|
||||||
|
|
||||||
kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
|
div_fourier = np.einsum(einsums[n],k_s,field_fourier)*TWOPIIMG
|
||||||
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16')
|
|
||||||
if dataType == 'tensor': # tensor, 3x3 -> 3
|
|
||||||
div_fourier = np.einsum('ijklm,ijkm->ijkl',field_fourier,k_s)*TWOPIIMG
|
|
||||||
elif dataType == 'vector': # vector, 3 -> 1
|
|
||||||
div_fourier = np.einsum('ijkl,ijkl->ijk',field_fourier,k_s)*TWOPIIMG
|
|
||||||
|
|
||||||
return np.fft.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n/3])
|
return np.fft.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n/3])
|
||||||
|
|
||||||
|
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
|
@ -46,32 +53,38 @@ def divFFT(geomdim,field):
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
|
|
||||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """
|
||||||
Add column(s) containing divergence of requested column(s).
|
Add column(s) containing curl of requested column(s).
|
||||||
Operates on periodic ordered three-dimensional data sets.
|
Operates on periodic ordered three-dimensional data sets
|
||||||
Deals with both vector- and tensor-valued fields.
|
of vector and tensor fields.
|
||||||
|
|
||||||
""", version = scriptID)
|
""", version = scriptID)
|
||||||
|
|
||||||
parser.add_option('-p','--pos','--periodiccellcenter',
|
parser.add_option('-p','--pos','--periodiccellcenter',
|
||||||
dest = 'pos',
|
dest = 'pos',
|
||||||
type = 'string', metavar = 'string',
|
type = 'string', metavar = 'string',
|
||||||
help = 'label of coordinates [%default]')
|
help = 'label of coordinates [%default]')
|
||||||
parser.add_option('-v','--vector',
|
parser.add_option('-l','--label',
|
||||||
dest = 'vector',
|
dest = 'data',
|
||||||
action = 'extend', metavar = '<string LIST>',
|
action = 'extend', metavar = '<string LIST>',
|
||||||
help = 'label(s) of vector field values')
|
help = 'label(s) of field values')
|
||||||
parser.add_option('-t','--tensor',
|
|
||||||
dest = 'tensor',
|
|
||||||
action = 'extend', metavar = '<string LIST>',
|
|
||||||
help = 'label(s) of tensor field values')
|
|
||||||
|
|
||||||
parser.set_defaults(pos = 'pos',
|
parser.set_defaults(pos = 'pos',
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
(options,filenames) = parser.parse_args()
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
if options.vector is None and options.tensor is None:
|
if options.data is None: parser.error('no data column specified.')
|
||||||
parser.error('no data column specified.')
|
|
||||||
|
# --- define possible data types -------------------------------------------------------------------
|
||||||
|
|
||||||
|
datatypes = {
|
||||||
|
3: {'name': 'vector',
|
||||||
|
'shape': [3],
|
||||||
|
},
|
||||||
|
9: {'name': 'tensor',
|
||||||
|
'shape': [3,3],
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
# --- loop over input files ------------------------------------------------------------------------
|
# --- loop over input files ------------------------------------------------------------------------
|
||||||
|
|
||||||
|
@ -82,30 +95,27 @@ for name in filenames:
|
||||||
except: continue
|
except: continue
|
||||||
damask.util.report(scriptName,name)
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
# ------------------------------------------ read header ------------------------------------------
|
# --- interpret header ----------------------------------------------------------------------------
|
||||||
|
|
||||||
table.head_read()
|
table.head_read()
|
||||||
|
|
||||||
# ------------------------------------------ sanity checks ----------------------------------------
|
|
||||||
|
|
||||||
items = {
|
|
||||||
'tensor': {'dim': 9, 'shape': [3,3], 'labels':options.tensor, 'active':[], 'column': []},
|
|
||||||
'vector': {'dim': 3, 'shape': [3], 'labels':options.vector, 'active':[], 'column': []},
|
|
||||||
}
|
|
||||||
errors = []
|
|
||||||
remarks = []
|
remarks = []
|
||||||
column = {}
|
errors = []
|
||||||
|
active = []
|
||||||
|
|
||||||
if table.label_dimension(options.pos) != 3: errors.append('coordinates {} are not a vector.'.format(options.pos))
|
coordDim = table.label_dimension(options.pos)
|
||||||
else: colCoord = table.label_index(options.pos)
|
if coordDim != 3:
|
||||||
|
errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos))
|
||||||
|
else: coordCol = table.label_index(options.pos)
|
||||||
|
|
||||||
for type, data in items.iteritems():
|
for me in options.data:
|
||||||
for what in (data['labels'] if data['labels'] is not None else []):
|
dim = table.label_dimension(me)
|
||||||
dim = table.label_dimension(what)
|
if dim in datatypes:
|
||||||
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
|
active.append(merge_dicts({'label':me},datatypes[dim]))
|
||||||
else:
|
remarks.append('differentiating {} "{}"...'.format(datatypes[dim]['name'],me))
|
||||||
items[type]['active'].append(what)
|
else:
|
||||||
items[type]['column'].append(table.label_index(what))
|
remarks.append('skipping "{}" of dimension {}...'.format(me,dim) if dim != -1 else \
|
||||||
|
'"{}" not found...'.format(me) )
|
||||||
|
|
||||||
if remarks != []: damask.util.croak(remarks)
|
if remarks != []: damask.util.croak(remarks)
|
||||||
if errors != []:
|
if errors != []:
|
||||||
|
@ -116,17 +126,17 @@ for name in filenames:
|
||||||
# ------------------------------------------ assemble header --------------------------------------
|
# ------------------------------------------ assemble header --------------------------------------
|
||||||
|
|
||||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||||
for type, data in items.iteritems():
|
for data in active:
|
||||||
for label in data['active']:
|
table.labels_append(['divFFT({})'.format(data['label']) if data['shape'] == [3] \
|
||||||
table.labels_append(['divFFT({})'.format(label) if type == 'vector' else
|
else '{}_divFFT({})'.format(i+1,data['label'])
|
||||||
'{}_divFFT({})'.format(i+1,label) for i in range(data['dim']//3)]) # extend ASCII header with new labels
|
for i in range(np.prod(np.array(data['shape']))//3)]) # extend ASCII header with new labels
|
||||||
table.head_write()
|
table.head_write()
|
||||||
|
|
||||||
# --------------- figure out size and grid ---------------------------------------------------------
|
# --------------- figure out size and grid ---------------------------------------------------------
|
||||||
|
|
||||||
table.data_readArray()
|
table.data_readArray()
|
||||||
|
|
||||||
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
coords = [np.unique(table.data[:,coordCol+i]) for i in range(3)]
|
||||||
mincorner = np.array(map(min,coords))
|
mincorner = np.array(map(min,coords))
|
||||||
maxcorner = np.array(map(max,coords))
|
maxcorner = np.array(map(max,coords))
|
||||||
grid = np.array(map(len,coords),'i')
|
grid = np.array(map(len,coords),'i')
|
||||||
|
@ -136,12 +146,11 @@ for name in filenames:
|
||||||
# ------------------------------------------ process value field -----------------------------------
|
# ------------------------------------------ process value field -----------------------------------
|
||||||
|
|
||||||
stack = [table.data]
|
stack = [table.data]
|
||||||
for type, data in items.iteritems():
|
for data in active:
|
||||||
for i,label in enumerate(data['active']):
|
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
stack.append(divFFT(size[::-1],
|
||||||
stack.append(divFFT(size[::-1],
|
table.data[:,table.label_indexrange(data['label'])].
|
||||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
reshape(grid[::-1].tolist()+data['shape'])))
|
||||||
reshape(grid[::-1].tolist()+data['shape'])))
|
|
||||||
|
|
||||||
# ------------------------------------------ output result -----------------------------------------
|
# ------------------------------------------ output result -----------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -63,7 +63,7 @@ parser.add_option('-p','--pos','--periodiccellcenter',
|
||||||
dest = 'pos',
|
dest = 'pos',
|
||||||
type = 'string', metavar = 'string',
|
type = 'string', metavar = 'string',
|
||||||
help = 'label of coordinates [%default]')
|
help = 'label of coordinates [%default]')
|
||||||
parser.add_option('-d','--data',
|
parser.add_option('-l','--label',
|
||||||
dest = 'data',
|
dest = 'data',
|
||||||
action = 'extend', metavar = '<string LIST>',
|
action = 'extend', metavar = '<string LIST>',
|
||||||
help = 'label(s) of field values')
|
help = 'label(s) of field values')
|
||||||
|
|
Loading…
Reference in New Issue