Merge remote-tracking branch 'origin/development' into clean-and-polish-damage
This commit is contained in:
commit
705ee908a2
|
@ -8,3 +8,10 @@
|
|||
*.jpg binary
|
||||
*.hdf5 binary
|
||||
*.pdf binary
|
||||
|
||||
# ignore files from MSC.Marc in language statistics
|
||||
installation/mods_MarcMentat/* linguist-vendored
|
||||
src/MarcInclude/* linguist-vendored
|
||||
|
||||
# ignore reference files for tests in language statistics
|
||||
python/tests/reference/* linguist-vendored
|
||||
|
|
|
@ -142,13 +142,6 @@ Pre_General:
|
|||
- master
|
||||
- release
|
||||
|
||||
grid_geometryPacking:
|
||||
stage: preprocessing
|
||||
script: grid_geometryPacking/test.py
|
||||
except:
|
||||
- master
|
||||
- release
|
||||
|
||||
###################################################################################################
|
||||
Post_AverageDown:
|
||||
stage: postprocessing
|
||||
|
|
|
@ -52,15 +52,15 @@ for filename in options.filenames:
|
|||
table = damask.Table(np.ones(np.product(results.grid),dtype=int)*int(inc[3:]),{'inc':(1,)})
|
||||
table.add('pos',coords.reshape((-1,3)))
|
||||
|
||||
results.set_visible('materialpoints',False)
|
||||
results.set_visible('constituents', True)
|
||||
results.pick('materialpoints',False)
|
||||
results.pick('constituents', True)
|
||||
for label in options.con:
|
||||
x = results.get_dataset_location(label)
|
||||
if len(x) != 0:
|
||||
table.add(label,results.read_dataset(x,0,plain=True).reshape((results.grid.prod(),-1)))
|
||||
|
||||
results.set_visible('constituents', False)
|
||||
results.set_visible('materialpoints',True)
|
||||
results.pick('constituents', False)
|
||||
results.pick('materialpoints',True)
|
||||
for label in options.mat:
|
||||
x = results.get_dataset_location(label)
|
||||
if len(x) != 0:
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -221,13 +221,9 @@ baseFile=os.path.splitext(os.path.basename(options.seedFile))[0]
|
|||
points = np.array(options.grid).prod().astype('float')
|
||||
|
||||
# ----------- calculate target distribution and bin edges
|
||||
targetGeomFile = os.path.splitext(os.path.basename(options.target))[0]+'.geom'
|
||||
targetGeomTable = damask.ASCIItable(targetGeomFile,None,labeled=False,readonly=True)
|
||||
targetGeomTable.head_read()
|
||||
info,devNull = targetGeomTable.head_getGeom()
|
||||
nMicrostructures = info['microstructures']
|
||||
targetVolFrac = np.bincount(targetGeomTable.microstructure_read(info['grid']))[1:nMicrostructures+1]/\
|
||||
float(info['grid'].prod())
|
||||
targetGeom = damask.Geom.from_file(os.path.splitext(os.path.basename(options.target))[0]+'.geom')
|
||||
nMicrostructures = len(np.unique(targetGeom.microstructure))
|
||||
targetVolFrac = np.bincount(targetGeom.microstructure.flatten())/targetGeom.grid.prod().astype(np.float)
|
||||
target=[]
|
||||
for i in range(1,nMicrostructures+1):
|
||||
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
|
||||
|
@ -251,13 +247,12 @@ initialGeomVFile = StringIO()
|
|||
initialGeomVFile.write(damask.util.execute('geom_fromVoronoiTessellation '+
|
||||
' -g '+' '.join(list(map(str, options.grid))),bestSeedsVFile)[0])
|
||||
initialGeomVFile.seek(0)
|
||||
initialGeomTable = damask.ASCIItable(initialGeomVFile,None,labeled=False,readonly=True)
|
||||
initialGeomTable.head_read()
|
||||
info,devNull = initialGeomTable.head_getGeom()
|
||||
initialGeom = damask.Geom.from_file(initialGeomVFile)
|
||||
|
||||
if info['microstructures'] != nMicrostructures: damask.util.croak('error. Microstructure count mismatch')
|
||||
if len(np.unique(targetGeom.microstructure)) != nMicrostructures:
|
||||
damask.util.croak('error. Microstructure count mismatch')
|
||||
|
||||
initialData = np.bincount(initialGeomTable.microstructure_read(info['grid']))/points
|
||||
initialData = np.bincount(initialGeom.microstructure.flatten())/points
|
||||
for i in range(nMicrostructures):
|
||||
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
|
||||
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
|
||||
|
@ -273,7 +268,7 @@ for i in range(nMicrostructures):
|
|||
|
||||
|
||||
if options.maxseeds < 1:
|
||||
maxSeeds = info['microstructures']
|
||||
maxSeeds = len(np.unique(initialGeom.microstructure))
|
||||
else:
|
||||
maxSeeds = options.maxseeds
|
||||
|
||||
|
|
|
@ -1,13 +0,0 @@
|
|||
DAMASK - The Düsseldorf Advanced Material Simulation Kit
|
||||
Visit damask.mpie.de for installation and usage instructions
|
||||
|
||||
CONTACT INFORMATION
|
||||
|
||||
Max-Planck-Institut für Eisenforschung GmbH
|
||||
Max-Planck-Str. 1
|
||||
40237 Düsseldorf
|
||||
Germany
|
||||
|
||||
Email: DAMASK@mpie.de
|
||||
https://damask.mpie.de
|
||||
https://magit1.mpie.de
|
|
@ -0,0 +1 @@
|
|||
../README
|
|
@ -131,12 +131,12 @@ def BallToCube(ball):
|
|||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p]
|
||||
|
||||
return cube
|
||||
|
||||
|
||||
def get_order(xyz):
|
||||
"""
|
||||
Get order of the coordinates.
|
||||
|
|
|
@ -13,9 +13,11 @@ from .asciitable import ASCIItable # noqa
|
|||
|
||||
from .config import Material # noqa
|
||||
from .colormaps import Colormap, Color # noqa
|
||||
from .orientation import Symmetry, Lattice, Rotation, Orientation # noqa
|
||||
from .dadf5 import DADF5 # noqa
|
||||
from .dadf5 import DADF5 as Result # noqa
|
||||
from .rotation import Rotation # noqa
|
||||
from .lattice import Symmetry, Lattice# noqa
|
||||
from .orientation import Orientation # noqa
|
||||
from .result import Result # noqa
|
||||
from .result import Result as DADF5 # noqa
|
||||
|
||||
from .geom import Geom # noqa
|
||||
from .solver import Solver # noqa
|
||||
|
|
|
@ -16,7 +16,7 @@ class ASCIItable():
|
|||
def __init__(self,
|
||||
name = None,
|
||||
outname = None,
|
||||
buffered = False, # flush writes
|
||||
buffered = False, # is ignored, only exists for compatibility reasons
|
||||
labeled = True, # assume table has labels
|
||||
readonly = False, # no reading from file
|
||||
):
|
||||
|
@ -63,7 +63,6 @@ class ASCIItable():
|
|||
except AttributeError:
|
||||
return str(string)
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def _quote(self,
|
||||
what):
|
||||
|
@ -71,6 +70,7 @@ class ASCIItable():
|
|||
return '{quote}{content}{quote}'.format(
|
||||
quote = ('"' if str(what)=='' or re.search(r"\s",str(what)) else ''),
|
||||
content = what)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def close(self,
|
||||
dismiss = False):
|
||||
|
@ -178,15 +178,11 @@ class ASCIItable():
|
|||
'grid': lambda x: int(x),
|
||||
'size': lambda x: float(x),
|
||||
'origin': lambda x: float(x),
|
||||
'homogenization': lambda x: int(x),
|
||||
'microstructures': lambda x: int(x),
|
||||
}
|
||||
info = {
|
||||
'grid': np.zeros(3,'i'),
|
||||
'size': np.zeros(3,'d'),
|
||||
'origin': np.zeros(3,'d'),
|
||||
'homogenization': 0,
|
||||
'microstructures': 0,
|
||||
}
|
||||
extra_header = []
|
||||
|
||||
|
@ -375,15 +371,6 @@ class ASCIItable():
|
|||
self.tags = list(self.__IO__['tags']) # restore label info found in header (as COPY, not link)
|
||||
self.__IO__['labeled'] = len(self.tags) > 0
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def data_skipLines(self,
|
||||
count):
|
||||
"""Wind forward by count number of lines."""
|
||||
for i in range(count):
|
||||
alive = self.data_read()
|
||||
|
||||
return alive
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def data_read(self,
|
||||
advance = True,
|
||||
|
@ -473,33 +460,3 @@ class ASCIItable():
|
|||
for item in what: self.data_append(item)
|
||||
except TypeError:
|
||||
self.data += [str(what)]
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def microstructure_read(self,
|
||||
grid,
|
||||
type = 'i',
|
||||
strict = False):
|
||||
"""Read microstructure data (from .geom format)."""
|
||||
def datatype(item):
|
||||
return int(item) if type.lower() == 'i' else float(item)
|
||||
|
||||
N = grid.prod() # expected number of microstructure indices in data
|
||||
microstructure = np.zeros(N,type) # initialize as flat array
|
||||
|
||||
i = 0
|
||||
while i < N and self.data_read():
|
||||
items = self.data
|
||||
if len(items) > 2:
|
||||
if items[1].lower() == 'of':
|
||||
items = np.ones(datatype(items[0]))*datatype(items[2])
|
||||
elif items[1].lower() == 'to':
|
||||
items = np.linspace(datatype(items[0]),datatype(items[2]),
|
||||
abs(datatype(items[2])-datatype(items[0]))+1,dtype=int)
|
||||
else: items = list(map(datatype,items))
|
||||
else: items = list(map(datatype,items))
|
||||
|
||||
s = min(len(items), N-i) # prevent overflow of microstructure array
|
||||
microstructure[i:i+s] = items[:s]
|
||||
i += len(items)
|
||||
|
||||
return (microstructure, i == N and not self.data_read()) if strict else microstructure # check for proper point count and end of file
|
||||
|
|
|
@ -10,7 +10,6 @@ class Color():
|
|||
]
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self,
|
||||
model = 'RGB',
|
||||
color = np.zeros(3,'d')):
|
||||
|
@ -49,20 +48,17 @@ class Color():
|
|||
self.color = np.array(color,'d')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __repr__(self):
|
||||
"""Color model and values."""
|
||||
return 'Model: %s Color: %s'%(self.model,str(self.color))
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __str__(self):
|
||||
"""Color model and values."""
|
||||
return self.__repr__()
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def convertTo(self,toModel = 'RGB'):
|
||||
def convert_to(self,toModel = 'RGB'):
|
||||
"""
|
||||
Change the color model permanently.
|
||||
|
||||
|
@ -88,8 +84,7 @@ class Color():
|
|||
return self
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def expressAs(self,asModel = 'RGB'):
|
||||
def express_as(self,asModel = 'RGB'):
|
||||
"""
|
||||
Return the color in a different model.
|
||||
|
||||
|
@ -99,7 +94,7 @@ class Color():
|
|||
color model
|
||||
|
||||
"""
|
||||
return self.__class__(self.model,self.color).convertTo(asModel)
|
||||
return self.__class__(self.model,self.color).convert_to(asModel)
|
||||
|
||||
|
||||
|
||||
|
@ -293,6 +288,7 @@ class Color():
|
|||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _XYZ2CIELAB(self):
|
||||
"""
|
||||
Convert CIE XYZ to CIE Lab.
|
||||
|
@ -498,13 +494,13 @@ class Colormap():
|
|||
def interpolate_linear(lo, hi, frac):
|
||||
"""Linear interpolation between lo and hi color at given fraction; output in model of lo color."""
|
||||
interpolation = (1.0 - frac) * np.array(lo.color[:]) \
|
||||
+ frac * np.array(hi.expressAs(lo.model).color[:])
|
||||
+ frac * np.array(hi.express_as(lo.model).color[:])
|
||||
|
||||
return Color(lo.model,interpolation)
|
||||
|
||||
if self.interpolate == 'perceptualuniform':
|
||||
return interpolate_Msh(self.left.expressAs('MSH').color,
|
||||
self.right.expressAs('MSH').color,fraction)
|
||||
return interpolate_Msh(self.left.express_as('MSH').color,
|
||||
self.right.express_as('MSH').color,fraction)
|
||||
elif self.interpolate == 'linear':
|
||||
return interpolate_linear(self.left,
|
||||
self.right,fraction)
|
||||
|
@ -528,7 +524,7 @@ class Colormap():
|
|||
"""
|
||||
format = format.lower() # consistent comparison basis
|
||||
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
|
||||
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).expressAs(model).color for i in range(steps)]
|
||||
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).express_as(model).color for i in range(steps)]
|
||||
if format == 'paraview':
|
||||
colormap = ['[\n {{\n "ColorSpace": "RGB", "Name": "{}", "DefaultMap": true,\n "RGBPoints" : ['.format(name)] \
|
||||
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) \
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -269,7 +269,7 @@ class Geom():
|
|||
comments = []
|
||||
for i,line in enumerate(content[:header_length]):
|
||||
items = line.lower().strip().split()
|
||||
key = items[0] if len(items) > 0 else ''
|
||||
key = items[0] if items else ''
|
||||
if key == 'grid':
|
||||
grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
|
||||
elif key == 'size':
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from scipy import spatial
|
||||
import numpy as np
|
||||
|
||||
def __ks(size,grid,first_order=False):
|
||||
def _ks(size,grid,first_order=False):
|
||||
"""
|
||||
Get wave numbers operator.
|
||||
|
||||
|
@ -34,7 +34,7 @@ def curl(size,field):
|
|||
|
||||
"""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field.shape[:3],True)
|
||||
k_s = _ks(size,field.shape[:3],True)
|
||||
|
||||
e = np.zeros((3, 3, 3))
|
||||
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol
|
||||
|
@ -58,7 +58,7 @@ def divergence(size,field):
|
|||
|
||||
"""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field.shape[:3],True)
|
||||
k_s = _ks(size,field.shape[:3],True)
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
divergence = (np.einsum('ijkl,ijkl ->ijk', k_s,field_fourier)*2.0j*np.pi if n == 3 else # vector, 3 -> 1
|
||||
|
@ -78,7 +78,7 @@ def gradient(size,field):
|
|||
|
||||
"""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field.shape[:3],True)
|
||||
k_s = _ks(size,field.shape[:3],True)
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
gradient = (np.einsum('ijkl,ijkm->ijkm', field_fourier,k_s)*2.0j*np.pi if n == 1 else # scalar, 1 -> 3
|
||||
|
@ -110,6 +110,7 @@ def cell_coord0(grid,size,origin=np.zeros(3)):
|
|||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
|
||||
def cell_displacement_fluct(size,F):
|
||||
"""
|
||||
Cell center displacement field from fluctuation part of the deformation gradient field.
|
||||
|
@ -124,7 +125,7 @@ def cell_displacement_fluct(size,F):
|
|||
"""
|
||||
integrator = 0.5j*size/np.pi
|
||||
|
||||
k_s = __ks(size,F.shape[:3],False)
|
||||
k_s = _ks(size,F.shape[:3],False)
|
||||
k_s_squared = np.einsum('...l,...l',k_s,k_s)
|
||||
k_s_squared[0,0,0] = 1.0
|
||||
|
||||
|
@ -136,6 +137,7 @@ def cell_displacement_fluct(size,F):
|
|||
|
||||
return np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
|
||||
|
||||
|
||||
def cell_displacement_avg(size,F):
|
||||
"""
|
||||
Cell center displacement field from average part of the deformation gradient field.
|
||||
|
@ -151,6 +153,7 @@ def cell_displacement_avg(size,F):
|
|||
F_avg = np.average(F,axis=(0,1,2))
|
||||
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),cell_coord0(F.shape[:3][::-1],size))
|
||||
|
||||
|
||||
def cell_displacement(size,F):
|
||||
"""
|
||||
Cell center displacement field from deformation gradient field.
|
||||
|
@ -165,6 +168,7 @@ def cell_displacement(size,F):
|
|||
"""
|
||||
return cell_displacement_avg(size,F) + cell_displacement_fluct(size,F)
|
||||
|
||||
|
||||
def cell_coord(size,F,origin=np.zeros(3)):
|
||||
"""
|
||||
Cell center positions.
|
||||
|
@ -181,6 +185,7 @@ def cell_coord(size,F,origin=np.zeros(3)):
|
|||
"""
|
||||
return cell_coord0(F.shape[:3][::-1],size,origin) + cell_displacement(size,F)
|
||||
|
||||
|
||||
def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
||||
"""
|
||||
Return grid 'DNA', i.e. grid, size, and origin from array of cell positions.
|
||||
|
@ -221,6 +226,7 @@ def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
|||
|
||||
return (grid,size,origin)
|
||||
|
||||
|
||||
def coord0_check(coord0):
|
||||
"""
|
||||
Check whether coordinates lie on a regular grid.
|
||||
|
@ -234,7 +240,6 @@ def coord0_check(coord0):
|
|||
cell_coord0_gridSizeOrigin(coord0,ordered=True)
|
||||
|
||||
|
||||
|
||||
def node_coord0(grid,size,origin=np.zeros(3)):
|
||||
"""
|
||||
Nodal positions (undeformed).
|
||||
|
@ -256,6 +261,7 @@ def node_coord0(grid,size,origin=np.zeros(3)):
|
|||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
|
||||
def node_displacement_fluct(size,F):
|
||||
"""
|
||||
Nodal displacement field from fluctuation part of the deformation gradient field.
|
||||
|
@ -270,6 +276,7 @@ def node_displacement_fluct(size,F):
|
|||
"""
|
||||
return cell_2_node(cell_displacement_fluct(size,F))
|
||||
|
||||
|
||||
def node_displacement_avg(size,F):
|
||||
"""
|
||||
Nodal displacement field from average part of the deformation gradient field.
|
||||
|
@ -285,6 +292,7 @@ def node_displacement_avg(size,F):
|
|||
F_avg = np.average(F,axis=(0,1,2))
|
||||
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),node_coord0(F.shape[:3][::-1],size))
|
||||
|
||||
|
||||
def node_displacement(size,F):
|
||||
"""
|
||||
Nodal displacement field from deformation gradient field.
|
||||
|
@ -299,6 +307,7 @@ def node_displacement(size,F):
|
|||
"""
|
||||
return node_displacement_avg(size,F) + node_displacement_fluct(size,F)
|
||||
|
||||
|
||||
def node_coord(size,F,origin=np.zeros(3)):
|
||||
"""
|
||||
Nodal positions.
|
||||
|
@ -315,6 +324,7 @@ def node_coord(size,F,origin=np.zeros(3)):
|
|||
"""
|
||||
return node_coord0(F.shape[:3][::-1],size,origin) + node_displacement(size,F)
|
||||
|
||||
|
||||
def cell_2_node(cell_data):
|
||||
"""Interpolate periodic cell data to nodal data."""
|
||||
n = ( cell_data + np.roll(cell_data,1,(0,1,2))
|
||||
|
@ -323,6 +333,7 @@ def cell_2_node(cell_data):
|
|||
|
||||
return np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
|
||||
|
||||
|
||||
def node_2_cell(node_data):
|
||||
"""Interpolate periodic nodal data to cell data."""
|
||||
c = ( node_data + np.roll(node_data,1,(0,1,2))
|
||||
|
@ -331,6 +342,7 @@ def node_2_cell(node_data):
|
|||
|
||||
return c[:-1,:-1,:-1]
|
||||
|
||||
|
||||
def node_coord0_gridSizeOrigin(coord0,ordered=False):
|
||||
"""
|
||||
Return grid 'DNA', i.e. grid, size, and origin from array of nodal positions.
|
||||
|
|
|
@ -0,0 +1,641 @@
|
|||
import numpy as np
|
||||
|
||||
from .rotation import Rotation
|
||||
|
||||
P = -1
|
||||
|
||||
# ******************************************************************************************
|
||||
class Symmetry:
|
||||
"""
|
||||
Symmetry operations for lattice systems.
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Crystal_system
|
||||
|
||||
"""
|
||||
|
||||
lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',]
|
||||
|
||||
def __init__(self, symmetry = None):
|
||||
"""
|
||||
Symmetry Definition.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
symmetry : str, optional
|
||||
label of the crystal system
|
||||
|
||||
"""
|
||||
if symmetry is not None and symmetry.lower() not in Symmetry.lattices:
|
||||
raise KeyError('Symmetry/crystal system "{}" is unknown'.format(symmetry))
|
||||
|
||||
self.lattice = symmetry.lower() if isinstance(symmetry,str) else symmetry
|
||||
|
||||
|
||||
def __copy__(self):
|
||||
"""Copy."""
|
||||
return self.__class__(self.lattice)
|
||||
|
||||
copy = __copy__
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Readable string."""
|
||||
return '{}'.format(self.lattice)
|
||||
|
||||
|
||||
def __eq__(self, other):
|
||||
"""
|
||||
Equal to other.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Symmetry
|
||||
Symmetry to check for equality.
|
||||
|
||||
"""
|
||||
return self.lattice == other.lattice
|
||||
|
||||
def __neq__(self, other):
|
||||
"""
|
||||
Not Equal to other.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Symmetry
|
||||
Symmetry to check for inequality.
|
||||
|
||||
"""
|
||||
return not self.__eq__(other)
|
||||
|
||||
def __cmp__(self,other):
|
||||
"""
|
||||
Linear ordering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Symmetry
|
||||
Symmetry to check for for order.
|
||||
|
||||
"""
|
||||
myOrder = Symmetry.lattices.index(self.lattice)
|
||||
otherOrder = Symmetry.lattices.index(other.lattice)
|
||||
return (myOrder > otherOrder) - (myOrder < otherOrder)
|
||||
|
||||
def symmetryOperations(self,members=[]):
|
||||
"""List (or single element) of symmetry operations as rotations."""
|
||||
if self.lattice == 'cubic':
|
||||
symQuats = [
|
||||
[ 1.0, 0.0, 0.0, 0.0 ],
|
||||
[ 0.0, 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, 0.0, 0.0, 1.0 ],
|
||||
[ 0.0, 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.0, -0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.5, 0.5, 0.5, 0.5 ],
|
||||
[-0.5, 0.5, 0.5, 0.5 ],
|
||||
[-0.5, 0.5, 0.5, -0.5 ],
|
||||
[-0.5, 0.5, -0.5, 0.5 ],
|
||||
[-0.5, -0.5, 0.5, 0.5 ],
|
||||
[-0.5, -0.5, 0.5, -0.5 ],
|
||||
[-0.5, -0.5, -0.5, 0.5 ],
|
||||
[-0.5, 0.5, -0.5, -0.5 ],
|
||||
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
[-0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2), 0.0 ],
|
||||
[-0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2), 0.0 ],
|
||||
[-0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0, 0.0 ],
|
||||
[-0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0, 0.0 ],
|
||||
]
|
||||
elif self.lattice == 'hexagonal':
|
||||
symQuats = [
|
||||
[ 1.0, 0.0, 0.0, 0.0 ],
|
||||
[-0.5*np.sqrt(3), 0.0, 0.0, -0.5 ],
|
||||
[ 0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
|
||||
[ 0.0, 0.0, 0.0, 1.0 ],
|
||||
[-0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
|
||||
[-0.5*np.sqrt(3), 0.0, 0.0, 0.5 ],
|
||||
[ 0.0, 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, -0.5*np.sqrt(3), 0.5, 0.0 ],
|
||||
[ 0.0, 0.5, -0.5*np.sqrt(3), 0.0 ],
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, -0.5, -0.5*np.sqrt(3), 0.0 ],
|
||||
[ 0.0, 0.5*np.sqrt(3), 0.5, 0.0 ],
|
||||
]
|
||||
elif self.lattice == 'tetragonal':
|
||||
symQuats = [
|
||||
[ 1.0, 0.0, 0.0, 0.0 ],
|
||||
[ 0.0, 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, 0.0, 0.0, 1.0 ],
|
||||
[ 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.0, -0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
]
|
||||
elif self.lattice == 'orthorhombic':
|
||||
symQuats = [
|
||||
[ 1.0,0.0,0.0,0.0 ],
|
||||
[ 0.0,1.0,0.0,0.0 ],
|
||||
[ 0.0,0.0,1.0,0.0 ],
|
||||
[ 0.0,0.0,0.0,1.0 ],
|
||||
]
|
||||
else:
|
||||
symQuats = [
|
||||
[ 1.0,0.0,0.0,0.0 ],
|
||||
]
|
||||
|
||||
symOps = list(map(Rotation,
|
||||
np.array(symQuats)[np.atleast_1d(members) if members != [] else range(len(symQuats))]))
|
||||
try:
|
||||
iter(members) # asking for (even empty) list of members?
|
||||
except TypeError:
|
||||
return symOps[0] # no, return rotation object
|
||||
else:
|
||||
return symOps # yes, return list of rotations
|
||||
|
||||
|
||||
def inFZ(self,rodrigues):
|
||||
"""
|
||||
Check whether given Rodrigues-Frank vector falls into fundamental zone of own symmetry.
|
||||
|
||||
Fundamental zone in Rodrigues space is point symmetric around origin.
|
||||
"""
|
||||
if (len(rodrigues) != 3):
|
||||
raise ValueError('Input is not a Rodrigues-Frank vector.\n')
|
||||
|
||||
if np.any(rodrigues == np.inf): return False
|
||||
|
||||
Rabs = abs(rodrigues)
|
||||
|
||||
if self.lattice == 'cubic':
|
||||
return np.sqrt(2.0)-1.0 >= Rabs[0] \
|
||||
and np.sqrt(2.0)-1.0 >= Rabs[1] \
|
||||
and np.sqrt(2.0)-1.0 >= Rabs[2] \
|
||||
and 1.0 >= Rabs[0] + Rabs[1] + Rabs[2]
|
||||
elif self.lattice == 'hexagonal':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2] \
|
||||
and 2.0 >= np.sqrt(3)*Rabs[0] + Rabs[1] \
|
||||
and 2.0 >= np.sqrt(3)*Rabs[1] + Rabs[0] \
|
||||
and 2.0 >= np.sqrt(3) + Rabs[2]
|
||||
elif self.lattice == 'tetragonal':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] \
|
||||
and np.sqrt(2.0) >= Rabs[0] + Rabs[1] \
|
||||
and np.sqrt(2.0) >= Rabs[2] + 1.0
|
||||
elif self.lattice == 'orthorhombic':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2]
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def inDisorientationSST(self,rodrigues):
|
||||
"""
|
||||
Check whether given Rodrigues-Frank vector (of misorientation) falls into standard stereographic triangle of own symmetry.
|
||||
|
||||
References
|
||||
----------
|
||||
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
|
||||
https://doi.org/10.1107/S0108767391006864
|
||||
|
||||
"""
|
||||
if (len(rodrigues) != 3):
|
||||
raise ValueError('Input is not a Rodrigues-Frank vector.\n')
|
||||
R = rodrigues
|
||||
|
||||
epsilon = 0.0
|
||||
if self.lattice == 'cubic':
|
||||
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'hexagonal':
|
||||
return R[0] >= np.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'tetragonal':
|
||||
return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'orthorhombic':
|
||||
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def inSST(self,
|
||||
vector,
|
||||
proper = False,
|
||||
color = False):
|
||||
"""
|
||||
Check whether given vector falls into standard stereographic triangle of own symmetry.
|
||||
|
||||
proper considers only vectors with z >= 0, hence uses two neighboring SSTs.
|
||||
Return inverse pole figure color if requested.
|
||||
Bases are computed from
|
||||
|
||||
basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,1.]/np.sqrt(2.), # direction of green
|
||||
[1.,1.,1.]/np.sqrt(3.)]).T), # direction of blue
|
||||
'hexagonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,0.], # direction of green
|
||||
[np.sqrt(3.),1.,0.]/np.sqrt(4.)]).T), # direction of blue
|
||||
'tetragonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,0.], # direction of green
|
||||
[1.,1.,0.]/np.sqrt(2.)]).T), # direction of blue
|
||||
'orthorhombic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,0.], # direction of green
|
||||
[0.,1.,0.]]).T), # direction of blue
|
||||
}
|
||||
"""
|
||||
if self.lattice == 'cubic':
|
||||
basis = {'improper':np.array([ [-1. , 0. , 1. ],
|
||||
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
|
||||
[ 0. , np.sqrt(3.) , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , -1. , 1. ],
|
||||
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
|
||||
[ np.sqrt(3.) , 0. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'hexagonal':
|
||||
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
||||
[ 1. , -np.sqrt(3.) , 0. ],
|
||||
[ 0. , 2. , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , 0. , 1. ],
|
||||
[-1. , np.sqrt(3.) , 0. ],
|
||||
[ np.sqrt(3.) , -1. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'tetragonal':
|
||||
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
||||
[ 1. , -1. , 0. ],
|
||||
[ 0. , np.sqrt(2.) , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , 0. , 1. ],
|
||||
[-1. , 1. , 0. ],
|
||||
[ np.sqrt(2.) , 0. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'orthorhombic':
|
||||
basis = {'improper':np.array([ [ 0., 0., 1.],
|
||||
[ 1., 0., 0.],
|
||||
[ 0., 1., 0.] ]),
|
||||
'proper':np.array([ [ 0., 0., 1.],
|
||||
[-1., 0., 0.],
|
||||
[ 0., 1., 0.] ]),
|
||||
}
|
||||
else: # direct exit for unspecified symmetry
|
||||
if color:
|
||||
return (True,np.zeros(3,'d'))
|
||||
else:
|
||||
return True
|
||||
|
||||
v = np.array(vector,dtype=float)
|
||||
if proper: # check both improper ...
|
||||
theComponents = np.around(np.dot(basis['improper'],v),12)
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
if not inSST: # ... and proper SST
|
||||
theComponents = np.around(np.dot(basis['proper'],v),12)
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
else:
|
||||
v[2] = abs(v[2]) # z component projects identical
|
||||
theComponents = np.around(np.dot(basis['improper'],v),12) # for positive and negative values
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
|
||||
if color: # have to return color array
|
||||
if inSST:
|
||||
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
||||
rgb = np.minimum(np.ones(3,dtype=float),rgb) # limit to maximum intensity
|
||||
rgb /= max(rgb) # normalize to (HS)V = 1
|
||||
else:
|
||||
rgb = np.zeros(3,dtype=float)
|
||||
return (inSST,rgb)
|
||||
else:
|
||||
return inSST
|
||||
|
||||
# code derived from https://github.com/ezag/pyeuclid
|
||||
# suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf
|
||||
|
||||
|
||||
# ******************************************************************************************
|
||||
class Lattice:
|
||||
"""
|
||||
Lattice system.
|
||||
|
||||
Currently, this contains only a mapping from Bravais lattice to symmetry
|
||||
and orientation relationships. It could include twin and slip systems.
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Bravais_lattice
|
||||
|
||||
"""
|
||||
|
||||
lattices = {
|
||||
'triclinic':{'symmetry':None},
|
||||
'bct':{'symmetry':'tetragonal'},
|
||||
'hex':{'symmetry':'hexagonal'},
|
||||
'fcc':{'symmetry':'cubic','c/a':1.0},
|
||||
'bcc':{'symmetry':'cubic','c/a':1.0},
|
||||
}
|
||||
|
||||
|
||||
def __init__(self, lattice):
|
||||
"""
|
||||
New lattice of given type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
lattice : str
|
||||
Bravais lattice.
|
||||
|
||||
"""
|
||||
self.lattice = lattice
|
||||
self.symmetry = Symmetry(self.lattices[lattice]['symmetry'])
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Report basic lattice information."""
|
||||
return 'Bravais lattice {} ({} symmetry)'.format(self.lattice,self.symmetry)
|
||||
|
||||
|
||||
# Kurdjomov--Sachs orientation relationship for fcc <-> bcc transformation
|
||||
# from S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
||||
# also see K. Kitahara et al., Acta Materialia 54:1279-1288, 2006
|
||||
KS = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ -1, 0, 1],[ -1, -1, 1]],
|
||||
[[ -1, 0, 1],[ -1, 1, -1]],
|
||||
[[ 0, 1, -1],[ -1, -1, 1]],
|
||||
[[ 0, 1, -1],[ -1, 1, -1]],
|
||||
[[ 1, -1, 0],[ -1, -1, 1]],
|
||||
[[ 1, -1, 0],[ -1, 1, -1]],
|
||||
[[ 1, 0, -1],[ -1, -1, 1]],
|
||||
[[ 1, 0, -1],[ -1, 1, -1]],
|
||||
[[ -1, -1, 0],[ -1, -1, 1]],
|
||||
[[ -1, -1, 0],[ -1, 1, -1]],
|
||||
[[ 0, 1, 1],[ -1, -1, 1]],
|
||||
[[ 0, 1, 1],[ -1, 1, -1]],
|
||||
[[ 0, -1, 1],[ -1, -1, 1]],
|
||||
[[ 0, -1, 1],[ -1, 1, -1]],
|
||||
[[ -1, 0, -1],[ -1, -1, 1]],
|
||||
[[ -1, 0, -1],[ -1, 1, -1]],
|
||||
[[ 1, 1, 0],[ -1, -1, 1]],
|
||||
[[ 1, 1, 0],[ -1, 1, -1]],
|
||||
[[ -1, 1, 0],[ -1, -1, 1]],
|
||||
[[ -1, 1, 0],[ -1, 1, -1]],
|
||||
[[ 0, -1, -1],[ -1, -1, 1]],
|
||||
[[ 0, -1, -1],[ -1, 1, -1]],
|
||||
[[ 1, 0, 1],[ -1, -1, 1]],
|
||||
[[ 1, 0, 1],[ -1, 1, -1]]],dtype='float')}
|
||||
|
||||
# Greninger--Troiano orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
GT = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 1, 1],[ 1, 0, 1]],
|
||||
[[ 1, 1, 1],[ 1, 1, 0]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ -1, 0, 1]],
|
||||
[[ -1, -1, 1],[ -1, -1, 0]],
|
||||
[[ -1, -1, 1],[ 0, -1, 1]],
|
||||
[[ -1, 1, 1],[ -1, 0, 1]],
|
||||
[[ -1, 1, 1],[ -1, 1, 0]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 1, 0, 1]],
|
||||
[[ 1, -1, 1],[ 1, -1, 0]],
|
||||
[[ 1, -1, 1],[ 0, -1, 1]],
|
||||
[[ 1, 1, 1],[ 1, 1, 0]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 1, 0, 1]],
|
||||
[[ -1, -1, 1],[ -1, -1, 0]],
|
||||
[[ -1, -1, 1],[ 0, -1, 1]],
|
||||
[[ -1, -1, 1],[ -1, 0, 1]],
|
||||
[[ -1, 1, 1],[ -1, 1, 0]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ -1, 0, 1]],
|
||||
[[ 1, -1, 1],[ 1, -1, 0]],
|
||||
[[ 1, -1, 1],[ 0, -1, 1]],
|
||||
[[ 1, -1, 1],[ 1, 0, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ -5,-12, 17],[-17, -7, 17]],
|
||||
[[ 17, -5,-12],[ 17,-17, -7]],
|
||||
[[-12, 17, -5],[ -7, 17,-17]],
|
||||
[[ 5, 12, 17],[ 17, 7, 17]],
|
||||
[[-17, 5,-12],[-17, 17, -7]],
|
||||
[[ 12,-17, -5],[ 7,-17,-17]],
|
||||
[[ -5, 12,-17],[-17, 7,-17]],
|
||||
[[ 17, 5, 12],[ 17, 17, 7]],
|
||||
[[-12,-17, 5],[ -7,-17, 17]],
|
||||
[[ 5,-12,-17],[ 17, -7,-17]],
|
||||
[[-17, -5, 12],[-17,-17, 7]],
|
||||
[[ 12, 17, 5],[ 7, 17, 17]],
|
||||
[[ -5, 17,-12],[-17, 17, -7]],
|
||||
[[-12, -5, 17],[ -7,-17, 17]],
|
||||
[[ 17,-12, -5],[ 17, -7,-17]],
|
||||
[[ 5,-17,-12],[ 17,-17, -7]],
|
||||
[[ 12, 5, 17],[ 7, 17, 17]],
|
||||
[[-17, 12, -5],[-17, 7,-17]],
|
||||
[[ -5,-17, 12],[-17,-17, 7]],
|
||||
[[-12, 5,-17],[ -7, 17,-17]],
|
||||
[[ 17, 12, 5],[ 17, 7, 17]],
|
||||
[[ 5, 17, 12],[ 17, 17, 7]],
|
||||
[[ 12, -5,-17],[ 7,-17,-17]],
|
||||
[[-17,-12, 5],[-17,-7, 17]]],dtype='float')}
|
||||
|
||||
# Greninger--Troiano' orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
GTprime = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 7, 17, 17],[ 12, 5, 17]],
|
||||
[[ 17, 7, 17],[ 17, 12, 5]],
|
||||
[[ 17, 17, 7],[ 5, 17, 12]],
|
||||
[[ -7,-17, 17],[-12, -5, 17]],
|
||||
[[-17, -7, 17],[-17,-12, 5]],
|
||||
[[-17,-17, 7],[ -5,-17, 12]],
|
||||
[[ 7,-17,-17],[ 12, -5,-17]],
|
||||
[[ 17, -7,-17],[ 17,-12, -5]],
|
||||
[[ 17,-17, -7],[ 5,-17,-12]],
|
||||
[[ -7, 17,-17],[-12, 5,-17]],
|
||||
[[-17, 7,-17],[-17, 12, -5]],
|
||||
[[-17, 17, -7],[ -5, 17,-12]],
|
||||
[[ 7, 17, 17],[ 12, 17, 5]],
|
||||
[[ 17, 7, 17],[ 5, 12, 17]],
|
||||
[[ 17, 17, 7],[ 17, 5, 12]],
|
||||
[[ -7,-17, 17],[-12,-17, 5]],
|
||||
[[-17, -7, 17],[ -5,-12, 17]],
|
||||
[[-17,-17, 7],[-17, -5, 12]],
|
||||
[[ 7,-17,-17],[ 12,-17, -5]],
|
||||
[[ 17, -7,-17],[ 5, -12,-17]],
|
||||
[[ 17,-17, -7],[ 17, -5,-12]],
|
||||
[[ -7, 17,-17],[-12, 17, -5]],
|
||||
[[-17, 7,-17],[ -5, 12,-17]],
|
||||
[[-17, 17, -7],[-17, 5,-12]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 0, 1, -1],[ 1, 1, -1]],
|
||||
[[ -1, 0, 1],[ -1, 1, 1]],
|
||||
[[ 1, -1, 0],[ 1, -1, 1]],
|
||||
[[ 0, -1, -1],[ -1, -1, -1]],
|
||||
[[ 1, 0, 1],[ 1, -1, 1]],
|
||||
[[ 1, -1, 0],[ 1, -1, -1]],
|
||||
[[ 0, 1, -1],[ -1, 1, -1]],
|
||||
[[ 1, 0, 1],[ 1, 1, 1]],
|
||||
[[ -1, -1, 0],[ -1, -1, 1]],
|
||||
[[ 0, -1, -1],[ 1, -1, -1]],
|
||||
[[ -1, 0, 1],[ -1, -1, 1]],
|
||||
[[ -1, -1, 0],[ -1, -1, -1]],
|
||||
[[ 0, -1, 1],[ 1, -1, 1]],
|
||||
[[ 1, 0, -1],[ 1, 1, -1]],
|
||||
[[ -1, 1, 0],[ -1, 1, 1]],
|
||||
[[ 0, 1, 1],[ -1, 1, 1]],
|
||||
[[ -1, 0, -1],[ -1, -1, -1]],
|
||||
[[ -1, 1, 0],[ -1, 1, -1]],
|
||||
[[ 0, -1, 1],[ -1, -1, 1]],
|
||||
[[ -1, 0, -1],[ -1, 1, -1]],
|
||||
[[ 1, 1, 0],[ 1, 1, 1]],
|
||||
[[ 0, 1, 1],[ 1, 1, 1]],
|
||||
[[ 1, 0, -1],[ 1, -1, -1]],
|
||||
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
||||
|
||||
# Nishiyama--Wassermann orientation relationship for fcc <-> bcc transformation
|
||||
# from H. Kitahara et al., Materials Characterization 54:378-386, 2005
|
||||
NW = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ 0, 1, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 2, -1, -1],[ 0, -1, 1]],
|
||||
[[ -1, 2, -1],[ 0, -1, 1]],
|
||||
[[ -1, -1, 2],[ 0, -1, 1]],
|
||||
[[ -2, -1, -1],[ 0, -1, 1]],
|
||||
[[ 1, 2, -1],[ 0, -1, 1]],
|
||||
[[ 1, -1, 2],[ 0, -1, 1]],
|
||||
[[ 2, 1, -1],[ 0, -1, 1]],
|
||||
[[ -1, -2, -1],[ 0, -1, 1]],
|
||||
[[ -1, 1, 2],[ 0, -1, 1]],
|
||||
[[ 2, -1, 1],[ 0, -1, 1]], #It is wrong in the paper, but matrix is correct
|
||||
[[ -1, 2, 1],[ 0, -1, 1]],
|
||||
[[ -1, -1, -2],[ 0, -1, 1]]],dtype='float')}
|
||||
|
||||
# Pitsch orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Acta Materialia 53:1179-1190, 2005
|
||||
Pitsch = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 0, 1, 0],[ -1, 0, 1]],
|
||||
[[ 0, 0, 1],[ 1, -1, 0]],
|
||||
[[ 1, 0, 0],[ 0, 1, -1]],
|
||||
[[ 1, 0, 0],[ 0, -1, -1]],
|
||||
[[ 0, 1, 0],[ -1, 0, -1]],
|
||||
[[ 0, 0, 1],[ -1, -1, 0]],
|
||||
[[ 0, 1, 0],[ -1, 0, -1]],
|
||||
[[ 0, 0, 1],[ -1, -1, 0]],
|
||||
[[ 1, 0, 0],[ 0, -1, -1]],
|
||||
[[ 1, 0, 0],[ 0, -1, 1]],
|
||||
[[ 0, 1, 0],[ 1, 0, -1]],
|
||||
[[ 0, 0, 1],[ -1, 1, 0]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 1, 0, 1],[ 1, -1, 1]],
|
||||
[[ 1, 1, 0],[ 1, 1, -1]],
|
||||
[[ 0, 1, 1],[ -1, 1, 1]],
|
||||
[[ 0, 1, -1],[ -1, 1, -1]],
|
||||
[[ -1, 0, 1],[ -1, -1, 1]],
|
||||
[[ 1, -1, 0],[ 1, -1, -1]],
|
||||
[[ 1, 0, -1],[ 1, -1, -1]],
|
||||
[[ -1, 1, 0],[ -1, 1, -1]],
|
||||
[[ 0, -1, 1],[ -1, -1, 1]],
|
||||
[[ 0, 1, 1],[ -1, 1, 1]],
|
||||
[[ 1, 0, 1],[ 1, -1, 1]],
|
||||
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
||||
|
||||
# Bain orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
Bain = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 0, 0],[ 1, 0, 0]],
|
||||
[[ 0, 1, 0],[ 0, 1, 0]],
|
||||
[[ 0, 0, 1],[ 0, 0, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 0, 1, 0],[ 0, 1, 1]],
|
||||
[[ 0, 0, 1],[ 1, 0, 1]],
|
||||
[[ 1, 0, 0],[ 1, 1, 0]]],dtype='float')}
|
||||
|
||||
def relationOperations(self,model):
|
||||
"""
|
||||
Crystallographic orientation relationships for phase transformations.
|
||||
|
||||
References
|
||||
----------
|
||||
S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
||||
https://doi.org/10.1016/j.jallcom.2012.02.004
|
||||
|
||||
K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006
|
||||
https://doi.org/10.1016/j.actamat.2005.11.001
|
||||
|
||||
Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
https://doi.org/10.1107/S0021889805038276
|
||||
|
||||
H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005
|
||||
https://doi.org/10.1016/j.matchar.2004.12.015
|
||||
|
||||
Y. He et al., Acta Materialia 53(4):1179-1190, 2005
|
||||
https://doi.org/10.1016/j.actamat.2004.11.021
|
||||
|
||||
"""
|
||||
models={'KS':self.KS, 'GT':self.GT, 'GT_prime':self.GTprime,
|
||||
'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain}
|
||||
try:
|
||||
relationship = models[model]
|
||||
except KeyError :
|
||||
raise KeyError('Orientation relationship "{}" is unknown'.format(model))
|
||||
|
||||
if self.lattice not in relationship['mapping']:
|
||||
raise ValueError('Relationship "{}" not supported for lattice "{}"'.format(model,self.lattice))
|
||||
|
||||
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()), # target lattice
|
||||
'rotations':[] }
|
||||
|
||||
myPlane_id = relationship['mapping'][self.lattice]
|
||||
otherPlane_id = (myPlane_id+1)%2
|
||||
myDir_id = myPlane_id +2
|
||||
otherDir_id = otherPlane_id +2
|
||||
|
||||
for miller in np.hstack((relationship['planes'],relationship['directions'])):
|
||||
myPlane = miller[myPlane_id]/ np.linalg.norm(miller[myPlane_id])
|
||||
myDir = miller[myDir_id]/ np.linalg.norm(miller[myDir_id])
|
||||
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane])
|
||||
|
||||
otherPlane = miller[otherPlane_id]/ np.linalg.norm(miller[otherPlane_id])
|
||||
otherDir = miller[otherDir_id]/ np.linalg.norm(miller[otherDir_id])
|
||||
otherMatrix = np.array([otherDir,np.cross(otherPlane,otherDir),otherPlane])
|
||||
|
||||
r['rotations'].append(Rotation.fromMatrix(np.dot(otherMatrix.T,myMatrix)))
|
||||
|
||||
return r
|
|
@ -21,21 +21,21 @@ def Cauchy(P,F):
|
|||
return symmetric(sigma)
|
||||
|
||||
|
||||
def deviatoric_part(x):
|
||||
def deviatoric_part(T):
|
||||
"""
|
||||
Return deviatoric part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the deviatoric part is computed.
|
||||
|
||||
"""
|
||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||
return T - np.eye(3)*spherical_part(T) if np.shape(T) == (3,3) else \
|
||||
T - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[T.shape[0],3,3]),spherical_part(T))
|
||||
|
||||
|
||||
def eigenvalues(x):
|
||||
def eigenvalues(T_sym):
|
||||
"""
|
||||
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||
|
||||
|
@ -44,14 +44,14 @@ def eigenvalues(x):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T_sym : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvalues are computed.
|
||||
|
||||
"""
|
||||
return np.linalg.eigvalsh(symmetric(x))
|
||||
return np.linalg.eigvalsh(symmetric(T_sym))
|
||||
|
||||
|
||||
def eigenvectors(x,RHS=False):
|
||||
def eigenvectors(T_sym,RHS=False):
|
||||
"""
|
||||
Return eigenvectors of a symmetric tensor.
|
||||
|
||||
|
@ -59,47 +59,47 @@ def eigenvectors(x,RHS=False):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T_sym : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the eigenvectors are computed.
|
||||
RHS: bool, optional
|
||||
Enforce right-handed coordinate system. Default is False.
|
||||
|
||||
"""
|
||||
(u,v) = np.linalg.eigh(symmetric(x))
|
||||
(u,v) = np.linalg.eigh(symmetric(T_sym))
|
||||
|
||||
if RHS:
|
||||
if np.shape(x) == (3,3):
|
||||
if np.shape(T_sym) == (3,3):
|
||||
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
|
||||
else:
|
||||
v[np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||
return v
|
||||
|
||||
|
||||
def left_stretch(x):
|
||||
def left_stretch(T):
|
||||
"""
|
||||
Return the left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the left stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'V')[0]
|
||||
return __polar_decomposition(T,'V')[0]
|
||||
|
||||
|
||||
def maximum_shear(x):
|
||||
def maximum_shear(T_sym):
|
||||
"""
|
||||
Return the maximum shear component of a symmetric tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T_sym : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the maximum shear is computed.
|
||||
|
||||
"""
|
||||
w = eigenvalues(x)
|
||||
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
|
||||
w = eigenvalues(T_sym)
|
||||
return (w[0] - w[2])*0.5 if np.shape(T_sym) == (3,3) else \
|
||||
(w[:,0] - w[:,2])*0.5
|
||||
|
||||
|
||||
|
@ -147,53 +147,54 @@ def PK2(P,F):
|
|||
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
|
||||
return symmetric(S)
|
||||
|
||||
def right_stretch(x):
|
||||
|
||||
def right_stretch(T):
|
||||
"""
|
||||
Return the right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the right stretch is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'U')[0]
|
||||
return __polar_decomposition(T,'U')[0]
|
||||
|
||||
|
||||
def rotational_part(x):
|
||||
def rotational_part(T):
|
||||
"""
|
||||
Return the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the rotational part is computed.
|
||||
|
||||
"""
|
||||
return __polar_decomposition(x,'R')[0]
|
||||
return __polar_decomposition(T,'R')[0]
|
||||
|
||||
|
||||
def spherical_part(x,tensor=False):
|
||||
def spherical_part(T,tensor=False):
|
||||
"""
|
||||
Return spherical (hydrostatic) part of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the hydrostatic part is computed.
|
||||
tensor : bool, optional
|
||||
Map spherical part onto identity tensor. Default is false
|
||||
|
||||
"""
|
||||
if x.shape == (3,3):
|
||||
sph = np.trace(x)/3.0
|
||||
if T.shape == (3,3):
|
||||
sph = np.trace(T)/3.0
|
||||
return sph if not tensor else np.eye(3)*sph
|
||||
else:
|
||||
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
||||
sph = np.trace(T,axis1=1,axis2=2)/3.0
|
||||
if not tensor:
|
||||
return sph
|
||||
else:
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(T.shape[0],3,3)),sph)
|
||||
|
||||
|
||||
def strain_tensor(F,t,m):
|
||||
|
@ -234,73 +235,73 @@ def strain_tensor(F,t,m):
|
|||
eps
|
||||
|
||||
|
||||
def symmetric(x):
|
||||
def symmetric(T):
|
||||
"""
|
||||
Return the symmetrized tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the symmetrized values are computed.
|
||||
|
||||
"""
|
||||
return (x+transpose(x))*0.5
|
||||
return (T+transpose(T))*0.5
|
||||
|
||||
|
||||
def transpose(x):
|
||||
def transpose(T):
|
||||
"""
|
||||
Return the transpose of a tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the transpose is computed.
|
||||
|
||||
"""
|
||||
return x.T if np.shape(x) == (3,3) else \
|
||||
np.transpose(x,(0,2,1))
|
||||
return T.T if np.shape(T) == (3,3) else \
|
||||
np.transpose(T,(0,2,1))
|
||||
|
||||
|
||||
def __polar_decomposition(x,requested):
|
||||
def __polar_decomposition(T,requested):
|
||||
"""
|
||||
Singular value decomposition.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T : numpy.array of shape (:,3,3) or (3,3)
|
||||
Tensor of which the singular values are computed.
|
||||
requested : iterable of str
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
|
||||
"""
|
||||
u, s, vh = np.linalg.svd(x)
|
||||
R = np.dot(u,vh) if np.shape(x) == (3,3) else \
|
||||
u, s, vh = np.linalg.svd(T)
|
||||
R = np.dot(u,vh) if np.shape(T) == (3,3) else \
|
||||
np.einsum('ijk,ikl->ijl',u,vh)
|
||||
|
||||
output = []
|
||||
if 'R' in requested:
|
||||
output.append(R)
|
||||
if 'V' in requested:
|
||||
output.append(np.dot(x,R.T) if np.shape(x) == (3,3) else np.einsum('ijk,ilk->ijl',x,R))
|
||||
output.append(np.dot(T,R.T) if np.shape(T) == (3,3) else np.einsum('ijk,ilk->ijl',T,R))
|
||||
if 'U' in requested:
|
||||
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
||||
output.append(np.dot(R.T,T) if np.shape(T) == (3,3) else np.einsum('ikj,ikl->ijl',R,T))
|
||||
|
||||
return tuple(output)
|
||||
|
||||
|
||||
def __Mises(x,s):
|
||||
def __Mises(T_sym,s):
|
||||
"""
|
||||
Base equation for Mises equivalent of a stres or strain tensor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array of shape (:,3,3) or (3,3)
|
||||
T_sym : numpy.array of shape (:,3,3) or (3,3)
|
||||
Symmetric tensor of which the von Mises equivalent is computed.
|
||||
s : float
|
||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||
|
||||
"""
|
||||
d = deviatoric_part(x)
|
||||
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \
|
||||
d = deviatoric_part(T_sym)
|
||||
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(T_sym) == (3,3) else \
|
||||
np.sqrt(s*np.einsum('ijk->i',d**2.0))
|
||||
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,837 @@
|
|||
import numpy as np
|
||||
|
||||
from . import Lambert
|
||||
|
||||
P = -1
|
||||
|
||||
def iszero(a):
|
||||
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
||||
|
||||
|
||||
class Rotation:
|
||||
u"""
|
||||
Orientation stored with functionality for conversion to different representations.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015
|
||||
https://doi.org/10.1088/0965-0393/23/8/083501
|
||||
|
||||
Conventions
|
||||
-----------
|
||||
Convention 1: Coordinate frames are right-handed.
|
||||
Convention 2: A rotation angle ω is taken to be positive for a counterclockwise rotation
|
||||
when viewing from the end point of the rotation axis towards the origin.
|
||||
Convention 3: Rotations will be interpreted in the passive sense.
|
||||
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
||||
with the angular ranges as [0, 2π],[0, π],[0, 2π].
|
||||
Convention 5: The rotation angle ω is limited to the interval [0, π].
|
||||
Convention 6: the real part of a quaternion is positive, Re(q) > 0
|
||||
Convention 7: P = -1 (as default).
|
||||
|
||||
Usage
|
||||
-----
|
||||
Vector "a" (defined in coordinate system "A") is passively rotated
|
||||
resulting in new coordinates "b" when expressed in system "B".
|
||||
b = Q * a
|
||||
b = np.dot(Q.asMatrix(),a)
|
||||
|
||||
"""
|
||||
|
||||
__slots__ = ['quaternion']
|
||||
|
||||
def __init__(self,quaternion = np.array([1.0,0.0,0.0,0.0])):
|
||||
"""
|
||||
Initializes to identity unless specified.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
quaternion : numpy.ndarray, optional
|
||||
Unit quaternion that follows the conventions. Use .fromQuaternion to perform a sanity check.
|
||||
|
||||
"""
|
||||
self.quaternion = quaternion.copy()
|
||||
|
||||
def __copy__(self):
|
||||
"""Copy."""
|
||||
return self.__class__(self.quaternion)
|
||||
|
||||
copy = __copy__
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles."""
|
||||
return '\n'.join([
|
||||
'Quaternion: (real={:.3f}, imag=<{:+.3f}, {:+.3f}, {:+.3f}>)'.format(*(self.quaternion)),
|
||||
'Matrix:\n{}'.format(self.asMatrix()),
|
||||
'Bunge Eulers / deg: ({:3.2f}, {:3.2f}, {:3.2f})'.format(*self.asEulers(degrees=True)),
|
||||
])
|
||||
|
||||
|
||||
def __mul__(self, other):
|
||||
"""
|
||||
Multiplication.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : numpy.ndarray or Rotation
|
||||
Vector, second or fourth order tensor, or rotation object that is rotated.
|
||||
|
||||
Todo
|
||||
----
|
||||
Document details active/passive)
|
||||
considere rotation of (3,3,3,3)-matrix
|
||||
|
||||
"""
|
||||
if isinstance(other, Rotation): # rotate a rotation
|
||||
self_q = self.quaternion[0]
|
||||
self_p = self.quaternion[1:]
|
||||
other_q = other.quaternion[0]
|
||||
other_p = other.quaternion[1:]
|
||||
R = self.__class__(np.append(self_q*other_q - np.dot(self_p,other_p),
|
||||
self_q*other_p + other_q*self_p + P * np.cross(self_p,other_p)))
|
||||
return R.standardize()
|
||||
elif isinstance(other, (tuple,np.ndarray)):
|
||||
if isinstance(other,tuple) or other.shape == (3,): # rotate a single (3)-vector or meshgrid
|
||||
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
|
||||
B = 2.0 * ( self.quaternion[1]*other[0]
|
||||
+ self.quaternion[2]*other[1]
|
||||
+ self.quaternion[3]*other[2])
|
||||
C = 2.0 * P*self.quaternion[0]
|
||||
|
||||
return np.array([
|
||||
A*other[0] + B*self.quaternion[1] + C*(self.quaternion[2]*other[2] - self.quaternion[3]*other[1]),
|
||||
A*other[1] + B*self.quaternion[2] + C*(self.quaternion[3]*other[0] - self.quaternion[1]*other[2]),
|
||||
A*other[2] + B*self.quaternion[3] + C*(self.quaternion[1]*other[1] - self.quaternion[2]*other[0]),
|
||||
])
|
||||
elif other.shape == (3,3,): # rotate a single (3x3)-matrix
|
||||
return np.dot(self.asMatrix(),np.dot(other,self.asMatrix().T))
|
||||
elif other.shape == (3,3,3,3,):
|
||||
raise NotImplementedError
|
||||
else:
|
||||
return NotImplemented
|
||||
else:
|
||||
return NotImplemented
|
||||
|
||||
|
||||
def inverse(self):
|
||||
"""In-place inverse rotation/backward rotation."""
|
||||
self.quaternion[1:] *= -1
|
||||
return self
|
||||
|
||||
def inversed(self):
|
||||
"""Inverse rotation/backward rotation."""
|
||||
return self.copy().inverse()
|
||||
|
||||
|
||||
def standardize(self):
|
||||
"""In-place quaternion representation with positive q."""
|
||||
if self.quaternion[0] < 0.0: self.quaternion*=-1
|
||||
return self
|
||||
|
||||
def standardized(self):
|
||||
"""Quaternion representation with positive q."""
|
||||
return self.copy().standardize()
|
||||
|
||||
|
||||
def misorientation(self,other):
|
||||
"""
|
||||
Get Misorientation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Rotation
|
||||
Rotation to which the misorientation is computed.
|
||||
|
||||
"""
|
||||
return other*self.inversed()
|
||||
|
||||
|
||||
def average(self,other):
|
||||
"""
|
||||
Calculate the average rotation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Rotation
|
||||
Rotation from which the average is rotated.
|
||||
|
||||
"""
|
||||
return Rotation.fromAverage([self,other])
|
||||
|
||||
|
||||
################################################################################################
|
||||
# convert to different orientation representations (numpy arrays)
|
||||
|
||||
def asQuaternion(self):
|
||||
"""
|
||||
Unit quaternion [q, p_1, p_2, p_3] unless quaternion == True: damask.quaternion object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
quaternion : bool, optional
|
||||
return quaternion as DAMASK object.
|
||||
|
||||
"""
|
||||
return self.quaternion
|
||||
|
||||
def asEulers(self,
|
||||
degrees = False):
|
||||
"""
|
||||
Bunge-Euler angles: (φ_1, ϕ, φ_2).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
degrees : bool, optional
|
||||
return angles in degrees.
|
||||
|
||||
"""
|
||||
eu = Rotation.qu2eu(self.quaternion)
|
||||
if degrees: eu = np.degrees(eu)
|
||||
return eu
|
||||
|
||||
def asAxisAngle(self,
|
||||
degrees = False,
|
||||
pair = False):
|
||||
"""
|
||||
Axis angle representation [n_1, n_2, n_3, ω] unless pair == True: ([n_1, n_2, n_3], ω).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
degrees : bool, optional
|
||||
return rotation angle in degrees.
|
||||
pair : bool, optional
|
||||
return tuple of axis and angle.
|
||||
|
||||
"""
|
||||
ax = Rotation.qu2ax(self.quaternion)
|
||||
if degrees: ax[3] = np.degrees(ax[3])
|
||||
return (ax[:3],np.degrees(ax[3])) if pair else ax
|
||||
|
||||
def asMatrix(self):
|
||||
"""Rotation matrix."""
|
||||
return Rotation.qu2om(self.quaternion)
|
||||
|
||||
def asRodrigues(self,
|
||||
vector = False):
|
||||
"""
|
||||
Rodrigues-Frank vector representation [n_1, n_2, n_3, tan(ω/2)] unless vector == True: [n_1, n_2, n_3] * tan(ω/2).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vector : bool, optional
|
||||
return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2).
|
||||
|
||||
"""
|
||||
ro = Rotation.qu2ro(self.quaternion)
|
||||
return ro[:3]*ro[3] if vector else ro
|
||||
|
||||
def asHomochoric(self):
|
||||
"""Homochoric vector: (h_1, h_2, h_3)."""
|
||||
return Rotation.qu2ho(self.quaternion)
|
||||
|
||||
def asCubochoric(self):
|
||||
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
||||
return Rotation.qu2cu(self.quaternion)
|
||||
|
||||
def asM(self):
|
||||
"""
|
||||
Intermediate representation supporting quaternion averaging.
|
||||
|
||||
References
|
||||
----------
|
||||
F. Landis Markley et al., Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007
|
||||
https://doi.org/10.2514/1.28949
|
||||
|
||||
"""
|
||||
return np.outer(self.quaternion,self.quaternion)
|
||||
|
||||
|
||||
################################################################################################
|
||||
# static constructors. The input data needs to follow the convention, options allow to
|
||||
# relax these convections
|
||||
@staticmethod
|
||||
def fromQuaternion(quaternion,
|
||||
acceptHomomorph = False,
|
||||
P = -1):
|
||||
|
||||
qu = quaternion if isinstance(quaternion,np.ndarray) and quaternion.dtype == np.dtype(float) \
|
||||
else np.array(quaternion,dtype=float)
|
||||
if P > 0: qu[1:4] *= -1 # convert from P=1 to P=-1
|
||||
if qu[0] < 0.0:
|
||||
if acceptHomomorph:
|
||||
qu *= -1.
|
||||
else:
|
||||
raise ValueError('Quaternion has negative first component.\n{}'.format(qu[0]))
|
||||
if not np.isclose(np.linalg.norm(qu), 1.0):
|
||||
raise ValueError('Quaternion is not of unit length.\n{} {} {} {}'.format(*qu))
|
||||
|
||||
return Rotation(qu)
|
||||
|
||||
@staticmethod
|
||||
def fromEulers(eulers,
|
||||
degrees = False):
|
||||
|
||||
eu = eulers if isinstance(eulers, np.ndarray) and eulers.dtype == np.dtype(float) \
|
||||
else np.array(eulers,dtype=float)
|
||||
eu = np.radians(eu) if degrees else eu
|
||||
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or eu[1] > np.pi:
|
||||
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].\n{} {} {}.'.format(*eu))
|
||||
|
||||
return Rotation(Rotation.eu2qu(eu))
|
||||
|
||||
@staticmethod
|
||||
def fromAxisAngle(angleAxis,
|
||||
degrees = False,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
|
||||
ax = angleAxis if isinstance(angleAxis, np.ndarray) and angleAxis.dtype == np.dtype(float) \
|
||||
else np.array(angleAxis,dtype=float)
|
||||
if P > 0: ax[0:3] *= -1 # convert from P=1 to P=-1
|
||||
if degrees: ax[ 3] = np.radians(ax[3])
|
||||
if normalise: ax[0:3] /= np.linalg.norm(ax[0:3])
|
||||
if ax[3] < 0.0 or ax[3] > np.pi:
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π].\n'.format(ax[3]))
|
||||
if not np.isclose(np.linalg.norm(ax[0:3]), 1.0):
|
||||
raise ValueError('Axis angle rotation axis is not of unit length.\n{} {} {}'.format(*ax[0:3]))
|
||||
|
||||
return Rotation(Rotation.ax2qu(ax))
|
||||
|
||||
@staticmethod
|
||||
def fromBasis(basis,
|
||||
orthonormal = True,
|
||||
reciprocal = False,
|
||||
):
|
||||
|
||||
om = basis if isinstance(basis, np.ndarray) else np.array(basis).reshape((3,3))
|
||||
if reciprocal:
|
||||
om = np.linalg.inv(om.T/np.pi) # transform reciprocal basis set
|
||||
orthonormal = False # contains stretch
|
||||
if not orthonormal:
|
||||
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition
|
||||
om = np.dot(U,Vh)
|
||||
if not np.isclose(np.linalg.det(om),1.0):
|
||||
raise ValueError('matrix is not a proper rotation.\n{}'.format(om))
|
||||
if not np.isclose(np.dot(om[0],om[1]), 0.0) \
|
||||
or not np.isclose(np.dot(om[1],om[2]), 0.0) \
|
||||
or not np.isclose(np.dot(om[2],om[0]), 0.0):
|
||||
raise ValueError('matrix is not orthogonal.\n{}'.format(om))
|
||||
|
||||
return Rotation(Rotation.om2qu(om))
|
||||
|
||||
@staticmethod
|
||||
def fromMatrix(om,
|
||||
):
|
||||
|
||||
return Rotation.fromBasis(om)
|
||||
|
||||
@staticmethod
|
||||
def fromRodrigues(rodrigues,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
|
||||
ro = rodrigues if isinstance(rodrigues, np.ndarray) and rodrigues.dtype == np.dtype(float) \
|
||||
else np.array(rodrigues,dtype=float)
|
||||
if P > 0: ro[0:3] *= -1 # convert from P=1 to P=-1
|
||||
if normalise: ro[0:3] /= np.linalg.norm(ro[0:3])
|
||||
if not np.isclose(np.linalg.norm(ro[0:3]), 1.0):
|
||||
raise ValueError('Rodrigues rotation axis is not of unit length.\n{} {} {}'.format(*ro[0:3]))
|
||||
if ro[3] < 0.0:
|
||||
raise ValueError('Rodriques rotation angle not positive.\n'.format(ro[3]))
|
||||
|
||||
return Rotation(Rotation.ro2qu(ro))
|
||||
|
||||
@staticmethod
|
||||
def fromHomochoric(homochoric,
|
||||
P = -1):
|
||||
|
||||
ho = homochoric if isinstance(homochoric, np.ndarray) and homochoric.dtype == np.dtype(float) \
|
||||
else np.array(homochoric,dtype=float)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
||||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
@staticmethod
|
||||
def fromCubochoric(cubochoric,
|
||||
P = -1):
|
||||
|
||||
cu = cubochoric if isinstance(cubochoric, np.ndarray) and cubochoric.dtype == np.dtype(float) \
|
||||
else np.array(cubochoric,dtype=float)
|
||||
ho = Rotation.cu2ho(cu)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
||||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fromAverage(rotations,
|
||||
weights = []):
|
||||
"""
|
||||
Average rotation.
|
||||
|
||||
References
|
||||
----------
|
||||
F. Landis Markley et al., Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007
|
||||
https://doi.org/10.2514/1.28949
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rotations : list of Rotations
|
||||
Rotations to average from
|
||||
weights : list of floats, optional
|
||||
Weights for each rotation used for averaging
|
||||
|
||||
"""
|
||||
if not all(isinstance(item, Rotation) for item in rotations):
|
||||
raise TypeError("Only instances of Rotation can be averaged.")
|
||||
|
||||
N = len(rotations)
|
||||
if weights == [] or not weights:
|
||||
weights = np.ones(N,dtype='i')
|
||||
|
||||
for i,(r,n) in enumerate(zip(rotations,weights)):
|
||||
M = r.asM() * n if i == 0 \
|
||||
else M + r.asM() * n # noqa add (multiples) of this rotation to average noqa
|
||||
eig, vec = np.linalg.eig(M/N)
|
||||
|
||||
return Rotation.fromQuaternion(np.real(vec.T[eig.argmax()]),acceptHomomorph = True)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fromRandom():
|
||||
r = np.random.random(3)
|
||||
A = np.sqrt(r[2])
|
||||
B = np.sqrt(1.0-r[2])
|
||||
return Rotation(np.array([np.cos(2.0*np.pi*r[0])*A,
|
||||
np.sin(2.0*np.pi*r[1])*B,
|
||||
np.cos(2.0*np.pi*r[1])*B,
|
||||
np.sin(2.0*np.pi*r[0])*A])).standardize()
|
||||
|
||||
|
||||
####################################################################################################
|
||||
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
|
||||
####################################################################################################
|
||||
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are
|
||||
# permitted provided that the following conditions are met:
|
||||
#
|
||||
# - Redistributions of source code must retain the above copyright notice, this list
|
||||
# of conditions and the following disclaimer.
|
||||
# - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
# list of conditions and the following disclaimer in the documentation and/or
|
||||
# other materials provided with the distribution.
|
||||
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
# of its contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
####################################################################################################
|
||||
#---------- Quaternion ----------
|
||||
@staticmethod
|
||||
def qu2om(qu):
|
||||
"""Quaternion to rotation matrix."""
|
||||
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2)
|
||||
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2)
|
||||
|
||||
om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3])
|
||||
om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3])
|
||||
om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1])
|
||||
om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1])
|
||||
om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2])
|
||||
om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2])
|
||||
return om if P > 0.0 else om.T
|
||||
|
||||
@staticmethod
|
||||
def qu2eu(qu):
|
||||
"""Quaternion to Bunge-Euler angles."""
|
||||
q03 = qu[0]**2+qu[3]**2
|
||||
q12 = qu[1]**2+qu[2]**2
|
||||
chi = np.sqrt(q03*q12)
|
||||
|
||||
if iszero(chi):
|
||||
eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if iszero(q12) else \
|
||||
np.array([np.arctan2(2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
|
||||
else:
|
||||
eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
|
||||
np.arctan2( 2.0*chi, q03-q12 ),
|
||||
np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
|
||||
|
||||
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
||||
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
||||
return eu
|
||||
|
||||
@staticmethod
|
||||
def qu2ax(qu):
|
||||
"""
|
||||
Quaternion to axis angle pair.
|
||||
|
||||
Modified version of the original formulation, should be numerically more stable
|
||||
"""
|
||||
if iszero(qu[1]**2+qu[2]**2+qu[3]**2): # set axis to [001] if the angle is 0/360
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||
elif not iszero(qu[0]):
|
||||
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
|
||||
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
|
||||
ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ]
|
||||
else:
|
||||
ax = [ qu[1], qu[2], qu[3], np.pi]
|
||||
return np.array(ax)
|
||||
|
||||
@staticmethod
|
||||
def qu2ro(qu):
|
||||
"""Quaternion to Rodriques-Frank vector."""
|
||||
if iszero(qu[0]):
|
||||
ro = [qu[1], qu[2], qu[3], np.inf]
|
||||
else:
|
||||
s = np.linalg.norm([qu[1],qu[2],qu[3]])
|
||||
ro = [0.0,0.0,P,0.0] if iszero(s) else \
|
||||
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))]
|
||||
return np.array(ro)
|
||||
|
||||
@staticmethod
|
||||
def qu2ho(qu):
|
||||
"""Quaternion to homochoric vector."""
|
||||
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
|
||||
|
||||
if iszero(omega):
|
||||
ho = np.array([ 0.0, 0.0, 0.0 ])
|
||||
else:
|
||||
ho = np.array([qu[1], qu[2], qu[3]])
|
||||
f = 0.75 * ( omega - np.sin(omega) )
|
||||
ho = ho/np.linalg.norm(ho) * f**(1./3.)
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
def qu2cu(qu):
|
||||
"""Quaternion to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.qu2ho(qu))
|
||||
|
||||
|
||||
#---------- Rotation matrix ----------
|
||||
@staticmethod
|
||||
def om2qu(om):
|
||||
"""
|
||||
Rotation matrix to quaternion.
|
||||
|
||||
The original formulation (direct conversion) had (numerical?) issues
|
||||
"""
|
||||
return Rotation.eu2qu(Rotation.om2eu(om))
|
||||
|
||||
@staticmethod
|
||||
def om2eu(om):
|
||||
"""Rotation matrix to Bunge-Euler angles."""
|
||||
if abs(om[2,2]) < 1.0:
|
||||
zeta = 1.0/np.sqrt(1.0-om[2,2]**2)
|
||||
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta),
|
||||
np.arccos(om[2,2]),
|
||||
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)])
|
||||
else:
|
||||
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation
|
||||
|
||||
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
||||
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
||||
return eu
|
||||
|
||||
@staticmethod
|
||||
def om2ax(om):
|
||||
"""Rotation matrix to axis angle pair."""
|
||||
ax=np.empty(4)
|
||||
|
||||
# first get the rotation angle
|
||||
t = 0.5*(om.trace() -1.0)
|
||||
ax[3] = np.arccos(np.clip(t,-1.0,1.0))
|
||||
|
||||
if iszero(ax[3]):
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0]
|
||||
else:
|
||||
w,vr = np.linalg.eig(om)
|
||||
# next, find the eigenvalue (1,0j)
|
||||
i = np.where(np.isclose(w,1.0+0.0j))[0][0]
|
||||
ax[0:3] = np.real(vr[0:3,i])
|
||||
diagDelta = np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]])
|
||||
ax[0:3] = np.where(iszero(diagDelta), ax[0:3],np.abs(ax[0:3])*np.sign(-P*diagDelta))
|
||||
return np.array(ax)
|
||||
|
||||
@staticmethod
|
||||
def om2ro(om):
|
||||
"""Rotation matrix to Rodriques-Frank vector."""
|
||||
return Rotation.eu2ro(Rotation.om2eu(om))
|
||||
|
||||
@staticmethod
|
||||
def om2ho(om):
|
||||
"""Rotation matrix to homochoric vector."""
|
||||
return Rotation.ax2ho(Rotation.om2ax(om))
|
||||
|
||||
@staticmethod
|
||||
def om2cu(om):
|
||||
"""Rotation matrix to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.om2ho(om))
|
||||
|
||||
|
||||
#---------- Bunge-Euler angles ----------
|
||||
@staticmethod
|
||||
def eu2qu(eu):
|
||||
"""Bunge-Euler angles to quaternion."""
|
||||
ee = 0.5*eu
|
||||
cPhi = np.cos(ee[1])
|
||||
sPhi = np.sin(ee[1])
|
||||
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]),
|
||||
-P*sPhi*np.cos(ee[0]-ee[2]),
|
||||
-P*sPhi*np.sin(ee[0]-ee[2]),
|
||||
-P*cPhi*np.sin(ee[0]+ee[2]) ])
|
||||
if qu[0] < 0.0: qu*=-1
|
||||
return qu
|
||||
|
||||
@staticmethod
|
||||
def eu2om(eu):
|
||||
"""Bunge-Euler angles to rotation matrix."""
|
||||
c = np.cos(eu)
|
||||
s = np.sin(eu)
|
||||
|
||||
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]],
|
||||
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]],
|
||||
[+s[0]*s[1], -c[0]*s[1], +c[1] ]])
|
||||
|
||||
om[np.where(iszero(om))] = 0.0
|
||||
return om
|
||||
|
||||
@staticmethod
|
||||
def eu2ax(eu):
|
||||
"""Bunge-Euler angles to axis angle pair."""
|
||||
t = np.tan(eu[1]*0.5)
|
||||
sigma = 0.5*(eu[0]+eu[2])
|
||||
delta = 0.5*(eu[0]-eu[2])
|
||||
tau = np.linalg.norm([t,np.sin(sigma)])
|
||||
alpha = np.pi if iszero(np.cos(sigma)) else \
|
||||
2.0*np.arctan(tau/np.cos(sigma))
|
||||
|
||||
if iszero(alpha):
|
||||
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
||||
else:
|
||||
ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front
|
||||
ax = np.append(ax,alpha)
|
||||
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive
|
||||
return ax
|
||||
|
||||
@staticmethod
|
||||
def eu2ro(eu):
|
||||
"""Bunge-Euler angles to Rodriques-Frank vector."""
|
||||
ro = Rotation.eu2ax(eu) # convert to axis angle pair representation
|
||||
if ro[3] >= np.pi: # Differs from original implementation. check convention 5
|
||||
ro[3] = np.inf
|
||||
elif iszero(ro[3]):
|
||||
ro = np.array([ 0.0, 0.0, P, 0.0 ])
|
||||
else:
|
||||
ro[3] = np.tan(ro[3]*0.5)
|
||||
return ro
|
||||
|
||||
@staticmethod
|
||||
def eu2ho(eu):
|
||||
"""Bunge-Euler angles to homochoric vector."""
|
||||
return Rotation.ax2ho(Rotation.eu2ax(eu))
|
||||
|
||||
@staticmethod
|
||||
def eu2cu(eu):
|
||||
"""Bunge-Euler angles to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.eu2ho(eu))
|
||||
|
||||
|
||||
#---------- Axis angle pair ----------
|
||||
@staticmethod
|
||||
def ax2qu(ax):
|
||||
"""Axis angle pair to quaternion."""
|
||||
if iszero(ax[3]):
|
||||
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ])
|
||||
else:
|
||||
c = np.cos(ax[3]*0.5)
|
||||
s = np.sin(ax[3]*0.5)
|
||||
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
||||
return qu
|
||||
|
||||
@staticmethod
|
||||
def ax2om(ax):
|
||||
"""Axis angle pair to rotation matrix."""
|
||||
c = np.cos(ax[3])
|
||||
s = np.sin(ax[3])
|
||||
omc = 1.0-c
|
||||
om=np.diag(ax[0:3]**2*omc + c)
|
||||
|
||||
for idx in [[0,1,2],[1,2,0],[2,0,1]]:
|
||||
q = omc*ax[idx[0]] * ax[idx[1]]
|
||||
om[idx[0],idx[1]] = q + s*ax[idx[2]]
|
||||
om[idx[1],idx[0]] = q - s*ax[idx[2]]
|
||||
return om if P < 0.0 else om.T
|
||||
|
||||
@staticmethod
|
||||
def ax2eu(ax):
|
||||
"""Rotation matrix to Bunge Euler angles."""
|
||||
return Rotation.om2eu(Rotation.ax2om(ax))
|
||||
|
||||
@staticmethod
|
||||
def ax2ro(ax):
|
||||
"""Axis angle pair to Rodriques-Frank vector."""
|
||||
if iszero(ax[3]):
|
||||
ro = [ 0.0, 0.0, P, 0.0 ]
|
||||
else:
|
||||
ro = [ax[0], ax[1], ax[2]]
|
||||
# 180 degree case
|
||||
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
||||
[np.tan(ax[3]*0.5)]
|
||||
return np.array(ro)
|
||||
|
||||
@staticmethod
|
||||
def ax2ho(ax):
|
||||
"""Axis angle pair to homochoric vector."""
|
||||
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
||||
ho = ax[0:3] * f
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
def ax2cu(ax):
|
||||
"""Axis angle pair to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.ax2ho(ax))
|
||||
|
||||
|
||||
#---------- Rodrigues-Frank vector ----------
|
||||
@staticmethod
|
||||
def ro2qu(ro):
|
||||
"""Rodriques-Frank vector to quaternion."""
|
||||
return Rotation.ax2qu(Rotation.ro2ax(ro))
|
||||
|
||||
@staticmethod
|
||||
def ro2om(ro):
|
||||
"""Rodgrigues-Frank vector to rotation matrix."""
|
||||
return Rotation.ax2om(Rotation.ro2ax(ro))
|
||||
|
||||
@staticmethod
|
||||
def ro2eu(ro):
|
||||
"""Rodriques-Frank vector to Bunge-Euler angles."""
|
||||
return Rotation.om2eu(Rotation.ro2om(ro))
|
||||
|
||||
@staticmethod
|
||||
def ro2ax(ro):
|
||||
"""Rodriques-Frank vector to axis angle pair."""
|
||||
ta = ro[3]
|
||||
|
||||
if iszero(ta):
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||
elif not np.isfinite(ta):
|
||||
ax = [ ro[0], ro[1], ro[2], np.pi ]
|
||||
else:
|
||||
angle = 2.0*np.arctan(ta)
|
||||
ta = 1.0/np.linalg.norm(ro[0:3])
|
||||
ax = [ ro[0]/ta, ro[1]/ta, ro[2]/ta, angle ]
|
||||
return np.array(ax)
|
||||
|
||||
@staticmethod
|
||||
def ro2ho(ro):
|
||||
"""Rodriques-Frank vector to homochoric vector."""
|
||||
if iszero(np.sum(ro[0:3]**2.0)):
|
||||
ho = [ 0.0, 0.0, 0.0 ]
|
||||
else:
|
||||
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
|
||||
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
|
||||
return np.array(ho)
|
||||
|
||||
@staticmethod
|
||||
def ro2cu(ro):
|
||||
"""Rodriques-Frank vector to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.ro2ho(ro))
|
||||
|
||||
|
||||
#---------- Homochoric vector----------
|
||||
@staticmethod
|
||||
def ho2qu(ho):
|
||||
"""Homochoric vector to quaternion."""
|
||||
return Rotation.ax2qu(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2om(ho):
|
||||
"""Homochoric vector to rotation matrix."""
|
||||
return Rotation.ax2om(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2eu(ho):
|
||||
"""Homochoric vector to Bunge-Euler angles."""
|
||||
return Rotation.ax2eu(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2ax(ho):
|
||||
"""Homochoric vector to axis angle pair."""
|
||||
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
||||
-0.024999992127593126, -0.003928701544781374,
|
||||
-0.0008152701535450438, -0.0002009500426119712,
|
||||
-0.00002397986776071756, -0.00008202868926605841,
|
||||
+0.00012448715042090092, -0.0001749114214822577,
|
||||
+0.0001703481934140054, -0.00012062065004116828,
|
||||
+0.000059719705868660826, -0.00001980756723965647,
|
||||
+0.000003953714684212874, -0.00000036555001439719544])
|
||||
# normalize h and store the magnitude
|
||||
hmag_squared = np.sum(ho**2.)
|
||||
if iszero(hmag_squared):
|
||||
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
||||
else:
|
||||
hm = hmag_squared
|
||||
|
||||
# convert the magnitude to the rotation angle
|
||||
s = tfit[0] + tfit[1] * hmag_squared
|
||||
for i in range(2,16):
|
||||
hm *= hmag_squared
|
||||
s += tfit[i] * hm
|
||||
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
|
||||
return ax
|
||||
|
||||
@staticmethod
|
||||
def ho2ro(ho):
|
||||
"""Axis angle pair to Rodriques-Frank vector."""
|
||||
return Rotation.ax2ro(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2cu(ho):
|
||||
"""Homochoric vector to cubochoric vector."""
|
||||
return Lambert.BallToCube(ho)
|
||||
|
||||
|
||||
#---------- Cubochoric ----------
|
||||
@staticmethod
|
||||
def cu2qu(cu):
|
||||
"""Cubochoric vector to quaternion."""
|
||||
return Rotation.ho2qu(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2om(cu):
|
||||
"""Cubochoric vector to rotation matrix."""
|
||||
return Rotation.ho2om(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2eu(cu):
|
||||
"""Cubochoric vector to Bunge-Euler angles."""
|
||||
return Rotation.ho2eu(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2ax(cu):
|
||||
"""Cubochoric vector to axis angle pair."""
|
||||
return Rotation.ho2ax(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2ro(cu):
|
||||
"""Cubochoric vector to Rodriques-Frank vector."""
|
||||
return Rotation.ho2ro(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2ho(cu):
|
||||
"""Cubochoric vector to homochoric vector."""
|
||||
return Lambert.CubeToBall(cu)
|
|
@ -32,7 +32,7 @@ class Table():
|
|||
"""Label data individually, e.g. v v v ==> 1_v 2_v 3_v."""
|
||||
labels = []
|
||||
for label,shape in self.shapes.items():
|
||||
size = np.prod(shape)
|
||||
size = int(np.prod(shape))
|
||||
labels += ['{}{}'.format('' if size == 1 else '{}_'.format(i+1),label) for i in range(size)]
|
||||
self.data.columns = labels
|
||||
|
||||
|
@ -41,14 +41,14 @@ class Table():
|
|||
"""Label data condensed, e.g. 1_v 2_v 3_v ==> v v v."""
|
||||
labels = []
|
||||
for label,shape in self.shapes.items():
|
||||
labels += [label] * np.prod(shape)
|
||||
labels += [label] * int(np.prod(shape))
|
||||
self.data.columns = labels
|
||||
|
||||
|
||||
def __add_comment(self,label,shape,info):
|
||||
if info is not None:
|
||||
self.comments.append('{}{}: {}'.format(label,
|
||||
' '+str(shape) if np.prod(shape) > 1 else '',
|
||||
' '+str(shape) if np.prod(shape,dtype=int) > 1 else '',
|
||||
info))
|
||||
|
||||
|
||||
|
|
|
@ -6,8 +6,6 @@ import shlex
|
|||
from fractions import Fraction
|
||||
from functools import reduce
|
||||
from optparse import Option
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -42,55 +40,92 @@ class bcolors:
|
|||
self.CROSSOUT = ''
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def srepr(arg,glue = '\n'):
|
||||
"""Joins arguments as individual lines."""
|
||||
r"""
|
||||
Join arguments as individual lines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arg : iterable
|
||||
Items to join.
|
||||
glue : str, optional
|
||||
Defaults to \n.
|
||||
|
||||
"""
|
||||
if (not hasattr(arg, "strip") and
|
||||
(hasattr(arg, "__getitem__") or
|
||||
hasattr(arg, "__iter__"))):
|
||||
return glue.join(str(x) for x in arg)
|
||||
return arg if isinstance(arg,str) else repr(arg)
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def croak(what, newline = True):
|
||||
"""Writes formated to stderr."""
|
||||
if what is not None:
|
||||
"""
|
||||
Write formated to stderr.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
what : str or iterable
|
||||
Content to be displayed
|
||||
newline : bool, optional
|
||||
Separate items of what by newline. Defaults to True.
|
||||
|
||||
"""
|
||||
if not what:
|
||||
sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else ''))
|
||||
sys.stderr.flush()
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def report(who = None,
|
||||
what = None):
|
||||
"""Reports script and file name."""
|
||||
"""
|
||||
Reports script and file name.
|
||||
|
||||
DEPRECATED
|
||||
|
||||
"""
|
||||
croak( (emph(who)+': ' if who is not None else '') + (what if what is not None else '') + '\n' )
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def emph(what):
|
||||
"""Formats string with emphasis."""
|
||||
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def deemph(what):
|
||||
"""Formats string with deemphasis."""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def delete(what):
|
||||
"""Formats string as deleted."""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def strikeout(what):
|
||||
"""Formats string as strikeout."""
|
||||
return bcolors.CROSSOUT+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
|
||||
def execute(cmd,
|
||||
streamIn = None,
|
||||
wd = './',
|
||||
env = None):
|
||||
"""Executes a command in given directory and returns stdout and stderr for optional stdin."""
|
||||
"""
|
||||
Execute command.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cmd : str
|
||||
Command to be executed.
|
||||
streanIn :, optional
|
||||
Input (via pipe) for executed process.
|
||||
wd : str, optional
|
||||
Working directory of process. Defaults to ./ .
|
||||
env :
|
||||
Environment
|
||||
|
||||
"""
|
||||
initialPath = os.getcwd()
|
||||
os.chdir(wd)
|
||||
myEnv = os.environ if env is None else env
|
||||
|
@ -104,15 +139,17 @@ def execute(cmd,
|
|||
out = out.decode('utf-8').replace('\x08','')
|
||||
error = error.decode('utf-8').replace('\x08','')
|
||||
os.chdir(initialPath)
|
||||
if process.returncode != 0: raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
if process.returncode != 0:
|
||||
raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
return out,error
|
||||
|
||||
# -----------------------------
|
||||
|
||||
class extendableOption(Option):
|
||||
"""
|
||||
Used for definition of new option parser action 'extend', which enables to take multiple option arguments.
|
||||
|
||||
Adopted from online tutorial http://docs.python.org/library/optparse.html
|
||||
DEPRECATED
|
||||
"""
|
||||
|
||||
ACTIONS = Option.ACTIONS + ("extend",)
|
||||
|
@ -127,17 +164,24 @@ class extendableOption(Option):
|
|||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
|
||||
# Print iterations progress
|
||||
# from https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a
|
||||
|
||||
def progressBar(iteration, total, prefix='', bar_length=50):
|
||||
"""
|
||||
Call in a loop to create terminal progress bar.
|
||||
|
||||
@params:
|
||||
iteration - Required : current iteration (Int)
|
||||
total - Required : total iterations (Int)
|
||||
prefix - Optional : prefix string (Str)
|
||||
bar_length - Optional : character length of bar (Int)
|
||||
From https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a
|
||||
|
||||
Parameters
|
||||
----------
|
||||
iteration : int
|
||||
Current iteration.
|
||||
total : int
|
||||
Total iterations.
|
||||
prefix : str, optional
|
||||
Prefix string.
|
||||
bar_length : int, optional
|
||||
Character length of bar. Defaults to 50.
|
||||
|
||||
"""
|
||||
fraction = iteration / float(total)
|
||||
if not hasattr(progressBar, "last_fraction"): # first call to function
|
||||
|
@ -161,7 +205,8 @@ def progressBar(iteration, total, prefix='', bar_length=50):
|
|||
|
||||
sys.stderr.write('\r{} {} {}'.format(prefix, bar, remaining_time)),
|
||||
|
||||
if iteration == total: sys.stderr.write('\n')
|
||||
if iteration == total:
|
||||
sys.stderr.write('\n')
|
||||
sys.stderr.flush()
|
||||
|
||||
|
||||
|
@ -202,56 +247,3 @@ class return_message():
|
|||
"""Return message suitable for interactive shells."""
|
||||
return srepr(self.message)
|
||||
|
||||
|
||||
class ThreadPool:
|
||||
"""Pool of threads consuming tasks from a queue."""
|
||||
|
||||
class Worker(Thread):
|
||||
"""Thread executing tasks from a given tasks queue."""
|
||||
|
||||
def __init__(self, tasks):
|
||||
"""Worker for tasks."""
|
||||
Thread.__init__(self)
|
||||
self.tasks = tasks
|
||||
self.daemon = True
|
||||
self.start()
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
func, args, kargs = self.tasks.get()
|
||||
try:
|
||||
func(*args, **kargs)
|
||||
except Exception as e:
|
||||
# An exception happened in this thread
|
||||
print(e)
|
||||
finally:
|
||||
# Mark this task as done, whether an exception happened or not
|
||||
self.tasks.task_done()
|
||||
|
||||
|
||||
def __init__(self, num_threads):
|
||||
"""
|
||||
Thread pool.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
num_threads : int
|
||||
number of threads
|
||||
|
||||
"""
|
||||
self.tasks = Queue(num_threads)
|
||||
for _ in range(num_threads):
|
||||
self.Worker(self.tasks)
|
||||
|
||||
def add_task(self, func, *args, **kargs):
|
||||
"""Add a task to the queue."""
|
||||
self.tasks.put((func, args, kargs))
|
||||
|
||||
def map(self, func, args_list):
|
||||
"""Add a list of tasks to the queue."""
|
||||
for args in args_list:
|
||||
self.add_task(func, args)
|
||||
|
||||
def wait_completion(self):
|
||||
"""Wait for completion of all the tasks in the queue."""
|
||||
self.tasks.join()
|
||||
|
|
|
@ -0,0 +1,65 @@
|
|||
import os
|
||||
from itertools import permutations
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
from damask import Rotation
|
||||
from damask import Orientation
|
||||
from damask import Lattice
|
||||
|
||||
n = 1000
|
||||
|
||||
@pytest.fixture
|
||||
def default():
|
||||
"""A set of n random rotations."""
|
||||
return [Rotation.fromRandom() for r in range(n)]
|
||||
|
||||
@pytest.fixture
|
||||
def reference_dir(reference_dir_base):
|
||||
"""Directory containing reference results."""
|
||||
return os.path.join(reference_dir_base,'Rotation')
|
||||
|
||||
|
||||
class TestOrientation:
|
||||
|
||||
@pytest.mark.parametrize('color',[{'label':'red', 'RGB':[1,0,0],'direction':[0,0,1]},
|
||||
{'label':'green','RGB':[0,1,0],'direction':[0,1,1]},
|
||||
{'label':'blue', 'RGB':[0,0,1],'direction':[1,1,1]}])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_IPF_cubic(self,default,color,lattice):
|
||||
cube = damask.Orientation(damask.Rotation(),lattice)
|
||||
for direction in set(permutations(np.array(color['direction']))):
|
||||
assert np.allclose(cube.IPFcolor(direction),np.array(color['RGB']))
|
||||
|
||||
@pytest.mark.parametrize('lattice',Lattice.lattices)
|
||||
def test_IPF(self,lattice):
|
||||
direction = np.random.random(3)*2.0-1
|
||||
for rot in [Rotation.fromRandom() for r in range(n//100)]:
|
||||
R = damask.Orientation(rot,lattice)
|
||||
color = R.IPFcolor(direction)
|
||||
for equivalent in R.equivalentOrientations():
|
||||
assert np.allclose(color,R.IPFcolor(direction))
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_forward_backward(self,model,lattice):
|
||||
ori = Orientation(Rotation.fromRandom(),lattice)
|
||||
for i,r in enumerate(ori.relatedOrientations(model)):
|
||||
ori2 = r.relatedOrientations(model)[i]
|
||||
misorientation = ori.rotation.misorientation(ori2.rotation)
|
||||
assert misorientation.asAxisAngle(degrees=True)[3]<1.0e-5
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_reference(self,update,reference_dir,model,lattice):
|
||||
reference = os.path.join(reference_dir,'{}_{}.txt'.format(lattice,model))
|
||||
ori = Orientation(Rotation(),lattice)
|
||||
eu = np.array([o.rotation.asEulers(degrees=True) for o in ori.relatedOrientations(model)])
|
||||
if update:
|
||||
coords = np.array([(1,i+1) for i,x in enumerate(eu)])
|
||||
table = damask.Table(eu,{'Eulers':(3,)})
|
||||
table.add('pos',coords)
|
||||
table.to_ASCII(reference)
|
||||
assert np.allclose(eu,damask.Table.from_ASCII(reference).get('Eulers'))
|
|
@ -4,25 +4,25 @@ import os
|
|||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from damask import DADF5
|
||||
from damask import Result
|
||||
from damask import mechanics
|
||||
|
||||
@pytest.fixture
|
||||
def default(tmp_path,reference_dir):
|
||||
"""Small DADF5 file in temp location for modification."""
|
||||
"""Small Result file in temp location for modification."""
|
||||
fname = '12grains6x7x8_tensionY.hdf5'
|
||||
shutil.copy(os.path.join(reference_dir,fname),tmp_path)
|
||||
f = DADF5(os.path.join(tmp_path,fname))
|
||||
f = Result(os.path.join(tmp_path,fname))
|
||||
f.set_by_time(20.0,20.0)
|
||||
return f
|
||||
|
||||
@pytest.fixture
|
||||
def reference_dir(reference_dir_base):
|
||||
"""Directory containing reference results."""
|
||||
return os.path.join(reference_dir_base,'DADF5')
|
||||
return os.path.join(reference_dir_base,'Result')
|
||||
|
||||
|
||||
class TestDADF5:
|
||||
class TestResult:
|
||||
|
||||
def test_time_increments(self,default):
|
||||
shape = default.read_dataset(default.get_dataset_location('F'),0).shape
|
|
@ -1,13 +1,9 @@
|
|||
import os
|
||||
from itertools import permutations
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
from damask import Rotation
|
||||
from damask import Orientation
|
||||
from damask import Lattice
|
||||
|
||||
n = 1000
|
||||
|
||||
|
@ -58,44 +54,3 @@ class TestRotation:
|
|||
for rot in default:
|
||||
assert np.allclose(rot.asCubochoric(),
|
||||
Rotation.fromQuaternion(rot.asQuaternion()).asCubochoric())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('color',[{'label':'red', 'RGB':[1,0,0],'direction':[0,0,1]},
|
||||
{'label':'green','RGB':[0,1,0],'direction':[0,1,1]},
|
||||
{'label':'blue', 'RGB':[0,0,1],'direction':[1,1,1]}])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_IPF_cubic(self,default,color,lattice):
|
||||
cube = damask.Orientation(damask.Rotation(),lattice)
|
||||
for direction in set(permutations(np.array(color['direction']))):
|
||||
assert np.allclose(cube.IPFcolor(direction),np.array(color['RGB']))
|
||||
|
||||
@pytest.mark.parametrize('lattice',Lattice.lattices)
|
||||
def test_IPF(self,lattice):
|
||||
direction = np.random.random(3)*2.0-1
|
||||
for rot in [Rotation.fromRandom() for r in range(n//100)]:
|
||||
R = damask.Orientation(rot,lattice)
|
||||
color = R.IPFcolor(direction)
|
||||
for equivalent in R.equivalentOrientations():
|
||||
assert np.allclose(color,R.IPFcolor(direction))
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_forward_backward(self,model,lattice):
|
||||
ori = Orientation(Rotation.fromRandom(),lattice)
|
||||
for i,r in enumerate(ori.relatedOrientations(model)):
|
||||
ori2 = r.relatedOrientations(model)[i]
|
||||
misorientation = ori.rotation.misorientation(ori2.rotation)
|
||||
assert misorientation.asAxisAngle(degrees=True)[3]<1.0e-5
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_reference(self,update,reference_dir,model,lattice):
|
||||
reference = os.path.join(reference_dir,'{}_{}.txt'.format(lattice,model))
|
||||
ori = Orientation(Rotation(),lattice)
|
||||
eu = np.array([o.rotation.asEulers(degrees=True) for o in ori.relatedOrientations(model)])
|
||||
if update:
|
||||
coords = np.array([(1,i+1) for i,x in enumerate(eu)])
|
||||
table = damask.Table(eu,{'Eulers':(3,)})
|
||||
table.add('pos',coords)
|
||||
table.to_ASCII(reference)
|
||||
assert np.allclose(eu,damask.Table.from_ASCII(reference).get('Eulers'))
|
||||
|
|
|
@ -69,12 +69,13 @@ contains
|
|||
!> @brief call (thread safe) all module initializations
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_initAll(el,ip)
|
||||
|
||||
integer(pInt), intent(in) :: el, & !< FE el number
|
||||
ip !< FE integration point number
|
||||
|
||||
!$OMP CRITICAL (init)
|
||||
!$OMP CRITICAL(init)
|
||||
if (.not. CPFEM_init_done) then
|
||||
call DAMASK_interface_init ! Spectral and FEM interface to commandline
|
||||
call DAMASK_interface_init
|
||||
call prec_init
|
||||
call IO_init
|
||||
call numerics_init
|
||||
|
@ -93,7 +94,7 @@ subroutine CPFEM_initAll(el,ip)
|
|||
call CPFEM_init
|
||||
CPFEM_init_done = .true.
|
||||
endif
|
||||
!$OMP END CRITICAL (init)
|
||||
!$OMP END CRITICAL(init)
|
||||
|
||||
end subroutine CPFEM_initAll
|
||||
|
||||
|
@ -174,35 +175,7 @@ subroutine CPFEM_general(mode, parallelExecution, ffn, ffn1, temperature_inp, dt
|
|||
CPFEM_dcsde = CPFEM_dcsde_knownGood
|
||||
|
||||
!*** age results
|
||||
if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) then
|
||||
crystallite_F0 = crystallite_partionedF ! crystallite deformation
|
||||
crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation
|
||||
crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity
|
||||
crystallite_Fi0 = crystallite_Fi ! crystallite intermediate deformation
|
||||
crystallite_Li0 = crystallite_Li ! crystallite intermediate velocity
|
||||
crystallite_S0 = crystallite_S ! crystallite 2nd Piola Kirchhoff stress
|
||||
|
||||
forall (i = 1:size(plasticState)) plasticState(i)%state0 = plasticState(i)%state
|
||||
do i = 1, size(sourceState)
|
||||
do mySource = 1,phase_Nsources(i)
|
||||
sourceState(i)%p(mySource)%state0 = sourceState(i)%p(mySource)%state
|
||||
enddo; enddo
|
||||
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then
|
||||
write(6,'(a)') '<< CPFEM >> aging states'
|
||||
if (debug_e <= discretization_nElem .and. debug_i <=discretization_nIP) then
|
||||
write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') &
|
||||
'<< CPFEM >> aged state of elFE ip grain',debug_e, debug_i, 1, &
|
||||
plasticState(material_phaseAt(1,debug_e))%state(:,material_phasememberAt(1,debug_i,debug_e))
|
||||
endif
|
||||
endif
|
||||
|
||||
do homog = 1_pInt, material_Nhomogenization
|
||||
homogState (homog)%state0 = homogState (homog)%state
|
||||
thermalState (homog)%state0 = thermalState (homog)%state
|
||||
damageState (homog)%state0 = damageState (homog)%state
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) call CPFEM_forward
|
||||
|
||||
|
||||
!*** collection of FEM input with returning of randomize odd stress and jacobian
|
||||
|
@ -360,7 +333,17 @@ end subroutine CPFEM_general
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief triggers writing of the results
|
||||
!> @brief Forward data for new time increment.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_forward
|
||||
|
||||
call crystallite_forward
|
||||
|
||||
end subroutine CPFEM_forward
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Trigger writing of results.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_results(inc,time)
|
||||
|
||||
|
|
114
src/CPFEM2.f90
114
src/CPFEM2.f90
|
@ -64,123 +64,37 @@ end subroutine CPFEM_initAll
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief allocate the arrays defined in module CPFEM and initialize them
|
||||
!> @brief Read restart information if needed.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_init
|
||||
|
||||
integer :: i
|
||||
integer(HID_T) :: fileHandle, groupHandle
|
||||
character(len=pStringLen) :: fileName, datasetName
|
||||
|
||||
write(6,'(/,a)') ' <<<+- CPFEM init -+>>>'; flush(6)
|
||||
|
||||
if (interface_restartInc > 0) then
|
||||
write(6,'(/,a,i0,a)') ' reading restart information of increment ', interface_restartInc, ' from file'
|
||||
|
||||
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
|
||||
fileHandle = HDF5_openFile(fileName)
|
||||
|
||||
call HDF5_read(fileHandle,crystallite_F0, 'F')
|
||||
call HDF5_read(fileHandle,crystallite_Fp0,'Fp')
|
||||
call HDF5_read(fileHandle,crystallite_Fi0,'Fi')
|
||||
call HDF5_read(fileHandle,crystallite_Lp0,'Lp')
|
||||
call HDF5_read(fileHandle,crystallite_Li0,'Li')
|
||||
call HDF5_read(fileHandle,crystallite_S0, 'S')
|
||||
|
||||
groupHandle = HDF5_openGroup(fileHandle,'constituent')
|
||||
do i = 1,size(phase_plasticity)
|
||||
write(datasetName,'(i0,a)') i,'_omega_plastic'
|
||||
call HDF5_read(groupHandle,plasticState(i)%state0,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
groupHandle = HDF5_openGroup(fileHandle,'materialpoint')
|
||||
do i = 1, material_Nhomogenization
|
||||
write(datasetName,'(i0,a)') i,'_omega_homogenization'
|
||||
call HDF5_read(groupHandle,homogState(i)%state0,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
call HDF5_closeFile(fileHandle)
|
||||
endif
|
||||
if (interface_restartInc > 0) call crystallite_restartRead
|
||||
|
||||
end subroutine CPFEM_init
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Forward data after successful increment.
|
||||
! ToDo: Any guessing for the current states possible?
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_forward
|
||||
|
||||
integer :: i, j
|
||||
|
||||
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0) &
|
||||
write(6,'(a)') '<< CPFEM >> aging states'
|
||||
|
||||
crystallite_F0 = crystallite_partionedF
|
||||
crystallite_Fp0 = crystallite_Fp
|
||||
crystallite_Lp0 = crystallite_Lp
|
||||
crystallite_Fi0 = crystallite_Fi
|
||||
crystallite_Li0 = crystallite_Li
|
||||
crystallite_S0 = crystallite_S
|
||||
|
||||
do i = 1, size(plasticState)
|
||||
plasticState(i)%state0 = plasticState(i)%state
|
||||
enddo
|
||||
do i = 1, size(sourceState)
|
||||
do j = 1,phase_Nsources(i)
|
||||
sourceState(i)%p(j)%state0 = sourceState(i)%p(j)%state
|
||||
enddo; enddo
|
||||
do i = 1, material_Nhomogenization
|
||||
homogState (i)%state0 = homogState (i)%state
|
||||
thermalState(i)%state0 = thermalState(i)%state
|
||||
damageState (i)%state0 = damageState (i)%state
|
||||
enddo
|
||||
|
||||
end subroutine CPFEM_forward
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Write current restart information (Field and constitutive data) to file.
|
||||
!> @brief Write restart information.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_restartWrite
|
||||
|
||||
integer :: i
|
||||
integer(HID_T) :: fileHandle, groupHandle
|
||||
character(len=pStringLen) :: fileName, datasetName
|
||||
|
||||
write(6,'(a)') ' writing field and constitutive data required for restart to file';flush(6)
|
||||
|
||||
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
|
||||
fileHandle = HDF5_openFile(fileName,'a')
|
||||
|
||||
call HDF5_write(fileHandle,crystallite_partionedF,'F')
|
||||
call HDF5_write(fileHandle,crystallite_Fp, 'Fp')
|
||||
call HDF5_write(fileHandle,crystallite_Fi, 'Fi')
|
||||
call HDF5_write(fileHandle,crystallite_Lp, 'Lp')
|
||||
call HDF5_write(fileHandle,crystallite_Li, 'Li')
|
||||
call HDF5_write(fileHandle,crystallite_S, 'S')
|
||||
|
||||
groupHandle = HDF5_addGroup(fileHandle,'constituent')
|
||||
do i = 1,size(phase_plasticity)
|
||||
write(datasetName,'(i0,a)') i,'_omega_plastic'
|
||||
call HDF5_write(groupHandle,plasticState(i)%state,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
groupHandle = HDF5_addGroup(fileHandle,'materialpoint')
|
||||
do i = 1, material_Nhomogenization
|
||||
write(datasetName,'(i0,a)') i,'_omega_homogenization'
|
||||
call HDF5_write(groupHandle,homogState(i)%state,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
call HDF5_closeFile(fileHandle)
|
||||
call crystallite_restartWrite
|
||||
|
||||
end subroutine CPFEM_restartWrite
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Forward data for new time increment.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine CPFEM_forward
|
||||
|
||||
call crystallite_forward
|
||||
|
||||
end subroutine CPFEM_forward
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Trigger writing of results.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
|
@ -11,6 +11,8 @@
|
|||
module crystallite
|
||||
use prec
|
||||
use IO
|
||||
use HDF5_utilities
|
||||
use DAMASK_interface
|
||||
use config
|
||||
use debug
|
||||
use numerics
|
||||
|
@ -36,25 +38,25 @@ module crystallite
|
|||
crystallite_orientation !< current orientation
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: &
|
||||
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
|
||||
crystallite_P !< 1st Piola-Kirchhoff stress per grain
|
||||
crystallite_P, & !< 1st Piola-Kirchhoff stress per grain
|
||||
crystallite_S0, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
|
||||
crystallite_Fp0, & !< plastic def grad at start of FE inc
|
||||
crystallite_Fi0, & !< intermediate def grad at start of FE inc
|
||||
crystallite_F0, & !< def grad at start of FE inc
|
||||
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
|
||||
crystallite_Li0 !< intermediate velocitiy grad at start of FE inc
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
|
||||
crystallite_S, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
||||
crystallite_S0, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
|
||||
crystallite_partionedS0, & !< 2nd Piola-Kirchhoff stress vector at start of homog inc
|
||||
crystallite_Fp, & !< current plastic def grad (end of converged time step)
|
||||
crystallite_Fp0, & !< plastic def grad at start of FE inc
|
||||
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
|
||||
crystallite_Fi, & !< current intermediate def grad (end of converged time step)
|
||||
crystallite_Fi0, & !< intermediate def grad at start of FE inc
|
||||
crystallite_partionedFi0,& !< intermediate def grad at start of homog inc
|
||||
crystallite_F0, & !< def grad at start of FE inc
|
||||
crystallite_partionedF, & !< def grad to be reached at end of homog inc
|
||||
crystallite_partionedF0, & !< def grad at start of homog inc
|
||||
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
|
||||
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
|
||||
crystallite_partionedLp0, & !< plastic velocity grad at start of homog inc
|
||||
crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step)
|
||||
crystallite_Li0, & !< intermediate velocitiy grad at start of FE inc
|
||||
crystallite_partionedLi0 !< intermediate velocity grad at start of homog inc
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: &
|
||||
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
|
||||
|
@ -104,7 +106,10 @@ module crystallite
|
|||
crystallite_stressTangent, &
|
||||
crystallite_orientations, &
|
||||
crystallite_push33ToRef, &
|
||||
crystallite_results
|
||||
crystallite_results, &
|
||||
crystallite_restartWrite, &
|
||||
crystallite_restartRead, &
|
||||
crystallite_forward
|
||||
|
||||
contains
|
||||
|
||||
|
@ -130,38 +135,30 @@ subroutine crystallite_init
|
|||
iMax = discretization_nIP
|
||||
eMax = discretization_nElem
|
||||
|
||||
allocate(crystallite_S0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedS0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_S(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_P(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_F0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedF0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedF(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subF0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subF(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Fp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedFp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subFp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Fp(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Fi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedFi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subFi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Fi(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Fe(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Lp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedLp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subLp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Lp(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Li0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedLi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subLi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_Li(3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_dPdF(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_dt(cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subdt(cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subFrac(cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_subStep(cMax,iMax,eMax), source=0.0_pReal)
|
||||
allocate(crystallite_partionedF(3,3,cMax,iMax,eMax),source=0.0_pReal)
|
||||
|
||||
allocate(crystallite_S0, &
|
||||
crystallite_F0, crystallite_Fi0,crystallite_Fp0, &
|
||||
crystallite_Li0,crystallite_Lp0, &
|
||||
crystallite_partionedS0, &
|
||||
crystallite_partionedF0,crystallite_partionedFp0,crystallite_partionedFi0, &
|
||||
crystallite_partionedLp0,crystallite_partionedLi0, &
|
||||
crystallite_S,crystallite_P, &
|
||||
crystallite_Fe,crystallite_Fi,crystallite_Fp, &
|
||||
crystallite_Li,crystallite_Lp, &
|
||||
crystallite_subF,crystallite_subF0, &
|
||||
crystallite_subFp0,crystallite_subFi0, &
|
||||
crystallite_subLi0,crystallite_subLp0, &
|
||||
source = crystallite_partionedF)
|
||||
|
||||
allocate(crystallite_dPdF(3,3,3,3,cMax,iMax,eMax),source=0.0_pReal)
|
||||
|
||||
allocate(crystallite_dt(cMax,iMax,eMax),source=0.0_pReal)
|
||||
allocate(crystallite_subdt,crystallite_subFrac,crystallite_subStep, &
|
||||
source = crystallite_dt)
|
||||
|
||||
allocate(crystallite_orientation(cMax,iMax,eMax))
|
||||
|
||||
allocate(crystallite_localPlasticity(cMax,iMax,eMax), source=.true.)
|
||||
allocate(crystallite_requested(cMax,iMax,eMax), source=.false.)
|
||||
allocate(crystallite_todo(cMax,iMax,eMax), source=.false.)
|
||||
|
@ -1844,4 +1841,117 @@ logical function stateJump(ipc,ip,el)
|
|||
|
||||
end function stateJump
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Write current restart information (Field and constitutive data) to file.
|
||||
! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine crystallite_restartWrite
|
||||
|
||||
integer :: i
|
||||
integer(HID_T) :: fileHandle, groupHandle
|
||||
character(len=pStringLen) :: fileName, datasetName
|
||||
|
||||
write(6,'(a)') ' writing field and constitutive data required for restart to file';flush(6)
|
||||
|
||||
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
|
||||
fileHandle = HDF5_openFile(fileName,'a')
|
||||
|
||||
call HDF5_write(fileHandle,crystallite_partionedF,'F')
|
||||
call HDF5_write(fileHandle,crystallite_Fp, 'Fp')
|
||||
call HDF5_write(fileHandle,crystallite_Fi, 'Fi')
|
||||
call HDF5_write(fileHandle,crystallite_Lp, 'Lp')
|
||||
call HDF5_write(fileHandle,crystallite_Li, 'Li')
|
||||
call HDF5_write(fileHandle,crystallite_S, 'S')
|
||||
|
||||
groupHandle = HDF5_addGroup(fileHandle,'constituent')
|
||||
do i = 1,size(phase_plasticity)
|
||||
write(datasetName,'(i0,a)') i,'_omega_plastic'
|
||||
call HDF5_write(groupHandle,plasticState(i)%state,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
groupHandle = HDF5_addGroup(fileHandle,'materialpoint')
|
||||
do i = 1, material_Nhomogenization
|
||||
write(datasetName,'(i0,a)') i,'_omega_homogenization'
|
||||
call HDF5_write(groupHandle,homogState(i)%state,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
call HDF5_closeFile(fileHandle)
|
||||
|
||||
end subroutine crystallite_restartWrite
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Read data for restart
|
||||
! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine crystallite_restartRead
|
||||
|
||||
integer :: i
|
||||
integer(HID_T) :: fileHandle, groupHandle
|
||||
character(len=pStringLen) :: fileName, datasetName
|
||||
|
||||
write(6,'(/,a,i0,a)') ' reading restart information of increment from file'
|
||||
|
||||
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
|
||||
fileHandle = HDF5_openFile(fileName)
|
||||
|
||||
call HDF5_read(fileHandle,crystallite_F0, 'F')
|
||||
call HDF5_read(fileHandle,crystallite_Fp0,'Fp')
|
||||
call HDF5_read(fileHandle,crystallite_Fi0,'Fi')
|
||||
call HDF5_read(fileHandle,crystallite_Lp0,'Lp')
|
||||
call HDF5_read(fileHandle,crystallite_Li0,'Li')
|
||||
call HDF5_read(fileHandle,crystallite_S0, 'S')
|
||||
|
||||
groupHandle = HDF5_openGroup(fileHandle,'constituent')
|
||||
do i = 1,size(phase_plasticity)
|
||||
write(datasetName,'(i0,a)') i,'_omega_plastic'
|
||||
call HDF5_read(groupHandle,plasticState(i)%state0,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
groupHandle = HDF5_openGroup(fileHandle,'materialpoint')
|
||||
do i = 1, material_Nhomogenization
|
||||
write(datasetName,'(i0,a)') i,'_omega_homogenization'
|
||||
call HDF5_read(groupHandle,homogState(i)%state0,datasetName)
|
||||
enddo
|
||||
call HDF5_closeGroup(groupHandle)
|
||||
|
||||
call HDF5_closeFile(fileHandle)
|
||||
|
||||
end subroutine crystallite_restartRead
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Forward data after successful increment.
|
||||
! ToDo: Any guessing for the current states possible?
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine crystallite_forward
|
||||
|
||||
integer :: i, j
|
||||
|
||||
crystallite_F0 = crystallite_partionedF
|
||||
crystallite_Fp0 = crystallite_Fp
|
||||
crystallite_Lp0 = crystallite_Lp
|
||||
crystallite_Fi0 = crystallite_Fi
|
||||
crystallite_Li0 = crystallite_Li
|
||||
crystallite_S0 = crystallite_S
|
||||
|
||||
do i = 1, size(plasticState)
|
||||
plasticState(i)%state0 = plasticState(i)%state
|
||||
enddo
|
||||
do i = 1, size(sourceState)
|
||||
do j = 1,phase_Nsources(i)
|
||||
sourceState(i)%p(j)%state0 = sourceState(i)%p(j)%state
|
||||
enddo; enddo
|
||||
do i = 1, material_Nhomogenization
|
||||
homogState (i)%state0 = homogState (i)%state
|
||||
thermalState(i)%state0 = thermalState(i)%state
|
||||
damageState (i)%state0 = damageState (i)%state
|
||||
enddo
|
||||
|
||||
end subroutine crystallite_forward
|
||||
|
||||
end module crystallite
|
||||
|
|
|
@ -669,7 +669,7 @@ module procedure mech_RGC_updateState
|
|||
nDef = 0.0_pReal
|
||||
do i = 1,3; do j = 1,3
|
||||
do k = 1,3; do l = 1,3
|
||||
nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_civita(j,k,l) ! compute the interface mismatch tensor from the jump of deformation gradient
|
||||
nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_LeviCivita(j,k,l) ! compute the interface mismatch tensor from the jump of deformation gradient
|
||||
enddo; enddo
|
||||
nDefNorm = nDefNorm + nDef(i,j)**2.0_pReal ! compute the norm of the mismatch tensor
|
||||
enddo; enddo
|
||||
|
@ -689,7 +689,7 @@ module procedure mech_RGC_updateState
|
|||
rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*bgGrain + muGNghb*bgGNghb)*prm%xiAlpha &
|
||||
*surfCorr(abs(intFace(1)))/prm%dAlpha(abs(intFace(1))) &
|
||||
*cosh(prm%ciAlpha*nDefNorm) &
|
||||
*0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_civita(k,l,j) &
|
||||
*0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_LeviCivita(k,l,j) &
|
||||
*tanh(nDefNorm/xSmoo_RGC)
|
||||
enddo; enddo;enddo; enddo
|
||||
enddo interfaceLoop
|
||||
|
|
70
src/math.f90
70
src/math.f90
|
@ -73,6 +73,11 @@ module math
|
|||
3,3 &
|
||||
],[2,9]) !< arrangement in Plain notation
|
||||
|
||||
|
||||
interface math_mul33xx33
|
||||
module procedure math_tensordot
|
||||
end interface math_mul33xx33
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
private :: &
|
||||
unitTest
|
||||
|
@ -266,31 +271,30 @@ end function math_identity4th
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief permutation tensor e_ijk used for computing cross product of two tensors
|
||||
!> @brief permutation tensor e_ijk
|
||||
! e_ijk = 1 if even permutation of ijk
|
||||
! e_ijk = -1 if odd permutation of ijk
|
||||
! e_ijk = 0 otherwise
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) pure function math_civita(i,j,k)
|
||||
real(pReal) pure function math_LeviCivita(i,j,k)
|
||||
|
||||
integer, intent(in) :: i,j,k
|
||||
|
||||
math_civita = 0.0_pReal
|
||||
if (((i == 1).and.(j == 2).and.(k == 3)) .or. &
|
||||
((i == 2).and.(j == 3).and.(k == 1)) .or. &
|
||||
((i == 3).and.(j == 1).and.(k == 2))) math_civita = 1.0_pReal
|
||||
if (((i == 1).and.(j == 3).and.(k == 2)) .or. &
|
||||
((i == 2).and.(j == 1).and.(k == 3)) .or. &
|
||||
((i == 3).and.(j == 2).and.(k == 1))) math_civita = -1.0_pReal
|
||||
if (all([i,j,k] == [1,2,3]) .or. all([i,j,k] == [2,3,1]) .or. all([i,j,k] == [3,1,2])) then
|
||||
math_LeviCivita = +1.0_pReal
|
||||
elseif (all([i,j,k] == [3,2,1]) .or. all([i,j,k] == [2,1,3]) .or. all([i,j,k] == [1,3,2])) then
|
||||
math_LeviCivita = -1.0_pReal
|
||||
else
|
||||
math_LeviCivita = 0.0_pReal
|
||||
endif
|
||||
|
||||
end function math_civita
|
||||
end function math_LeviCivita
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief kronecker delta function d_ij
|
||||
! d_ij = 1 if i = j
|
||||
! d_ij = 0 otherwise
|
||||
! inspired by http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) pure function math_delta(i,j)
|
||||
|
||||
|
@ -317,7 +321,7 @@ end function math_cross
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief outer product A \otimes B of arbitrary sized vectors A and B
|
||||
!> @brief outer product of arbitrary sized vectors (A ⊗ B / i,j)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_outer(A,B)
|
||||
|
||||
|
@ -333,7 +337,7 @@ end function math_outer
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief outer product A \otimes B of arbitrary sized vectors A and B
|
||||
!> @brief inner product of arbitrary sized vectors (A · B / i,i)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) pure function math_inner(A,B)
|
||||
|
||||
|
@ -346,24 +350,19 @@ end function math_inner
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 33xx33 = 1 (double contraction --> ij * ij)
|
||||
!> @brief double contraction of 3x3 matrices (A : B / ij,ij)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) pure function math_mul33xx33(A,B)
|
||||
real(pReal) pure function math_tensordot(A,B)
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: A,B
|
||||
integer :: i,j
|
||||
real(pReal), dimension(3,3) :: C
|
||||
|
||||
do i=1,3; do j=1,3
|
||||
C(i,j) = A(i,j) * B(i,j)
|
||||
enddo; enddo
|
||||
math_mul33xx33 = sum(C)
|
||||
math_tensordot = sum(A*B)
|
||||
|
||||
end function math_mul33xx33
|
||||
end function math_tensordot
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
|
||||
!> @brief matrix double contraction 3333x33 = 33 (ijkl,kl)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul3333xx33(A,B)
|
||||
|
||||
|
@ -380,7 +379,7 @@ end function math_mul3333xx33
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 3333x3333 = 3333 (ijkl *klmn = ijmn)
|
||||
!> @brief matrix multiplication 3333x3333 = 3333 (ijkl,klmn)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul3333xx3333(A,B)
|
||||
|
||||
|
@ -404,6 +403,7 @@ pure function math_exp33(A,n)
|
|||
real(pReal), dimension(3,3), intent(in) :: A
|
||||
integer, intent(in), optional :: n
|
||||
real(pReal), dimension(3,3) :: B, math_exp33
|
||||
|
||||
real(pReal) :: invFac
|
||||
integer :: n_,i
|
||||
|
||||
|
@ -433,9 +433,10 @@ end function math_exp33
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_inv33(A)
|
||||
|
||||
real(pReal),dimension(3,3),intent(in) :: A
|
||||
real(pReal), dimension(3,3), intent(in) :: A
|
||||
real(pReal), dimension(3,3) :: math_inv33
|
||||
|
||||
real(pReal) :: DetA
|
||||
real(pReal),dimension(3,3) :: math_inv33
|
||||
logical :: error
|
||||
|
||||
call math_invert33(math_inv33,DetA,error,A)
|
||||
|
@ -451,10 +452,10 @@ end function math_inv33
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine math_invert33(InvA, DetA, error, A)
|
||||
|
||||
logical, intent(out) :: error
|
||||
real(pReal),dimension(3,3),intent(in) :: A
|
||||
real(pReal),dimension(3,3),intent(out) :: InvA
|
||||
real(pReal), dimension(3,3), intent(out) :: InvA
|
||||
real(pReal), intent(out) :: DetA
|
||||
logical, intent(out) :: error
|
||||
real(pReal), dimension(3,3), intent(in) :: A
|
||||
|
||||
InvA(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
|
||||
InvA(2,1) = -A(2,1) * A(3,3) + A(2,3) * A(3,1)
|
||||
|
@ -1307,6 +1308,7 @@ subroutine unitTest
|
|||
sort_out_ = reshape([-1,-1, +1,+5, +5,+6, +3,-2],[2,4])
|
||||
|
||||
integer, dimension(5) :: range_out_ = [1,2,3,4,5]
|
||||
integer, dimension(3) :: ijk
|
||||
|
||||
real(pReal) :: det
|
||||
real(pReal), dimension(3) :: v3_1,v3_2,v3_3,v3_4
|
||||
|
@ -1423,6 +1425,16 @@ subroutine unitTest
|
|||
if(math_binomial(49,6) /= 13983816) &
|
||||
call IO_error(0,ext_msg='math_binomial')
|
||||
|
||||
ijk = cshift([1,2,3],int(r*1.0e2_pReal))
|
||||
if(dNeq(math_LeviCivita(ijk(1),ijk(2),ijk(3)),+1.0_pReal)) &
|
||||
call IO_error(0,ext_msg='math_LeviCivita(even)')
|
||||
ijk = cshift([3,2,1],int(r*2.0e2_pReal))
|
||||
if(dNeq(math_LeviCivita(ijk(1),ijk(2),ijk(3)),-1.0_pReal)) &
|
||||
call IO_error(0,ext_msg='math_LeviCivita(odd)')
|
||||
ijk = cshift([2,2,1],int(r*2.0e2_pReal))
|
||||
if(dNeq0(math_LeviCivita(ijk(1),ijk(2),ijk(3))))&
|
||||
call IO_error(0,ext_msg='math_LeviCivita')
|
||||
|
||||
end subroutine unitTest
|
||||
|
||||
end module math
|
||||
|
|
Loading…
Reference in New Issue