fixed test for rodrigues parametrization

for angle close to 180deg, the sign of the axis does not matter
This commit is contained in:
Martin Diehl 2021-01-03 11:50:45 +01:00
parent 6d5c3a5d12
commit 6fe1ff8e39
2 changed files with 11 additions and 9 deletions

View File

@ -1052,7 +1052,6 @@ class Rotation:
@staticmethod
def _om2ax(om):
"""Rotation matrix to axis angle pair."""
#return Rotation._qu2ax(Rotation._om2qu(om)) # HOTFIX
diag_delta = -_P*np.block([om[...,1,2:3]-om[...,2,1:2],
om[...,2,0:1]-om[...,0,2:3],
om[...,0,1:2]-om[...,1,0:1]

View File

@ -526,7 +526,7 @@ class TestRotation:
o = backward(forward(m))
u = np.array([np.pi*2,np.pi,np.pi*2])
ok = np.allclose(m,o,atol=atol)
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
ok |= np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
ok |= np.isclose(sum_phi[0],sum_phi[1],atol=atol)
@ -550,19 +550,22 @@ class TestRotation:
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi+1.e-9, f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('forward,backward',[(Rotation._ro2qu,Rotation._qu2ro),
#(Rotation._ro2om,Rotation._om2ro),
#(Rotation._ro2eu,Rotation._eu2ro),
(Rotation._ro2om,Rotation._om2ro),
(Rotation._ro2eu,Rotation._eu2ro),
(Rotation._ro2ax,Rotation._ax2ro),
(Rotation._ro2ho,Rotation._ho2ro),
(Rotation._ro2cu,Rotation._cu2ro)])
def test_Rodrigues_internal(self,set_of_rotations,forward,backward):
"""Ensure invariance of conversion from Rodrigues-Frank vector and back."""
cutoff = np.tan(np.pi*.5*(1.-1e-4))
cutoff = np.tan(np.pi*.5*(1.-1e-5))
for rot in set_of_rotations:
m = rot.as_Rodrigues_vector()
o = backward(forward(m))
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
ok = ok or np.isclose(m[3],0.0,atol=atol)
ok |= np.isclose(m[3],0.0,atol=atol)
if m[3] > cutoff:
ok |= np.allclose(m[:3],-1*o[:3])
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0), f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('forward,backward',[(Rotation._ho2qu,Rotation._qu2ho),
@ -592,7 +595,7 @@ class TestRotation:
o = backward(forward(m))
ok = np.allclose(m,o,atol=atol)
if np.count_nonzero(np.isclose(np.abs(o),np.pi**(2./3.)*.5)):
ok = ok or np.allclose(m*-1.,o,atol=atol)
ok |= np.allclose(m*-1.,o,atol=atol)
assert ok and np.max(np.abs(o)) < np.pi**(2./3.) * 0.5 + 1.e-9, f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('vectorized, single',[(Rotation._qu2om,qu2om),
@ -719,7 +722,7 @@ class TestRotation:
o = Rotation.from_axis_angle(rot.as_axis_angle()).as_axis_angle()
ok = np.allclose(m,o,atol=atol)
if np.isclose(m[3],np.pi,atol=atol):
ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
ok |= np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) \
and o[3]<=np.pi+1.e-9, f'{m},{o},{rot.as_quaternion()}'
@ -740,7 +743,7 @@ class TestRotation:
m = rot.as_Rodrigues_vector()
o = Rotation.from_homochoric(rot.as_homochoric()*P*-1,P).as_Rodrigues_vector()
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
ok = ok or np.isclose(m[3],0.0,atol=atol)
ok |= np.isclose(m[3],0.0,atol=atol)
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0), f'{m},{o},{rot.as_quaternion()}'
@pytest.mark.parametrize('P',[1,-1])