Merge branch 'extra-documentation' into 'development'
improved docstrings See merge request damask/DAMASK!722
This commit is contained in:
commit
6fd30dd266
|
@ -14,7 +14,7 @@ from . import _rotation
|
|||
|
||||
|
||||
def deformation_Cauchy_Green_left(F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).
|
||||
|
||||
Parameters
|
||||
|
@ -27,12 +27,18 @@ def deformation_Cauchy_Green_left(F: _np.ndarray) -> _np.ndarray:
|
|||
B : numpy.ndarray, shape (...,3,3)
|
||||
Left Cauchy-Green deformation tensor.
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. math::
|
||||
|
||||
\vb{B} = \vb{F} \vb{F}^\text{T}
|
||||
|
||||
"""
|
||||
return _np.matmul(F,_tensor.transpose(F))
|
||||
|
||||
|
||||
def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate right Cauchy-Green deformation tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -45,12 +51,18 @@ def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
|||
C : numpy.ndarray, shape (...,3,3)
|
||||
Right Cauchy-Green deformation tensor.
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. math::
|
||||
|
||||
\vb{C} = \vb{F}^\text{T} \vb{F}
|
||||
|
||||
"""
|
||||
return _np.matmul(_tensor.transpose(F),F)
|
||||
|
||||
|
||||
def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate the Mises equivalent of a strain tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -63,12 +75,23 @@ def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
|||
epsilon_vM : numpy.ndarray, shape (...)
|
||||
Von Mises equivalent strain of epsilon.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The von Mises equivalent of a strain tensor is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon_\text{vM} = \sqrt{2/3 \epsilon^\prime_{ij} \epsilon^\prime_{ij}}
|
||||
|
||||
where :math:`\vb*{\epsilon}^\prime` is the deviatoric part
|
||||
of the strain tensor.
|
||||
|
||||
"""
|
||||
return _equivalent_Mises(epsilon,2.0/3.0)
|
||||
|
||||
|
||||
def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate the Mises equivalent of a stress tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -81,6 +104,17 @@ def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
|||
sigma_vM : numpy.ndarray, shape (...)
|
||||
Von Mises equivalent stress of sigma.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The von Mises equivalent of a stress tensor is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\sigma_\text{vM} = \sqrt{3/2 \sigma^\prime_{ij} \sigma^\prime_{ij}}
|
||||
|
||||
where :math:`\vb*{\sigma}^\prime` is the deviatoric part
|
||||
of the stress tensor.
|
||||
|
||||
"""
|
||||
return _equivalent_Mises(sigma,3.0/2.0)
|
||||
|
||||
|
@ -105,7 +139,7 @@ def maximum_shear(T_sym: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
|
||||
def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
||||
"""
|
||||
r"""
|
||||
Calculate the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -118,6 +152,17 @@ def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
|||
R : damask.Rotation, shape (...)
|
||||
Rotational part of the vector.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The rotational part is calculated from the polar decomposition:
|
||||
|
||||
.. math::
|
||||
|
||||
\vb{R} = \vb{T} \vb{U}^{-1} = \vb{V}^{-1} \vb{T}
|
||||
|
||||
where :math:`\vb{V}` and :math:`\vb{U}` are the left
|
||||
and right stretch tensor, respectively.
|
||||
|
||||
"""
|
||||
return _rotation.Rotation.from_matrix(_polar_decomposition(T,'R')[0])
|
||||
|
||||
|
@ -212,7 +257,7 @@ def stress_second_Piola_Kirchhoff(P: _np.ndarray,
|
|||
|
||||
|
||||
def stretch_left(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -225,12 +270,23 @@ def stretch_left(T: _np.ndarray) -> _np.ndarray:
|
|||
V : numpy.ndarray, shape (...,3,3)
|
||||
Left stretch tensor from Polar decomposition of T.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The left stretch tensor is calculated from the
|
||||
polar decomposition:
|
||||
|
||||
.. math::
|
||||
|
||||
\vb{V} = \vb{T} \vb{R}^\text{T}
|
||||
|
||||
where :math:`\vb{R}` is a rotation.
|
||||
|
||||
"""
|
||||
return _polar_decomposition(T,'V')[0]
|
||||
|
||||
|
||||
def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -243,6 +299,17 @@ def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
|||
U : numpy.ndarray, shape (...,3,3)
|
||||
Left stretch tensor from Polar decomposition of T.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The right stretch tensor is calculated from the
|
||||
polar decomposition:
|
||||
|
||||
.. math::
|
||||
|
||||
\vb{U} = \vb{R}^\text{T} \vb{T}
|
||||
|
||||
where :math:`\vb{R}` is a rotation.
|
||||
|
||||
"""
|
||||
return _polar_decomposition(T,'U')[0]
|
||||
|
||||
|
@ -260,6 +327,11 @@ def _polar_decomposition(T: _np.ndarray,
|
|||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor, and ‘U’ for right stretch tensor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
VRU : tuple of numpy.ndarray, shape (...,3,3)
|
||||
Requested components of the singular value decomposition.
|
||||
|
||||
"""
|
||||
u, _, vh = _np.linalg.svd(T)
|
||||
R = _np.einsum('...ij,...jk',u,vh)
|
||||
|
@ -290,6 +362,11 @@ def _equivalent_Mises(T_sym: _np.ndarray,
|
|||
s : float
|
||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||
|
||||
Returns
|
||||
-------
|
||||
eq : numpy.ndarray, shape (...)
|
||||
Scaled second invariant of the deviatoric part of T_sym.
|
||||
|
||||
"""
|
||||
d = _tensor.deviatoric(T_sym)
|
||||
return _np.sqrt(s*_np.sum(d**2.0,axis=(-1,-2)))
|
||||
|
|
Loading…
Reference in New Issue