separating general tensor math from mechanics operations

This commit is contained in:
Martin Diehl 2020-11-15 23:14:46 +01:00
parent 6529613726
commit 6f81f5278d
10 changed files with 203 additions and 157 deletions

View File

@ -7,15 +7,16 @@ with open(_Path(__file__).parent/_Path('VERSION')) as _f:
version = _re.sub(r'^v','',_f.readline().strip())
__version__ = version
# make classes directly accessible as damask.Class
from ._environment import Environment as _ # noqa
environment = _()
from . import util # noqa
from . import seeds # noqa
from . import tensor # noqa
from . import mechanics # noqa
from . import solver # noqa
from . import grid_filters # noqa
from . import lattice # noqa
# make classes directly accessible as damask.Class
from ._rotation import Rotation # noqa
from ._orientation import Orientation # noqa
from ._table import Table # noqa

View File

@ -2,7 +2,7 @@ import numpy as np
from . import Rotation
from . import util
from . import mechanics
from . import tensor
__parameter_doc__ = \
"""lattice : str
@ -362,7 +362,7 @@ class Orientation(Rotation):
x = o.to_frame(uvw=uvw)
z = o.to_frame(hkl=hkl)
om = np.stack([x,np.cross(z,x),z],axis=-2)
return o.copy(rotation=Rotation.from_matrix(mechanics.transpose(om/np.linalg.norm(om,axis=-1,keepdims=True))))
return o.copy(rotation=Rotation.from_matrix(tensor.transpose(om/np.linalg.norm(om,axis=-1,keepdims=True))))
@property

View File

@ -18,6 +18,7 @@ from . import Table
from . import Orientation
from . import grid_filters
from . import mechanics
from . import tensor
from . import util
h5py3 = h5py.__version__[0] == '3'
@ -681,7 +682,7 @@ class Result:
label,p = 'Minimum',0
return {
'data': mechanics.eigenvalues(T_sym['data'])[:,p],
'data': tensor.eigenvalues(T_sym['data'])[:,p],
'label': f"lambda_{eigenvalue}({T_sym['label']})",
'meta' : {
'Unit': T_sym['meta']['Unit'],
@ -713,7 +714,7 @@ class Result:
elif eigenvalue == 'min':
label,p = 'minimum',0
return {
'data': mechanics.eigenvectors(T_sym['data'])[:,p],
'data': tensor.eigenvectors(T_sym['data'])[:,p],
'label': f"v_{eigenvalue}({T_sym['label']})",
'meta' : {
'Unit': '1',

View File

@ -1,6 +1,6 @@
import numpy as np
from . import mechanics
from . import tensor
from . import util
from . import grid_filters
@ -549,7 +549,7 @@ class Rotation:
raise ValueError('Invalid shape.')
if reciprocal:
om = np.linalg.inv(mechanics.transpose(om)/np.pi) # transform reciprocal basis set
om = np.linalg.inv(tensor.transpose(om)/np.pi) # transform reciprocal basis set
orthonormal = False # contains stretch
if not orthonormal:
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition

View File

@ -1,5 +1,10 @@
"""Finite-strain continuum mechanics."""
from . import tensor
import numpy as _np
def Cauchy(P,F):
"""
Return Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
@ -15,7 +20,7 @@ def Cauchy(P,F):
"""
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
return symmetric(sigma)
return tensor.symmetric(sigma)
def deviatoric_part(T):
@ -31,43 +36,6 @@ def deviatoric_part(T):
return T - _np.einsum('...ij,...->...ij',_np.eye(3),spherical_part(T))
def eigenvalues(T_sym):
"""
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
The eigenvalues are sorted in ascending order, each repeated according to
its multiplicity.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the eigenvalues are computed.
"""
return _np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(T_sym,RHS=False):
"""
Return eigenvectors of a symmetric tensor.
The eigenvalues are sorted in ascending order of their associated eigenvalues.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the eigenvectors are computed.
RHS: bool, optional
Enforce right-handed coordinate system. Default is False.
"""
(u,v) = _np.linalg.eigh(symmetric(T_sym))
if RHS:
v[_np.linalg.det(v) < 0.0,:,2] *= -1.0
return v
def left_stretch(T):
"""
Return the left stretch of a tensor.
@ -91,7 +59,7 @@ def maximum_shear(T_sym):
Symmetric tensor of which the maximum shear is computed.
"""
w = eigenvalues(T_sym)
w = tensor.eigenvalues(T_sym)
return (w[...,0] - w[...,2])*0.5
@ -134,7 +102,7 @@ def PK2(P,F):
"""
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
return symmetric(S)
return tensor.symmetric(S)
def right_stretch(T):
@ -197,10 +165,10 @@ def strain_tensor(F,t,m):
"""
if t == 'V':
B = _np.matmul(F,transpose(F))
B = _np.matmul(F,tensor.transpose(F))
w,n = _np.linalg.eigh(B)
elif t == 'U':
C = _np.matmul(transpose(F),F)
C = _np.matmul(tensor.transpose(F),F)
w,n = _np.linalg.eigh(C)
if m > 0.0:
@ -216,32 +184,6 @@ def strain_tensor(F,t,m):
return eps
def symmetric(T):
"""
Return the symmetrized tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the symmetrized values are computed.
"""
return (T+transpose(T))*0.5
def transpose(T):
"""
Return the transpose of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the transpose is computed.
"""
return _np.swapaxes(T,axis2=-2,axis1=-1)
def _polar_decomposition(T,requested):
"""
Singular value decomposition.

View File

@ -1,3 +1,8 @@
"""
Functionality for generation of seed points for Voronoi
or Laguerre tessellation.
"""
from scipy import spatial as _spatial
import numpy as _np

74
python/damask/tensor.py Normal file
View File

@ -0,0 +1,74 @@
"""
Tensor operations.
Notes
-----
This is not a tensor class, but a collection of routines
to operate on numpy.ndarrays of shape (...,3,3).
"""
import numpy as _np
def symmetric(T):
"""
Return the symmetrized tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the symmetrized values are computed.
"""
return (T+transpose(T))*0.5
def transpose(T):
"""
Return the transpose of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the transpose is computed.
"""
return _np.swapaxes(T,axis2=-2,axis1=-1)
def eigenvalues(T_sym):
"""
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
The eigenvalues are sorted in ascending order, each repeated according to
its multiplicity.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the eigenvalues are computed.
"""
return _np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(T_sym,RHS=False):
"""
Return eigenvectors of a symmetric tensor.
The eigenvalues are sorted in ascending order of their associated eigenvalues.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the eigenvectors are computed.
RHS: bool, optional
Enforce right-handed coordinate system. Default is False.
"""
(u,v) = _np.linalg.eigh(symmetric(T_sym))
if RHS:
v[_np.linalg.det(v) < 0.0,:,2] *= -1.0
return v

View File

@ -11,6 +11,7 @@ import h5py
from damask import Result
from damask import Rotation
from damask import Orientation
from damask import tensor
from damask import mechanics
from damask import grid_filters
@ -152,7 +153,7 @@ class TestResult:
default.add_eigenvalue('sigma',eigenvalue)
loc = {'sigma' :default.get_dataset_location('sigma'),
'lambda':default.get_dataset_location(f'lambda_{eigenvalue}(sigma)')}
in_memory = function(mechanics.eigenvalues(default.read_dataset(loc['sigma'],0)),axis=1,keepdims=True)
in_memory = function(tensor.eigenvalues(default.read_dataset(loc['sigma'],0)),axis=1,keepdims=True)
in_file = default.read_dataset(loc['lambda'],0)
assert np.allclose(in_memory,in_file)
@ -162,7 +163,7 @@ class TestResult:
default.add_eigenvector('sigma',eigenvalue)
loc = {'sigma' :default.get_dataset_location('sigma'),
'v(sigma)':default.get_dataset_location(f'v_{eigenvalue}(sigma)')}
in_memory = mechanics.eigenvectors(default.read_dataset(loc['sigma'],0))[:,idx]
in_memory = tensor.eigenvectors(default.read_dataset(loc['sigma'],0))[:,idx]
in_file = default.read_dataset(loc['v(sigma)'],0)
assert np.allclose(in_memory,in_file)

View File

@ -1,11 +1,12 @@
import pytest
import numpy as np
from damask import tensor
from damask import mechanics
def Cauchy(P,F):
sigma = 1.0/np.linalg.det(F) * np.dot(P,F.T)
return mechanics.symmetric(sigma)
return symmetric(sigma)
def deviatoric_part(T):
@ -16,14 +17,6 @@ def eigenvalues(T_sym):
return np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(T_sym,RHS=False):
(u,v) = np.linalg.eigh(symmetric(T_sym))
if RHS:
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
return v
def left_stretch(T):
return polar_decomposition(T,'V')[0]
@ -53,39 +46,35 @@ def right_stretch(T):
def rotational_part(T):
return polar_decomposition(T,'R')[0]
def spherical_part(T,tensor=False):
sph = np.trace(T)/3.0
return sph if not tensor else np.eye(3)*sph
def strain_tensor(F,t,m):
F_ = F.reshape(1,3,3)
if t == 'V':
B = np.matmul(F_,mechanics.transpose(F_))
B = np.matmul(F,F.T)
w,n = np.linalg.eigh(B)
elif t == 'U':
C = np.matmul(mechanics.transpose(F_),F_)
C = np.matmul(F.T,F)
w,n = np.linalg.eigh(C)
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
- np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('j,kj->jk',w**m,n))
- np.eye(3))
elif m < 0.0:
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
+ np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('j,kj->jk',w**m,n))
+ np.eye(3))
else:
eps = np.matmul(n,np.einsum('ij,ikj->ijk',0.5*np.log(w),n))
eps = np.matmul(n,np.einsum('j,kj->jk',0.5*np.log(w),n))
return eps.reshape(3,3)
return eps
def symmetric(T):
return (T+transpose(T))*0.5
def transpose(T):
return T.T
return (T+T.T)*0.5
def polar_decomposition(T,requested):
@ -123,20 +112,15 @@ class TestMechanics:
for i,v in enumerate(np.reshape(vectorized(test_data),vectorized(test_data_flat).shape)):
assert np.allclose(single(test_data_flat[i]),v)
@pytest.mark.parametrize('vectorized,single',[
(mechanics.deviatoric_part, deviatoric_part),
(mechanics.eigenvalues , eigenvalues ),
(mechanics.eigenvectors , eigenvectors ),
(mechanics.left_stretch , left_stretch ),
(mechanics.maximum_shear , maximum_shear ),
(mechanics.Mises_strain , Mises_strain ),
(mechanics.Mises_stress , Mises_stress ),
(mechanics.right_stretch , right_stretch ),
(mechanics.rotational_part, rotational_part),
(mechanics.spherical_part , spherical_part ),
(mechanics.symmetric , symmetric ),
(mechanics.transpose , transpose ),
])
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
(mechanics.left_stretch , left_stretch ),
(mechanics.maximum_shear , maximum_shear ),
(mechanics.Mises_strain , Mises_strain ),
(mechanics.Mises_stress , Mises_stress ),
(mechanics.right_stretch , right_stretch ),
(mechanics.rotational_part, rotational_part),
(mechanics.spherical_part , spherical_part ),
])
def test_vectorize_1_arg(self,vectorized,single):
epsilon = np.random.rand(self.n,3,3)
epsilon_vec = np.reshape(epsilon,(self.n//10,10,3,3))
@ -171,7 +155,7 @@ class TestMechanics:
def test_stress_measures(self,function):
"""Ensure that all stress measures are equivalent for no deformation."""
P = np.random.rand(self.n,3,3)
assert np.allclose(function(P,np.broadcast_to(np.eye(3),(self.n,3,3))),mechanics.symmetric(P))
assert np.allclose(function(P,np.broadcast_to(np.eye(3),(self.n,3,3))),tensor.symmetric(P))
def test_deviatoric_part(self):
I_n = np.broadcast_to(np.eye(3),(self.n,3,3))
@ -237,9 +221,9 @@ class TestMechanics:
def test_spherical_mapping(self):
"""Ensure that mapping to tensor is correct."""
x = np.random.rand(self.n,3,3)
tensor = mechanics.spherical_part(x,True)
tnsr = mechanics.spherical_part(x,True)
scalar = mechanics.spherical_part(x)
assert np.allclose(np.linalg.det(tensor),
assert np.allclose(np.linalg.det(tnsr),
scalar**3.0)
def test_spherical_Mises(self):
@ -249,17 +233,6 @@ class TestMechanics:
assert np.allclose(mechanics.Mises_strain(sph),
0.0)
def test_symmetric(self):
"""Ensure that a symmetric tensor is half of the sum of a tensor and its transpose."""
x = np.random.rand(self.n,3,3)
assert np.allclose(mechanics.symmetric(x)*2.0,
mechanics.transpose(x)+x)
def test_transpose(self):
"""Ensure that a symmetric tensor equals its transpose."""
x = mechanics.symmetric(np.random.rand(self.n,3,3))
assert np.allclose(mechanics.transpose(x),
x)
def test_Mises(self):
"""Ensure that equivalent stress is 3/2 of equivalent strain."""
@ -267,31 +240,7 @@ class TestMechanics:
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
1.5)
def test_eigenvalues(self):
"""Ensure that the characteristic polynomial can be solved."""
A = mechanics.symmetric(np.random.rand(self.n,3,3))
lambd = mechanics.eigenvalues(A)
s = np.random.randint(self.n)
for i in range(3):
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
def test_eigenvalues_and_vectors(self):
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
A = mechanics.symmetric(np.random.rand(self.n,3,3))
lambd = mechanics.eigenvalues(A)
x = mechanics.eigenvectors(A)
s = np.random.randint(self.n)
for i in range(3):
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
def test_eigenvectors_RHS(self):
"""Ensure that RHS coordinate system does only change sign of determinant."""
A = mechanics.symmetric(np.random.rand(self.n,3,3))
LRHS = np.linalg.det(mechanics.eigenvectors(A,RHS=False))
RHS = np.linalg.det(mechanics.eigenvectors(A,RHS=True))
assert np.allclose(np.abs(LRHS),RHS)
def test_spherical_no_shear(self):
"""Ensure that sherical stress has max shear of 0.0."""
A = mechanics.spherical_part(mechanics.symmetric(np.random.rand(self.n,3,3)),True)
A = mechanics.spherical_part(tensor.symmetric(np.random.rand(self.n,3,3)),True)
assert np.allclose(mechanics.maximum_shear(A),0.0)

View File

@ -0,0 +1,73 @@
import pytest
import numpy as np
from damask import tensor
def eigenvalues(T_sym):
return np.linalg.eigvalsh(symmetric(T_sym))
def eigenvectors(T_sym,RHS=False):
(u,v) = np.linalg.eigh(symmetric(T_sym))
if RHS:
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
return v
def symmetric(T):
return (T+transpose(T))*0.5
def transpose(T):
return T.T
class TestTensor:
n = 1000
c = np.random.randint(n)
@pytest.mark.parametrize('vectorized,single',[(tensor.eigenvalues , eigenvalues ),
(tensor.eigenvectors , eigenvectors ),
(tensor.symmetric , symmetric ),
(tensor.transpose , transpose ),
])
def test_vectorize_1_arg(self,vectorized,single):
epsilon = np.random.rand(self.n,3,3)
epsilon_vec = np.reshape(epsilon,(self.n//10,10,3,3))
for i,v in enumerate(np.reshape(vectorized(epsilon_vec),vectorized(epsilon).shape)):
assert np.allclose(single(epsilon[i]),v)
def test_symmetric(self):
"""Ensure that a symmetric tensor is half of the sum of a tensor and its transpose."""
x = np.random.rand(self.n,3,3)
assert np.allclose(tensor.symmetric(x)*2.0,tensor.transpose(x)+x)
def test_transpose(self):
"""Ensure that a symmetric tensor equals its transpose."""
x = tensor.symmetric(np.random.rand(self.n,3,3))
assert np.allclose(tensor.transpose(x),x)
def test_eigenvalues(self):
"""Ensure that the characteristic polynomial can be solved."""
A = tensor.symmetric(np.random.rand(self.n,3,3))
lambd = tensor.eigenvalues(A)
s = np.random.randint(self.n)
for i in range(3):
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
def test_eigenvalues_and_vectors(self):
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
A = tensor.symmetric(np.random.rand(self.n,3,3))
lambd = tensor.eigenvalues(A)
x = tensor.eigenvectors(A)
s = np.random.randint(self.n)
for i in range(3):
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
def test_eigenvectors_RHS(self):
"""Ensure that RHS coordinate system does only change sign of determinant."""
A = tensor.symmetric(np.random.rand(self.n,3,3))
LRHS = np.linalg.det(tensor.eigenvectors(A,RHS=False))
RHS = np.linalg.det(tensor.eigenvectors(A,RHS=True))
assert np.allclose(np.abs(LRHS),RHS)