Merge branch 'order4-polynomial' into 'development'

allow dependent variables to be of polynomial order up to 4

See merge request damask/DAMASK!572
This commit is contained in:
Philip Eisenlohr 2022-05-09 14:51:43 +00:00
commit 6e7372f308
3 changed files with 119 additions and 67 deletions

View File

@ -82,7 +82,7 @@ contains
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief initialization of random seed generator and internal checks !> @brief initialization of random seed generator and internal checks
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine math_init subroutine math_init()
real(pReal), dimension(4) :: randTest real(pReal), dimension(4) :: randTest
integer :: randSize integer :: randSize
@ -1045,24 +1045,34 @@ pure subroutine math_eigh33(w,v,m)
w = math_eigvalsh33(m) w = math_eigvalsh33(m)
v(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), & v(1:3,2) = [ m(1,2) * m(2,3) - m(1,3) * m(2,2), &
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), & m(1,3) * m(1,2) - m(2,3) * m(1,1), &
m(1, 2)**2] m(1,2)**2]
T = maxval(abs(w)) T = maxval(abs(w))
U = max(T, T**2) U = max(T, T**2)
threshold = sqrt(5.68e-14_pReal * U**2) threshold = sqrt(5.68e-14_pReal * U**2)
v(1:3,1) = [ v(1,2) + m(1, 3) * w(1), & #ifndef __INTEL_LLVM_COMPILER
v(2,2) + m(2, 3) * w(1), & v(1:3,1) = [m(1,3)*w(1) + v(1,2), &
m(2,3)*w(1) + v(2,2), &
#else
v(1:3,1) = [IEEE_FMA(m(1,3),w(1),v(1,2)), &
IEEE_FMA(m(2,3),w(1),v(2,2)), &
#endif
(m(1,1) - w(1)) * (m(2,2) - w(1)) - v(3,2)] (m(1,1) - w(1)) * (m(2,2) - w(1)) - v(3,2)]
norm = norm2(v(1:3, 1)) norm = norm2(v(1:3, 1))
fallback1: if (norm < threshold) then fallback1: if (norm < threshold) then
call math_eigh(w,v,error,m) call math_eigh(w,v,error,m)
else fallback1 else fallback1
v(1:3,1) = v(1:3, 1) / norm v(1:3,1) = v(1:3, 1) / norm
v(1:3,2) = [ v(1,2) + m(1, 3) * w(2), & #ifndef __INTEL_LLVM_COMPILER
v(2,2) + m(2, 3) * w(2), & v(1:3,2) = [m(1,3)*w(2) + v(1,2), &
m(2,3)*w(2) + v(2,2), &
#else
v(1:3,2) = [IEEE_FMA(m(1,3),w(2),v(1,2)), &
IEEE_FMA(m(2,3),w(2),v(2,2)), &
#endif
(m(1,1) - w(2)) * (m(2,2) - w(2)) - v(3,2)] (m(1,1) - w(2)) * (m(2,2) - w(2)) - v(3,2)]
norm = norm2(v(1:3, 2)) norm = norm2(v(1:3, 2))
fallback2: if (norm < threshold) then fallback2: if (norm < threshold) then
@ -1300,7 +1310,7 @@ end function math_clip
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Check correctness of some math functions. !> @brief Check correctness of some math functions.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine selfTest subroutine selfTest()
integer, dimension(2,4) :: & integer, dimension(2,4) :: &
sort_in_ = reshape([+1,+5, +5,+6, -1,-1, +3,-2],[2,4]) sort_in_ = reshape([+1,+5, +5,+6, -1,-1, +3,-2],[2,4])

View File

@ -680,8 +680,11 @@ function integrateStateEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result
if (any(IEEE_is_NaN(dotState))) return if (any(IEEE_is_NaN(dotState))) return
sizeDotState = plasticState(ph)%sizeDotState sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,en) = subState0 & #ifndef __INTEL_LLVM_COMPILER
+ dotState * Delta_t plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
#else
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
#endif
broken = plastic_deltaState(ph,en) broken = plastic_deltaState(ph,en)
if(broken) return if(broken) return
@ -720,8 +723,11 @@ function integrateStateAdaptiveEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en
sizeDotState = plasticState(ph)%sizeDotState sizeDotState = plasticState(ph)%sizeDotState
r = - dotState * 0.5_pReal * Delta_t r = - dotState * 0.5_pReal * Delta_t
plasticState(ph)%state(1:sizeDotState,en) = subState0 & #ifndef __INTEL_LLVM_COMPILER
+ dotState * Delta_t plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
#else
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
#endif
broken = plastic_deltaState(ph,en) broken = plastic_deltaState(ph,en)
if(broken) return if(broken) return
@ -842,12 +848,18 @@ function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
dotState = A(1,stage) * plastic_RKdotState(1:sizeDotState,1) dotState = A(1,stage) * plastic_RKdotState(1:sizeDotState,1)
do n = 2, stage do n = 2, stage
dotState = dotState & #ifndef __INTEL_LLVM_COMPILER
+ A(n,stage) * plastic_RKdotState(1:sizeDotState,n) dotState = dotState + A(n,stage)*plastic_RKdotState(1:sizeDotState,n)
#else
dotState = IEEE_FMA(A(n,stage),plastic_RKdotState(1:sizeDotState,n),dotState)
#endif
enddo enddo
plasticState(ph)%state(1:sizeDotState,en) = subState0 & #ifndef __INTEL_LLVM_COMPILER
+ dotState * Delta_t plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
#else
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
#endif
broken = integrateStress(F_0+(F-F_0)*Delta_t*C(stage),subFp0,subFi0,Delta_t*C(stage), ph,en) broken = integrateStress(F_0+(F-F_0)*Delta_t*C(stage),subFp0,subFi0,Delta_t*C(stage), ph,en)
if(broken) exit if(broken) exit
@ -861,8 +873,11 @@ function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
plastic_RKdotState(1:sizeDotState,size(B)) = dotState plastic_RKdotState(1:sizeDotState,size(B)) = dotState
dotState = matmul(plastic_RKdotState,B) dotState = matmul(plastic_RKdotState,B)
plasticState(ph)%state(1:sizeDotState,en) = subState0 & #ifndef __INTEL_LLVM_COMPILER
+ dotState * Delta_t plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState*Delta_t
#else
plasticState(ph)%state(1:sizeDotState,en) = IEEE_FMA(dotState,Delta_t,subState0)
#endif
if(present(DB)) & if(present(DB)) &
broken = .not. converged(matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) * Delta_t, & broken = .not. converged(matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) * Delta_t, &
@ -1146,12 +1161,18 @@ module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF)
else else
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
do o=1,3; do p=1,3 do o=1,3; do p=1,3
#ifndef __INTEL_LLVM_COMPILER
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) & lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) &
+ matmul(invSubFi0,dLidFi(1:3,1:3,o,p)) * Delta_t + matmul(invSubFi0,dLidFi(1:3,1:3,o,p)) * Delta_t
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) & lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) &
+ invFi*invFi(p,o) + invFi*invFi(p,o)
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) & rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) &
- matmul(invSubFi0,dLidS(1:3,1:3,o,p)) * Delta_t - matmul(invSubFi0,dLidS(1:3,1:3,o,p)) * Delta_t
#else
lhs_3333(1:3,1:3,o,p) = IEEE_FMA(matmul(invSubFi0,dLidFi(1:3,1:3,o,p)),Delta_t,lhs_3333(1:3,1:3,o,p))
lhs_3333(1:3,o,1:3,p) = IEEE_FMA(invFi,invFi(p,o),lhs_3333(1:3,o,1:3,p))
rhs_3333(1:3,1:3,o,p) = IEEE_FMA(matmul(invSubFi0,dLidS(1:3,1:3,o,p)),-Delta_t,rhs_3333(1:3,1:3,o,p))
#endif
enddo; enddo enddo; enddo
call math_invert(temp_99,error,math_3333to99(lhs_3333)) call math_invert(temp_99,error,math_3333to99(lhs_3333))
if (error) then if (error) then
@ -1180,8 +1201,12 @@ module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF)
temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), invFi) & temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), invFi) &
+ matmul(temp_33_3,dLidS(1:3,1:3,p,o)) + matmul(temp_33_3,dLidS(1:3,1:3,p,o))
enddo; enddo enddo; enddo
#ifndef __INTEL_LLVM_COMPILER
lhs_3333 = math_mul3333xx3333(dSdFe,temp_3333) * Delta_t & lhs_3333 = math_mul3333xx3333(dSdFe,temp_3333) * Delta_t &
+ math_mul3333xx3333(dSdFi,dFidS) + math_mul3333xx3333(dSdFi,dFidS)
#else
lhs_3333 = IEEE_FMA(math_mul3333xx3333(dSdFe,temp_3333),Delta_t,math_mul3333xx3333(dSdFi,dFidS))
#endif
call math_invert(temp_99,error,math_eye(9)+math_3333to99(lhs_3333)) call math_invert(temp_99,error,math_eye(9)+math_3333to99(lhs_3333))
if (error) then if (error) then

View File

@ -13,10 +13,9 @@ module polynomials
type, public :: tPolynomial type, public :: tPolynomial
real(pReal), dimension(:), allocatable :: coef real(pReal), dimension(:), allocatable :: coef
real(pReal) :: x_ref real(pReal) :: x_ref = huge(0.0_pReal)
contains contains
procedure, public :: at => eval procedure, public :: at => eval
procedure, public :: der1_at => eval_der1
end type tPolynomial end type tPolynomial
interface polynomial interface polynomial
@ -46,14 +45,14 @@ end subroutine polynomials_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Initialize a Polynomial from Coefficients. !> @brief Initialize a Polynomial from Coefficients.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function polynomial_from_coef(coef,x_ref) result(p) pure function polynomial_from_coef(coef,x_ref) result(p)
real(pReal), dimension(:), intent(in) :: coef real(pReal), dimension(0:), intent(in) :: coef
real(pReal), intent(in) :: x_ref real(pReal), intent(in) :: x_ref
type(tPolynomial) :: p type(tPolynomial) :: p
allocate(p%coef(0:size(coef)-1),source=coef) ! should be zero based p%coef = coef
p%x_ref = x_ref p%x_ref = x_ref
end function polynomial_from_coef end function polynomial_from_coef
@ -70,6 +69,8 @@ function polynomial_from_dict(dict,y,x) result(p)
real(pReal), dimension(:), allocatable :: coef real(pReal), dimension(:), allocatable :: coef
real(pReal) :: x_ref real(pReal) :: x_ref
integer :: i, o
character(len=1) :: o_s
allocate(coef(1),source=dict%get_asFloat(y)) allocate(coef(1),source=dict%get_asFloat(y))
@ -77,12 +78,14 @@ function polynomial_from_dict(dict,y,x) result(p)
if (dict%contains(y//','//x)) then if (dict%contains(y//','//x)) then
x_ref = dict%get_asFloat(x//'_ref') x_ref = dict%get_asFloat(x//'_ref')
coef = [coef,dict%get_asFloat(y//','//x)] coef = [coef,dict%get_asFloat(y//','//x)]
if (dict%contains(y//','//x//'^2')) then
coef = [coef,dict%get_asFloat(y//','//x//'^2')]
end if end if
else do o = 2,4
x_ref = huge(0.0_pReal) ! Simplify debugging write(o_s,'(I0.0)') o
if (dict%contains(y//','//x//'^'//o_s)) then
x_ref = dict%get_asFloat(x//'_ref')
coef = [coef,[(0.0_pReal,i=size(coef),o-1)],dict%get_asFloat(y//','//x//'^'//o_s)]
end if end if
end do
p = Polynomial(coef,x_ref) p = Polynomial(coef,x_ref)
@ -91,6 +94,7 @@ end function polynomial_from_dict
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Evaluate a Polynomial. !> @brief Evaluate a Polynomial.
!> @details https://nvlpubs.nist.gov/nistpubs/jres/71b/jresv71bn1p11_a1b.pdf (eq. 1.2)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function eval(self,x) result(y) pure function eval(self,x) result(y)
@ -98,49 +102,35 @@ pure function eval(self,x) result(y)
real(pReal), intent(in) :: x real(pReal), intent(in) :: x
real(pReal) :: y real(pReal) :: y
integer :: i integer :: o
y = self%coef(0) y = self%coef(ubound(self%coef,1))
do i = 1, ubound(self%coef,1) do o = ubound(self%coef,1)-1, 0, -1
y = y + self%coef(i) * (x-self%x_ref)**i #ifndef __INTEL_LLVM_COMPILER
y = y*(x-self%x_ref) +self%coef(o)
#else
y = IEEE_FMA(y,x-self%x_ref,self%coef(o))
#endif
enddo enddo
end function eval end function eval
!--------------------------------------------------------------------------------------------------
!> @brief Evaluate a first derivative of Polynomial.
!--------------------------------------------------------------------------------------------------
pure function eval_der1(self,x) result(y)
class(tPolynomial), intent(in) :: self
real(pReal), intent(in) :: x
real(pReal) :: y
integer :: i
y = 0.0_pReal
do i = 1, ubound(self%coef,1)
y = y + real(i,pReal)*self%coef(i) * (x-self%x_ref)**(i-1)
enddo
end function eval_der1
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Check correctness of polynomical functionality. !> @brief Check correctness of polynomical functionality.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine selfTest subroutine selfTest()
type(tPolynomial) :: p1, p2 type(tPolynomial) :: p1, p2
real(pReal), dimension(3) :: coef real(pReal), dimension(5) :: coef
real(pReal) :: x_ref, x integer :: i
real(pReal) :: x_ref, x, y
class(tNode), pointer :: dict class(tNode), pointer :: dict
character(len=pStringLen), dimension(3) :: coef_s character(len=pStringLen), dimension(size(coef)) :: coef_s
character(len=pStringLen) :: x_ref_s, x_s, YAML_s character(len=pStringLen) :: x_ref_s, x_s, YAML_s
call random_number(coef) call random_number(coef)
call random_number(x_ref) call random_number(x_ref)
call random_number(x) call random_number(x)
@ -149,29 +139,56 @@ subroutine selfTest
x_ref = x_ref*10_pReal -0.5_pReal x_ref = x_ref*10_pReal -0.5_pReal
x = x*10_pReal -0.5_pReal x = x*10_pReal -0.5_pReal
p1 = polynomial([coef(1)],x_ref)
if (dNeq(p1%at(x),coef(1))) error stop 'polynomial: eval(constant)'
p1 = polynomial(coef,x_ref) p1 = polynomial(coef,x_ref)
if (dNeq(p1%at(x_ref),coef(1))) error stop 'polynomial: @ref' if (dNeq(p1%at(x_ref),coef(1))) error stop 'polynomial: @ref'
write(coef_s(1),*) coef(1) do i = 1, size(coef_s)
write(coef_s(2),*) coef(2) write(coef_s(i),*) coef(i)
write(coef_s(3),*) coef(3) end do
write(x_ref_s,*) x_ref write(x_ref_s,*) x_ref
write(x_s,*) x write(x_s,*) x
YAML_s = 'C: '//trim(adjustl(coef_s(1)))//IO_EOL//& YAML_s = 'C: '//trim(adjustl(coef_s(1)))//IO_EOL//&
'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//& 'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//&
'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//& 'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//&
'C,T^3: '//trim(adjustl(coef_s(4)))//IO_EOL//&
'C,T^4: '//trim(adjustl(coef_s(5)))//IO_EOL//&
'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL
Dict => YAML_parse_str(trim(YAML_s)) Dict => YAML_parse_str(trim(YAML_s))
p2 = polynomial(dict%asDict(),'C','T') p2 = polynomial(dict%asDict(),'C','T')
if (dNeq(p1%at(x),p2%at(x),1.0e-10_pReal)) error stop 'polynomials: init' if (dNeq(p1%at(x),p2%at(x),1.0e-6_pReal)) error stop 'polynomials: init'
y = coef(1)+coef(2)*(x-x_ref)+coef(3)*(x-x_ref)**2+coef(4)*(x-x_ref)**3+coef(5)*(x-x_ref)**4
if (dNeq(p1%at(x),y,1.0e-6_pReal)) error stop 'polynomials: eval(full)'
p1 = polynomial(coef*[0.0_pReal,1.0_pReal,0.0_pReal],x_ref) YAML_s = 'C: 0.0'//IO_EOL//&
if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(odd)' 'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//&
if (dNeq(p1%der1_at(x),p1%der1_at(5.0_pReal*x),1.0e-10_pReal)) error stop 'polynomials: eval_der(odd)' 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL
Dict => YAML_parse_str(trim(YAML_s))
p1 = polynomial(dict%asDict(),'C','T')
if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(linear)'
p1 = polynomial(coef*[0.0_pReal,0.0_pReal,1.0_pReal],x_ref) YAML_s = 'C: 0.0'//IO_EOL//&
if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval(even)' 'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//&
if (dNeq(p1%der1_at(x_ref+x),-p1%der1_at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval_der(even)' 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL
Dict => YAML_parse_str(trim(YAML_s))
p1 = polynomial(dict%asDict(),'C','T')
if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval(quadratic)'
YAML_s = 'Y: '//trim(adjustl(coef_s(1)))//IO_EOL//&
'Y,X^3: '//trim(adjustl(coef_s(2)))//IO_EOL//&
'X_ref: '//trim(adjustl(x_ref_s))//IO_EOL
Dict => YAML_parse_str(trim(YAML_s))
p1 = polynomial(dict%asDict(),'Y','X')
if (dNeq(p1%at(x_ref+x)-coef(1),-(p1%at(x_ref-x)-coef(1)),1.0e-8_pReal)) error stop 'polynomials: eval(cubic)'
YAML_s = 'Y: '//trim(adjustl(coef_s(1)))//IO_EOL//&
'Y,X^4: '//trim(adjustl(coef_s(2)))//IO_EOL//&
'X_ref: '//trim(adjustl(x_ref_s))//IO_EOL
Dict => YAML_parse_str(trim(YAML_s))
p1 = polynomial(dict%asDict(),'Y','X')
if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1.0e-6_pReal)) error stop 'polynomials: eval(quartic)'
end subroutine selfTest end subroutine selfTest