improved performance (hopefully)
now each new element gets a new ID, running from 1 to N for N elements
This commit is contained in:
parent
2477225c73
commit
6c7affc43f
|
@ -1,6 +1,6 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import os,re,sys,math,string,numpy,damask
|
||||
import os,re,sys,math,string,numpy,damask,time
|
||||
from optparse import OptionParser, Option
|
||||
|
||||
# -----------------------------
|
||||
|
@ -53,10 +53,15 @@ parser.add_option('-p','--packing', dest='packing', type='int', nargs=3, \
|
|||
help='dimension of packed group %default')
|
||||
parser.add_option('-s','--shift', dest='shift', type='int', nargs=3, \
|
||||
help='shift vector of packing stencil %default')
|
||||
|
||||
parser.add_option('-r','--resolution', dest='resolution', type='int', nargs=3, \
|
||||
help='resolution in x,y,z [autodetect]')
|
||||
parser.add_option('-d','--dimension', dest='dimension', type='float', nargs=3, \
|
||||
help='dimension in x,y,z [autodetect]')
|
||||
parser.set_defaults(coords = 'ip')
|
||||
parser.set_defaults(packing = [2,2,2])
|
||||
parser.set_defaults(shift = [0,0,0])
|
||||
parser.set_defaults(resolution = [0,0,0])
|
||||
parser.set_defaults(dimension = [0.0,0.0,0.0])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
|
@ -95,12 +100,15 @@ for file in files:
|
|||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||
'\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
|
||||
try:
|
||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||
elemCol = table.labels.index('elem') # columns containing location data
|
||||
except ValueError:
|
||||
print 'no coordinate data found...'
|
||||
print 'no coordinate data element data found...'
|
||||
continue
|
||||
|
||||
if (any(options.resolution)==0 or any(options.dimension)==0.0):
|
||||
grid = [{},{},{}]
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
for j in xrange(3):
|
||||
|
@ -113,10 +121,14 @@ for file in files:
|
|||
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||
else:
|
||||
resolution = options.resolution
|
||||
dimension = options.dimension
|
||||
|
||||
if resolution[2] == 1:
|
||||
options.packing[2] = 1
|
||||
options.shift[2] = 0
|
||||
dimension[2] = min(dimension[:2]/resolution[:2])
|
||||
dimension[2] = min(dimension[:2]/resolution[:2]) # z spacing equal to smaller of x or y spacing
|
||||
|
||||
downSized = numpy.maximum(numpy.ones(3,'i'),resolution//options.packing)
|
||||
|
||||
|
@ -127,28 +139,45 @@ for file in files:
|
|||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ---------------------------------------
|
||||
|
||||
table.data_rewind()
|
||||
|
||||
averagedDown = numpy.zeros(downSized.tolist()+[len(table.labels)])
|
||||
|
||||
for z in xrange(-options.shift[2],-options.shift[2]+resolution[2]):
|
||||
for y in xrange(-options.shift[1],-options.shift[1]+resolution[1]):
|
||||
for x in xrange(-options.shift[0],-options.shift[0]+resolution[0]):
|
||||
data = numpy.zeros(resolution.tolist()+[len(table.labels)]).reshape(resolution[0],\
|
||||
resolution[1],\
|
||||
resolution[2],\
|
||||
[len(table.labels)])
|
||||
for z in xrange(resolution[2]):
|
||||
for y in xrange(resolution[1]):
|
||||
for x in xrange(resolution[0]):
|
||||
table.data_read()
|
||||
data = numpy.array(table.data_asFloat(),'d') # convert to numpy array
|
||||
me = numpy.array((x,y,z),'i') # my location as array
|
||||
data[locationCol:locationCol+3] -= dimension*(me//resolution) # shift coordinates if periodic image
|
||||
(a,b,c) = (me%resolution)//options.packing # bin to condense my location into
|
||||
averagedDown[a,b,c,:] += data # store the (coord-updated) data there
|
||||
data[x,y,z,:] = numpy.array(table.data_asFloat(),'d') # convert to numpy array
|
||||
|
||||
averagedDown /= options.packing.prod() # normalize data by element count
|
||||
sum = numpy.zeros(numpy.shape(data))
|
||||
|
||||
|
||||
data = numpy.roll(data,axis=2,shift=options.shift[2])
|
||||
data = numpy.roll(data,axis=1,shift=options.shift[1])
|
||||
data = numpy.roll(data,axis=0,shift=options.shift[0])
|
||||
|
||||
for axis3 in xrange(options.packing[2]):
|
||||
shiftedZ = numpy.roll(data,shift=axis3,axis=2)
|
||||
for axis2 in xrange(options.packing[1]):
|
||||
shiftedZY = numpy.roll(shiftedZ,shift=axis2,axis=1)
|
||||
for axis1 in xrange(options.packing[0]):
|
||||
sum += numpy.roll(shiftedZY,shift=axis1,axis=0)
|
||||
|
||||
averagedDown = sum[::options.packing[0],::options.packing[1],::options.packing[2]] / options.packing.prod() # normalize data by element count
|
||||
|
||||
posOffset = (options.shift+[0.5,0.5,0.5])*dimension/resolution
|
||||
elementSize = dimension/resolution*options.packing
|
||||
elem = 1
|
||||
for c in xrange(downSized[2]):
|
||||
for b in xrange(downSized[1]):
|
||||
for a in xrange(downSized[0]):
|
||||
averagedDown[a,b,c,locationCol:locationCol+3] = posOffset + [a,b,c]*elementSize
|
||||
averagedDown[a,b,c,elemCol] = elem
|
||||
table.data = averagedDown[a,b,c,:].tolist()
|
||||
table.data_write() # output processed line
|
||||
elem += 1
|
||||
|
||||
|
||||
# ------------------------------------------ output result ---------------------------------------
|
||||
|
|
Loading…
Reference in New Issue