improved performance (hopefully)
now each new element gets a new ID, running from 1 to N for N elements
This commit is contained in:
parent
2477225c73
commit
6c7affc43f
|
@ -1,6 +1,6 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
|
|
||||||
import os,re,sys,math,string,numpy,damask
|
import os,re,sys,math,string,numpy,damask,time
|
||||||
from optparse import OptionParser, Option
|
from optparse import OptionParser, Option
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
|
@ -53,10 +53,15 @@ parser.add_option('-p','--packing', dest='packing', type='int', nargs=3, \
|
||||||
help='dimension of packed group %default')
|
help='dimension of packed group %default')
|
||||||
parser.add_option('-s','--shift', dest='shift', type='int', nargs=3, \
|
parser.add_option('-s','--shift', dest='shift', type='int', nargs=3, \
|
||||||
help='shift vector of packing stencil %default')
|
help='shift vector of packing stencil %default')
|
||||||
|
parser.add_option('-r','--resolution', dest='resolution', type='int', nargs=3, \
|
||||||
parser.set_defaults(coords = 'ip')
|
help='resolution in x,y,z [autodetect]')
|
||||||
parser.set_defaults(packing = [2,2,2])
|
parser.add_option('-d','--dimension', dest='dimension', type='float', nargs=3, \
|
||||||
parser.set_defaults(shift = [0,0,0])
|
help='dimension in x,y,z [autodetect]')
|
||||||
|
parser.set_defaults(coords = 'ip')
|
||||||
|
parser.set_defaults(packing = [2,2,2])
|
||||||
|
parser.set_defaults(shift = [0,0,0])
|
||||||
|
parser.set_defaults(resolution = [0,0,0])
|
||||||
|
parser.set_defaults(dimension = [0.0,0.0,0.0])
|
||||||
|
|
||||||
(options,filenames) = parser.parse_args()
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
@ -95,28 +100,35 @@ for file in files:
|
||||||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||||
'\t' + ' '.join(sys.argv[1:]))
|
'\t' + ' '.join(sys.argv[1:]))
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||||
|
elemCol = table.labels.index('elem') # columns containing location data
|
||||||
except ValueError:
|
except ValueError:
|
||||||
print 'no coordinate data found...'
|
print 'no coordinate data element data found...'
|
||||||
continue
|
continue
|
||||||
|
|
||||||
grid = [{},{},{}]
|
if (any(options.resolution)==0 or any(options.dimension)==0.0):
|
||||||
while table.data_read(): # read next data line of ASCII table
|
grid = [{},{},{}]
|
||||||
for j in xrange(3):
|
while table.data_read(): # read next data line of ASCII table
|
||||||
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
for j in xrange(3):
|
||||||
resolution = numpy.array([len(grid[0]),\
|
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
||||||
len(grid[1]),\
|
resolution = numpy.array([len(grid[0]),\
|
||||||
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
len(grid[1]),\
|
||||||
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
|
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
||||||
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
|
||||||
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
||||||
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||||
],'d') # dimension from bounding box, corrected for cell-centeredness
|
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||||
|
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||||
|
else:
|
||||||
|
resolution = options.resolution
|
||||||
|
dimension = options.dimension
|
||||||
|
|
||||||
if resolution[2] == 1:
|
if resolution[2] == 1:
|
||||||
options.packing[2] = 1
|
options.packing[2] = 1
|
||||||
options.shift[2] = 0
|
options.shift[2] = 0
|
||||||
dimension[2] = min(dimension[:2]/resolution[:2])
|
dimension[2] = min(dimension[:2]/resolution[:2]) # z spacing equal to smaller of x or y spacing
|
||||||
|
|
||||||
downSized = numpy.maximum(numpy.ones(3,'i'),resolution//options.packing)
|
downSized = numpy.maximum(numpy.ones(3,'i'),resolution//options.packing)
|
||||||
|
|
||||||
|
@ -127,28 +139,45 @@ for file in files:
|
||||||
table.head_write()
|
table.head_write()
|
||||||
|
|
||||||
# ------------------------------------------ process data ---------------------------------------
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
|
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
|
||||||
averagedDown = numpy.zeros(downSized.tolist()+[len(table.labels)])
|
data = numpy.zeros(resolution.tolist()+[len(table.labels)]).reshape(resolution[0],\
|
||||||
|
resolution[1],\
|
||||||
for z in xrange(-options.shift[2],-options.shift[2]+resolution[2]):
|
resolution[2],\
|
||||||
for y in xrange(-options.shift[1],-options.shift[1]+resolution[1]):
|
[len(table.labels)])
|
||||||
for x in xrange(-options.shift[0],-options.shift[0]+resolution[0]):
|
for z in xrange(resolution[2]):
|
||||||
|
for y in xrange(resolution[1]):
|
||||||
|
for x in xrange(resolution[0]):
|
||||||
table.data_read()
|
table.data_read()
|
||||||
data = numpy.array(table.data_asFloat(),'d') # convert to numpy array
|
data[x,y,z,:] = numpy.array(table.data_asFloat(),'d') # convert to numpy array
|
||||||
me = numpy.array((x,y,z),'i') # my location as array
|
|
||||||
data[locationCol:locationCol+3] -= dimension*(me//resolution) # shift coordinates if periodic image
|
|
||||||
(a,b,c) = (me%resolution)//options.packing # bin to condense my location into
|
|
||||||
averagedDown[a,b,c,:] += data # store the (coord-updated) data there
|
|
||||||
|
|
||||||
averagedDown /= options.packing.prod() # normalize data by element count
|
sum = numpy.zeros(numpy.shape(data))
|
||||||
|
|
||||||
|
|
||||||
|
data = numpy.roll(data,axis=2,shift=options.shift[2])
|
||||||
|
data = numpy.roll(data,axis=1,shift=options.shift[1])
|
||||||
|
data = numpy.roll(data,axis=0,shift=options.shift[0])
|
||||||
|
|
||||||
|
for axis3 in xrange(options.packing[2]):
|
||||||
|
shiftedZ = numpy.roll(data,shift=axis3,axis=2)
|
||||||
|
for axis2 in xrange(options.packing[1]):
|
||||||
|
shiftedZY = numpy.roll(shiftedZ,shift=axis2,axis=1)
|
||||||
|
for axis1 in xrange(options.packing[0]):
|
||||||
|
sum += numpy.roll(shiftedZY,shift=axis1,axis=0)
|
||||||
|
|
||||||
|
averagedDown = sum[::options.packing[0],::options.packing[1],::options.packing[2]] / options.packing.prod() # normalize data by element count
|
||||||
|
|
||||||
|
posOffset = (options.shift+[0.5,0.5,0.5])*dimension/resolution
|
||||||
|
elementSize = dimension/resolution*options.packing
|
||||||
|
elem = 1
|
||||||
for c in xrange(downSized[2]):
|
for c in xrange(downSized[2]):
|
||||||
for b in xrange(downSized[1]):
|
for b in xrange(downSized[1]):
|
||||||
for a in xrange(downSized[0]):
|
for a in xrange(downSized[0]):
|
||||||
|
averagedDown[a,b,c,locationCol:locationCol+3] = posOffset + [a,b,c]*elementSize
|
||||||
|
averagedDown[a,b,c,elemCol] = elem
|
||||||
table.data = averagedDown[a,b,c,:].tolist()
|
table.data = averagedDown[a,b,c,:].tolist()
|
||||||
table.data_write() # output processed line
|
table.data_write() # output processed line
|
||||||
|
elem += 1
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ output result ---------------------------------------
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
|
|
Loading…
Reference in New Issue