Merge branch '46-simplification-of-crystallite-f90-NEW5' into development

This commit is contained in:
Martin Diehl 2019-01-31 11:40:23 +01:00
commit 6b66563be7
1 changed files with 212 additions and 357 deletions

View File

@ -819,8 +819,8 @@ subroutine crystallite_stressTangent()
crystallite_invFi(1:3,1:3,c,i,e)) & crystallite_invFi(1:3,1:3,c,i,e)) &
+ math_mul33x33(temp_33_3,dLidS(1:3,1:3,p,o)) + math_mul33x33(temp_33_3,dLidS(1:3,1:3,p,o))
end forall end forall
lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) + & lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) &
math_mul3333xx3333(dSdFi,dFidS) + math_mul3333xx3333(dSdFi,dFidS)
call math_invert2(temp_99,error,math_identity2nd(9_pInt)+math_3333to99(lhs_3333)) call math_invert2(temp_99,error,math_identity2nd(9_pInt)+math_3333to99(lhs_3333))
if (error) then if (error) then
@ -1350,8 +1350,7 @@ logical function integrateStress(&
!* calculate Jacobian for correction term !* calculate Jacobian for correction term
if (mod(jacoCounterLp, iJacoLpresiduum) == 0_pInt) then if (mod(jacoCounterLp, iJacoLpresiduum) == 0_pInt) then
forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) & forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) dFe_dLp(o,1:3,p,1:3) = A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFe_dLp(o,1:3,p,1:3) = A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFe_dLp = - dt * dFe_dLp dFe_dLp = - dt * dFe_dLp
dRLp_dLp = math_identity2nd(9_pInt) & dRLp_dLp = math_identity2nd(9_pInt) &
- math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp)) - math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp))
@ -1536,11 +1535,8 @@ end function integrateStress
!> using Fixed Point Iteration to adapt the stepsize !> using Fixed Point Iteration to adapt the stepsize
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateFPI() subroutine integrateStateFPI()
use, intrinsic :: &
IEEE_arithmetic
use numerics, only: & use numerics, only: &
nState, & nState
rTol_crystalliteState
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: & use material, only: &
@ -1550,8 +1546,6 @@ subroutine integrateStateFPI()
phase_Nsources, & phase_Nsources, &
homogenization_Ngrains homogenization_Ngrains
use constitutive, only: & use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure, &
constitutive_plasticity_maxSizeDotState, & constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState constitutive_source_maxSizeDotState
@ -1567,13 +1561,12 @@ subroutine integrateStateFPI()
s, & s, &
sizeDotState sizeDotState
real(pReal) :: & real(pReal) :: &
stateDamper zeta
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: & real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: &
plasticStateResiduum residuum_plastic ! residuum for plastic state
real(pReal), dimension(constitutive_source_maxSizeDotState, maxval(phase_Nsources)) :: & real(pReal), dimension(constitutive_source_maxSizeDotState) :: &
sourceStateResiduum residuum_source ! residuum for source state
logical :: & logical :: &
converged, &
doneWithIntegration doneWithIntegration
! --+>> PREGUESS FOR STATE <<+-- ! --+>> PREGUESS FOR STATE <<+--
@ -1615,71 +1608,60 @@ subroutine integrateStateFPI()
call update_dotState(1.0_pReal) call update_dotState(1.0_pReal)
!$OMP PARALLEL !$OMP PARALLEL
!$OMP DO PRIVATE(sizeDotState, & !$OMP DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c)
!$OMP& plasticStateResiduum,sourceStateResiduum, &
!$OMP& stateDamper, converged,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = phaseAt(g,i,e); c = phasememberAt(g,i,e) p = phaseAt(g,i,e); c = phasememberAt(g,i,e)
StateDamper = damper(plasticState(p)%dotState (:,c), &
plasticState(p)%previousDotState (:,c), &
plasticState(p)%previousDotState2(:,c))
sizeDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
plasticStateResiduum(1:sizeDotState) = plasticState(p)%state (1:sizeDotState,c) & zeta = damper(plasticState(p)%dotState (:,c), &
plasticState(p)%previousDotState (:,c), &
plasticState(p)%previousDotState2(:,c))
residuum_plastic(1:SizeDotState) = plasticState(p)%state (1:sizeDotState,c) &
- plasticState(p)%subState0(1:sizeDotState,c) & - plasticState(p)%subState0(1:sizeDotState,c) &
- ( plasticState(p)%dotState (:,c) * stateDamper & - ( plasticState(p)%dotState (:,c) * zeta &
+ plasticState(p)%previousDotState(:,c) * (1.0_pReal-stateDamper) & + plasticState(p)%previousDotState(:,c) * (1.0_pReal-zeta) &
) * crystallite_subdt(g,i,e) ) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) & plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) &
- plasticStateResiduum(1:sizeDotState) - residuum_plastic(1:sizeDotState)
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta &
+ plasticState(p)%previousDotState(:,c) * (1.0_pReal - zeta)
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * stateDamper & crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState), &
+ plasticState(p)%previousDotState(:,c) * (1.0_pReal - stateDamper) plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%aTolState(1:sizeDotState))
converged = all( abs(plasticStateResiduum(1:sizeDotState)) < &
plasticState(p)%aTolState(1:sizeDotState) &
.or. abs(plasticStateResiduum(1:sizeDotState)) < &
rTol_crystalliteState * abs( plasticState(p)%state(1:sizeDotState,c)))
do s = 1_pInt, phase_Nsources(p) do s = 1_pInt, phase_Nsources(p)
stateDamper = damper(sourceState(p)%p(s)%dotState (:,c), & sizeDotState = sourceState(p)%p(s)%sizeDotState
zeta = damper(sourceState(p)%p(s)%dotState (:,c), &
sourceState(p)%p(s)%previousDotState (:,c), & sourceState(p)%p(s)%previousDotState (:,c), &
sourceState(p)%p(s)%previousDotState2(:,c)) sourceState(p)%p(s)%previousDotState2(:,c))
sizeDotState = sourceState(p)%p(s)%sizeDotState
sourceStateResiduum(1:sizeDotState,s) = sourceState(p)%p(s)%state (1:sizeDotState,c) & residuum_source(1:sizeDotState) = sourceState(p)%p(s)%state (1:sizeDotState,c) &
- sourceState(p)%p(s)%subState0(1:sizeDotState,c) & - sourceState(p)%p(s)%subState0(1:sizeDotState,c) &
- ( sourceState(p)%p(s)%dotState (:,c) * stateDamper & - ( sourceState(p)%p(s)%dotState (:,c) * zeta &
+ sourceState(p)%p(s)%previousDotState(:,c) * (1.0_pReal - stateDamper) & + sourceState(p)%p(s)%previousDotState(:,c) * (1.0_pReal - zeta) &
) * crystallite_subdt(g,i,e) ) * crystallite_subdt(g,i,e)
! --- correct state with residuum --- sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%state(1:sizeDotState,c) &
sourceState(p)%p(s)%state(1:sizeDotState,c) = & - residuum_source(1:sizeDotState)
sourceState(p)%p(s)%state(1:sizeDotState,c) & sourceState(p)%p(s)%dotState(:,c) = sourceState(p)%p(s)%dotState(:,c) * zeta &
- sourceStateResiduum(1:sizeDotState,s) ! need to copy to local variable, since we cant flush a pointer in openmp + sourceState(p)%p(s)%previousDotState(:,c)* (1.0_pReal - zeta)
sourceState(p)%p(s)%dotState(:,c) = & crystallite_converged(g,i,e) = crystallite_converged(g,i,e) .and. &
sourceState(p)%p(s)%dotState(:,c) * stateDamper & converged(residuum_source(1:sizeDotState), &
+ sourceState(p)%p(s)%previousDotState(:,c) & sourceState(p)%p(s)%state(1:sizeDotState,c), &
* (1.0_pReal - stateDamper) sourceState(p)%p(s)%aTolState(1:sizeDotState))
converged = converged .and. &
all( abs(sourceStateResiduum(1:sizeDotState,s)) < &
sourceState(p)%p(s)%aTolState(1:sizeDotState) &
.or. abs(sourceStateResiduum(1:sizeDotState,s)) < &
rTol_crystalliteState * abs(sourceState(p)%p(s)%state(1:sizeDotState,c)))
enddo enddo
if (converged) crystallite_converged(g,i,e) = .true. ! ... converged per definition
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP ENDDO !$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO !$OMP DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
@ -1736,7 +1718,7 @@ subroutine integrateStateFPI()
dot_prod12 = dot_product(current - previous, previous - previous2) dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2) dot_prod22 = dot_product(previous - previous2, previous - previous2)
if (dot_prod22 > 0.0_pReal .and. (dot_prod12 < 0.0_pReal .or. dot_product(current,previous) < 0.0_pReal)) then if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22) damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else else
damper = 1.0_pReal damper = 1.0_pReal
@ -1771,10 +1753,6 @@ end subroutine integrateStateEuler
!> @brief integrate stress, state with 1st order Euler method with adaptive step size !> @brief integrate stress, state with 1st order Euler method with adaptive step size
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateAdaptiveEuler() subroutine integrateStateAdaptiveEuler()
use, intrinsic :: &
IEEE_arithmetic
use numerics, only: &
rTol_crystalliteState
use mesh, only: & use mesh, only: &
mesh_element, & mesh_element, &
mesh_NcpElems, & mesh_NcpElems, &
@ -1787,8 +1765,6 @@ subroutine integrateStateAdaptiveEuler()
phase_Nsources, & phase_Nsources, &
homogenization_maxNgrains homogenization_maxNgrains
use constitutive, only: & use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure, &
constitutive_plasticity_maxSizeDotState, & constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState constitutive_source_maxSizeDotState
@ -1797,61 +1773,43 @@ subroutine integrateStateAdaptiveEuler()
e, & ! element index in element loop e, & ! element index in element loop
i, & ! integration point index in ip loop i, & ! integration point index in ip loop
g, & ! grain index in grain loop g, & ! grain index in grain loop
s, & ! state index
p, & p, &
c, & c, &
mySource, & s, &
mySizePlasticDotState, & ! size of dot states sizeDotState
mySizeSourceDotState
! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of adaptive Euler
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
plasticStateResiduum, & ! residuum from evolution in micrstructure residuum_plastic
relPlasticStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(constitutive_source_maxSizeDotState,& real(pReal), dimension(constitutive_source_maxSizeDotState,&
maxval(phase_Nsources), & maxval(phase_Nsources), &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
sourceStateResiduum, & ! residuum from evolution in micrstructure residuum_source
relSourceStateResiduum ! relative residuum from evolution in microstructure
logical :: &
converged
plasticStateResiduum = 0.0_pReal
relPlasticStateResiduum = 0.0_pReal
sourceStateResiduum = 0.0_pReal
relSourceStateResiduum = 0.0_pReal
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! contribution to state and relative residui and from Euler integration ! contribution to state and relative residui and from Euler integration
call update_dotState(1.0_pReal) call update_dotState(1.0_pReal)
!$OMP PARALLEL DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c) !$OMP PARALLEL DO PRIVATE(sizeDotState,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e); c = phasememberAt(g,i,e) p = phaseAt(g,i,e); c = phasememberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
mySizePlasticDotState = plasticState(p)%sizeDotState residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) &
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = & * (- 0.5_pReal * crystallite_subdt(g,i,e))
- 0.5_pReal & plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) &
* plasticState(p)%dotstate(1:mySizePlasticDotState,c) & + plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state?
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state do s = 1_pInt, phase_Nsources(p)
plasticState(p)%state (1:mySizePlasticDotState,c) = & sizeDotState = sourceState(p)%p(s)%sizeDotState
plasticState(p)%state (1:mySizePlasticDotState,c) &
+ plasticState(p)%dotstate(1:mySizePlasticDotState,c) & residuum_source(1:sizeDotState,s,g,i,e) = sourceState(p)%p(s)%dotstate(1:sizeDotState,c) &
* crystallite_subdt(g,i,e) * (- 0.5_pReal * crystallite_subdt(g,i,e))
do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%state(1:sizeDotState,c) &
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState + sourceState(p)%p(s)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state?
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = &
- 0.5_pReal &
* sourceState(p)%p(mySource)%dotstate(1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) = &
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) &
+ sourceState(p)%p(mySource)%dotstate(1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e)
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
@ -1862,56 +1820,33 @@ real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
call update_stress(1.0_pReal) call update_stress(1.0_pReal)
call update_dotState(1.0_pReal) call update_dotState(1.0_pReal)
relPlasticStateResiduum = 0.0_pReal !$OMP PARALLEL DO PRIVATE(sizeDotState,p,c)
relSourceStateResiduum = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,converged,p,c,s)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e); c = phasememberAt(g,i,e) p = phaseAt(g,i,e); c = phasememberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
! --- contribution of heun step to absolute residui --- residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) &
mySizePlasticDotState = plasticState(p)%sizeDotState + 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e)
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = &
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) & crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), &
+ 0.5_pReal * plasticState(p)%dotState(:,c) & plasticState(p)%state(1:sizeDotState,c), &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state plasticState(p)%aTolState(1:sizeDotState))
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState do s = 1_pInt, phase_Nsources(p)
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = & sizeDotState = sourceState(p)%p(s)%sizeDotState
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) &
+ 0.5_pReal * sourceState(p)%p(mySource)%dotState(:,c) & residuum_source(1:sizeDotState,s,g,i,e) = residuum_source(1:sizeDotState,s,g,i,e) &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state + 0.5_pReal * sourceState(p)%p(s)%dotState(:,c) * crystallite_subdt(g,i,e)
crystallite_converged(g,i,e) = crystallite_converged(g,i,e) .and.&
converged(residuum_source(1:sizeDotState,s,g,i,e), &
sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%aTolState(1:sizeDotState))
enddo enddo
! --- relative residui ---
forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%dotState(s,c)) > 0.0_pReal) &
relPlasticStateResiduum(s,g,i,e) = &
plasticStateResiduum(s,g,i,e) / plasticState(p)%dotState(s,c)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
forall (s = 1_pInt:mySizeSourceDotState,abs(sourceState(p)%p(mySource)%dotState(s,c)) > 0.0_pReal) &
relSourceStateResiduum(s,mySource,g,i,e) = &
sourceStateResiduum(s,mySource,g,i,e) / sourceState(p)%p(mySource)%dotState(s,c)
enddo
! --- converged ? ---
converged = all(abs(relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
rTol_crystalliteState .or. &
abs(plasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
plasticState(p)%aTolState(1:mySizePlasticDotState))
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
converged = converged .and. &
all(abs(relSourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < &
rTol_crystalliteState .or. &
abs(sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < &
sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState))
enddo
if (converged) crystallite_converged(g,i,e) = .true. ! ... converged per definition
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
@ -1923,24 +1858,17 @@ end subroutine integrateStateAdaptiveEuler
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 4th order explicit Runge Kutta method !> @brief integrate stress, state with 4th order explicit Runge Kutta method
! ToDo: This is totally BROKEN: RK4dotState is never used!!!
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateRK4() subroutine integrateStateRK4()
use, intrinsic :: &
IEEE_arithmetic
use mesh, only: & use mesh, only: &
mesh_element, & mesh_element
mesh_NcpElems
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
plasticState, & plasticState, &
sourceState, & sourceState, &
phase_Nsources, & phase_Nsources, &
phaseAt, phasememberAt phaseAt, phasememberAt
use config, only: &
material_Nphase
use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure
implicit none implicit none
real(pReal), dimension(4), parameter :: & real(pReal), dimension(4), parameter :: &
@ -1954,79 +1882,40 @@ subroutine integrateStateRK4()
p, & ! phase loop p, & ! phase loop
c, & c, &
n, & n, &
mySource s
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
logical :: singleRun ! flag indicating computation for single (g,i,e) triple
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
!--------------------------------------------------------------------------------------------------
! initialize dotState
if (.not. singleRun) then
do p = 1_pInt, material_Nphase
plasticState(p)%RK4dotState = 0.0_pReal
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RK4dotState = 0.0_pReal
enddo
enddo
else
e = eIter(1)
i = iIter(1,e)
do g = gIter(1,e), gIter(2,e)
plasticState(phaseAt(g,i,e))%RK4dotState(:,phasememberAt(g,i,e)) = 0.0_pReal
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%RK4dotState(:,phasememberAt(g,i,e)) = 0.0_pReal
enddo
enddo
endif
call update_dotState(1.0_pReal) call update_dotState(1.0_pReal)
!--------------------------------------------------------------------------------------------------
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
do n = 1_pInt,4_pInt do n = 1_pInt,4_pInt
! --- state update ---
!$OMP PARALLEL !$OMP PARALLEL DO PRIVATE(p,c)
!$OMP DO PRIVATE(p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e) p = phaseAt(g,i,e); c = phasememberAt(g,i,e)
c = phasememberAt(g,i,e)
plasticState(p)%RK4dotState(:,c) = plasticState(p)%RK4dotState(:,c) & plasticState(p)%RK4dotState(:,c) = WEIGHT(n)*plasticState(p)%dotState(:,c) &
+ weight(n)*plasticState(p)%dotState(:,c) + merge(plasticState(p)%RK4dotState(:,c),0.0_pReal,n>1_pInt)
do mySource = 1_pInt, phase_Nsources(p) do s = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RK4dotState(:,c) = sourceState(p)%p(mySource)%RK4dotState(:,c) & sourceState(p)%p(s)%RK4dotState(:,c) = WEIGHT(n)*sourceState(p)%p(s)%dotState(:,c) &
+ weight(n)*sourceState(p)%p(mySource)%dotState(:,c) + merge(sourceState(p)%p(s)%RK4dotState(:,c),0.0_pReal,n>1_pInt)
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP ENDDO !$OMP END PARALLEL DO
!$OMP END PARALLEL
call update_state(TIMESTEPFRACTION(n)) call update_state(TIMESTEPFRACTION(n))
call update_deltaState call update_deltaState
call update_dependentState call update_dependentState
call update_stress(TIMESTEPFRACTION(n)) call update_stress(TIMESTEPFRACTION(n))
! --- dot state and RK dot state--- ! --- dot state and RK dot state---
first3steps: if (n < 4) then first3steps: if (n < 4) then
call update_dotState(timeStepFraction(n)) call update_dotState(TIMESTEPFRACTION(n))
endif first3steps endif first3steps
enddo enddo
call setConvergenceFlag call setConvergenceFlag
@ -2040,10 +1929,6 @@ end subroutine integrateStateRK4
!> adaptive step size (use 5th order solution to advance = "local extrapolation") !> adaptive step size (use 5th order solution to advance = "local extrapolation")
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine integrateStateRKCK45() subroutine integrateStateRKCK45()
use, intrinsic :: &
IEEE_arithmetic
use numerics, only: &
rTol_crystalliteState
use mesh, only: & use mesh, only: &
mesh_element, & mesh_element, &
mesh_NcpElems, & mesh_NcpElems, &
@ -2056,10 +1941,8 @@ subroutine integrateStateRKCK45()
phaseAt, phasememberAt, & phaseAt, phasememberAt, &
homogenization_maxNgrains homogenization_maxNgrains
use constitutive, only: & use constitutive, only: &
constitutive_collectDotState, &
constitutive_plasticity_maxSizeDotState, & constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState, & constitutive_source_maxSizeDotState
constitutive_microstructure
implicit none implicit none
real(pReal), dimension(5,5), parameter :: & real(pReal), dimension(5,5), parameter :: &
@ -2087,76 +1970,58 @@ subroutine integrateStateRKCK45()
i, & ! integration point index in ip loop i, & ! integration point index in ip loop
g, & ! grain index in grain loop g, & ! grain index in grain loop
stage, & ! stage index in integration stage loop stage, & ! stage index in integration stage loop
s, & ! state index
n, & n, &
p, & p, &
cc, & cc, &
mySource, & s, &
mySizePlasticDotState, & ! size of dot States sizeDotState
mySizeSourceDotState
! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of RKCK45
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
plasticStateResiduum, & ! residuum from evolution in microstructure residuum_plastic ! relative residuum from evolution in microstructure
relPlasticStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(constitutive_source_maxSizeDotState, & real(pReal), dimension(constitutive_source_maxSizeDotState, &
maxval(phase_Nsources), & maxval(phase_Nsources), &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
sourceStateResiduum, & ! residuum from evolution in microstructure residuum_source ! relative residuum from evolution in microstructure
relSourceStateResiduum ! relative residuum from evolution in microstructure
call update_dotState(1.0_pReal) call update_dotState(1.0_pReal)
! --- SECOND TO SIXTH RUNGE KUTTA STEP --- ! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
do stage = 1_pInt,5_pInt do stage = 1_pInt,5_pInt
! --- state update --- ! --- state update ---
!$OMP PARALLEL !$OMP PARALLEL DO PRIVATE(p,cc)
!$OMP DO PRIVATE(p,cc)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e) p = phaseAt(g,i,e); cc = phasememberAt(g,i,e)
cc = phasememberAt(g,i,e)
plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc) ! store Runge-Kutta dotState
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RKCK45dotState(stage,:,cc) = sourceState(p)%p(mySource)%dotState(:,cc)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,cc,n)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc)
plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc) plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc)
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%dotState(:,cc) = A(1,stage) * sourceState(p)%p(mySource)%RKCK45dotState(1,:,cc) do s = 1_pInt, phase_Nsources(p)
sourceState(p)%p(s)%RKCK45dotState(stage,:,cc) = sourceState(p)%p(s)%dotState(:,cc)
sourceState(p)%p(s)%dotState(:,cc) = A(1,stage) * sourceState(p)%p(s)%RKCK45dotState(1,:,cc)
enddo enddo
do n = 2_pInt, stage do n = 2_pInt, stage
plasticState(p)%dotState(:,cc) = & plasticState(p)%dotState(:,cc) = plasticState(p)%dotState(:,cc) &
plasticState(p)%dotState(:,cc) + A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc) + A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc)
do mySource = 1_pInt, phase_Nsources(p) do s = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%dotState(:,cc) = & sourceState(p)%p(s)%dotState(:,cc) = sourceState(p)%p(s)%dotState(:,cc) &
sourceState(p)%p(mySource)%dotState(:,cc) + A(n,stage) * sourceState(p)%p(mySource)%RKCK45dotState(n,:,cc) + A(n,stage) * sourceState(p)%p(s)%RKCK45dotState(n,:,cc)
enddo enddo
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP ENDDO !$OMP END PARALLEL DO
!$OMP END PARALLEL
call update_state(1.0_pReal) !MD: 1.0 correct? call update_state(1.0_pReal) !MD: 1.0 correct?
call update_deltaState call update_deltaState
@ -2170,96 +2035,69 @@ subroutine integrateStateRKCK45()
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE --- ! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE ---
relPlasticStateResiduum = 0.0_pReal !$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc)
relSourceStateResiduum = 0.0_pReal
!$OMP PARALLEL
!$OMP DO PRIVATE(p,cc)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e) p = phaseAt(g,i,e); cc = phasememberAt(g,i,e)
cc = phasememberAt(g,i,e)
plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc) ! store Runge-Kutta dotState
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RKCK45dotState(6,:,cc) = sourceState(p)%p(mySource)%dotState(:,cc) ! store Runge-Kutta dotState
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc) sizeDotState = plasticState(p)%sizeDotState
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
! --- absolute residuum in state --- plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = & residuum_plastic(1:sizeDotState,g,i,e) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:mySizePlasticDotState,cc)),DB) & matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & ! why transpose? Better to transpose constant DB
* crystallite_subdt(g,i,e) * crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = &
matmul(transpose(sourceState(p)%p(mySource)%RKCK45dotState(1:6,1:mySizeSourceDotState,cc)),DB) &
* crystallite_subdt(g,i,e)
enddo
! --- dot state ---
plasticState(p)%dotState(:,cc) = & plasticState(p)%dotState(:,cc) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:mySizePlasticDotState,cc)), B) matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)), B) ! why transpose? Better to transpose constant B
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState do s = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%dotState(:,cc) = & sizeDotState = sourceState(p)%p(s)%sizeDotState
matmul(transpose(sourceState(p)%p(mySource)%RKCK45dotState(1:6,1:mySizeSourceDotState,cc)),B)
sourceState(p)%p(s)%RKCK45dotState(6,:,cc) = sourceState(p)%p(s)%dotState(:,cc)
residuum_source(1:sizeDotState,s,g,i,e) = &
matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) &
* crystallite_subdt(g,i,e)
sourceState(p)%p(s)%dotState(:,cc) = &
matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),B)
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP ENDDO !$OMP END PARALLEL DO
!$OMP END PARALLEL
call update_state(1.0_pReal) call update_state(1.0_pReal)
!$OMP PARALLEL
! --- relative residui and state convergence --- ! --- relative residui and state convergence ---
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc,s) !$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
if (crystallite_todo(g,i,e)) then if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e) p = phaseAt(g,i,e); cc = phasememberAt(g,i,e)
cc = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState sizeDotState = plasticState(p)%sizeDotState
forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%state(s,cc)) > 0.0_pReal) &
relPlasticStateResiduum(s,g,i,e) = & crystallite_todo(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), &
plasticStateResiduum(s,g,i,e) / plasticState(p)%state(s,cc) plasticState(p)%state(1:sizeDotState,cc), &
plasticState(p)%aTolState(1:sizeDotState))
do s = 1_pInt, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
forall (s = 1_pInt:mySizeSourceDotState,abs(sourceState(p)%p(mySource)%state(s,cc)) > 0.0_pReal) &
relSourceStateResiduum(s,mySource,g,i,e) = &
sourceStateResiduum(s,mySource,g,i,e) / sourceState(p)%p(mySource)%state(s,cc)
enddo
crystallite_todo(g,i,e) = all(abs(relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
rTol_crystalliteState .or. &
abs(plasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
plasticState(p)%aTolState(1:mySizePlasticDotState))
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and.& crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and.&
all(abs(relSourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < & converged(residuum_source(1:sizeDotState,s,g,i,e), &
rTol_crystalliteState .or. & sourceState(p)%p(s)%state(1:sizeDotState,cc), &
abs(sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < & sourceState(p)%p(s)%aTolState(1:sizeDotState))
sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState))
enddo enddo
endif endif
enddo; enddo; enddo enddo; enddo; enddo
!$OMP ENDDO !$OMP END PARALLEL DO
!$OMP END PARALLEL
call update_deltaState call update_deltaState
call update_dependentState call update_dependentState
@ -2308,6 +2146,24 @@ subroutine setConvergenceFlag()
end subroutine setConvergenceFlag end subroutine setConvergenceFlag
!--------------------------------------------------------------------------------------------------
!> @brief determines whether a point is converged
!--------------------------------------------------------------------------------------------------
logical pure function converged(residuum,state,aTol)
use prec, only: &
dEq0
use numerics, only: &
rTol => rTol_crystalliteState
implicit none
real(pReal), intent(in), dimension(:) ::&
residuum, state, aTol
converged = all(abs(residuum) <= max(aTol, rTol*abs(state)))
end function converged
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Standard forwarding of state as state = state0 + dotState * (delta t) !> @brief Standard forwarding of state as state = state0 + dotState * (delta t)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -2449,7 +2305,7 @@ subroutine update_dotState(timeFraction)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
!$OMP FLUSH(nonlocalStop) !$OMP FLUSH(nonlocalStop)
if (nonlocalStop .or. (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e))) then if ((crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) .and. .not. nonlocalStop) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, & crystallite_Fe, &
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
@ -2495,7 +2351,6 @@ subroutine update_deltaState
p, & p, &
mySize, & mySize, &
myOffset, & myOffset, &
mySource, &
c, & c, &
s s
logical :: & logical :: &
@ -2504,12 +2359,12 @@ subroutine update_deltaState
nonlocalStop = .false. nonlocalStop = .false.
!$OMP PARALLEL DO PRIVATE(p,c,myOffset,mySize,mySource,NaN) !$OMP PARALLEL DO PRIVATE(p,c,myOffset,mySize,NaN)
do e = FEsolving_execElem(1),FEsolving_execElem(2) do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e)) do g = 1,homogenization_Ngrains(mesh_element(3,e))
!$OMP FLUSH(nonlocalStop) !$OMP FLUSH(nonlocalStop)
if (nonlocalStop .or. (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e))) then if ((crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) .and. .not. nonlocalStop) then
call constitutive_collectDeltaState(math_6toSym33(crystallite_Tstar_v(1:6,g,i,e)), & call constitutive_collectDeltaState(math_6toSym33(crystallite_Tstar_v(1:6,g,i,e)), &
crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), &
@ -2524,15 +2379,15 @@ subroutine update_deltaState
plasticState(p)%state(myOffset + 1_pInt: myOffset + mySize,c) = & plasticState(p)%state(myOffset + 1_pInt: myOffset + mySize,c) = &
plasticState(p)%state(myOffset + 1_pInt: myOffset + mySize,c) + & plasticState(p)%state(myOffset + 1_pInt: myOffset + mySize,c) + &
plasticState(p)%deltaState(1:mySize,c) plasticState(p)%deltaState(1:mySize,c)
do mySource = 1_pInt, phase_Nsources(p) do s = 1_pInt, phase_Nsources(p)
myOffset = sourceState(p)%p(mySource)%offsetDeltaState myOffset = sourceState(p)%p(s)%offsetDeltaState
mySize = sourceState(p)%p(mySource)%sizeDeltaState mySize = sourceState(p)%p(s)%sizeDeltaState
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%deltaState(1:mySize,c))) NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%deltaState(1:mySize,c)))
if (.not. NaN) then if (.not. NaN) then
sourceState(p)%p(mySource)%state(myOffset + 1_pInt:myOffset +mySize,c) = & sourceState(p)%p(s)%state(myOffset + 1_pInt:myOffset +mySize,c) = &
sourceState(p)%p(mySource)%state(myOffset + 1_pInt:myOffset +mySize,c) + & sourceState(p)%p(s)%state(myOffset + 1_pInt:myOffset +mySize,c) + &
sourceState(p)%p(mySource)%deltaState(1:mySize,c) sourceState(p)%p(s)%deltaState(1:mySize,c)
endif endif
enddo enddo
endif endif