using central functionality
- Table class for table data - grid_filters for grid related functions
This commit is contained in:
parent
b293498864
commit
6989679d3b
|
@ -121,13 +121,14 @@ parser.set_defaults(pos = 'pos',
|
|||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
if options.type is None:
|
||||
parser.error('no feature type selected.')
|
||||
parser.error('no feature type selected.')
|
||||
if not set(options.type).issubset(set(list(itertools.chain(*map(lambda x: x['names'],features))))):
|
||||
parser.error('type must be chosen from (%s).'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
||||
parser.error('type must be chosen from (%s).'%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
||||
if 'biplane' in options.type and 'boundary' in options.type:
|
||||
parser.error('only one from aliases "biplane" and "boundary" possible.')
|
||||
parser.error('only one from aliases "biplane" and "boundary" possible.')
|
||||
|
||||
feature_list = []
|
||||
for i,feature in enumerate(features):
|
||||
|
@ -137,104 +138,49 @@ for i,feature in enumerate(features):
|
|||
feature_list.append(i) # remember valid features
|
||||
break
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try: table = damask.ASCIItable(name = name, buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
grid,size,origin = damask.grid_filters.cell_coord0_2_DNA(table.get(options.pos))
|
||||
|
||||
table.head_read()
|
||||
neighborhood = neighborhoods[options.neighborhood]
|
||||
diffToNeighbor = np.empty(list(grid+2)+[len(neighborhood)],'i')
|
||||
microstructure = periodic_3Dpad(table.get(options.id).astype('i').reshape(grid,order='F'))
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
errors = []
|
||||
remarks = []
|
||||
|
||||
if not 3 >= table.label_dimension(options.pos) >= 1:
|
||||
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.pos))
|
||||
|
||||
if table.label_dimension(options.id) != 1: errors.append('grain identifier {} not found.'.format(options.id))
|
||||
else: idCol = table.label_index(options.id)
|
||||
|
||||
if remarks != []:
|
||||
damask.util.croak(remarks)
|
||||
remarks = []
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for feature in feature_list:
|
||||
table.labels_append('ED_{}({})'.format(features[feature]['names'][0],options.id)) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
grid,size = damask.util.coordGridAndSize(table.data[:,table.label_indexrange(options.pos)])
|
||||
N = grid.prod()
|
||||
|
||||
if N != len(table.data): errors.append('data count {} does not match grid {}.'.format(N,'x'.join(map(str,grid))))
|
||||
else: remarks.append('grid: {}x{}x{}'.format(*grid))
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ process value field -----------------------------------
|
||||
|
||||
stack = [table.data]
|
||||
|
||||
neighborhood = neighborhoods[options.neighborhood]
|
||||
diffToNeighbor = np.empty(list(grid+2)+[len(neighborhood)],'i')
|
||||
microstructure = periodic_3Dpad(table.data[:,idCol].astype('i').reshape(grid,order='F'))
|
||||
|
||||
for i,p in enumerate(neighborhood):
|
||||
stencil = np.zeros((3,3,3),'i')
|
||||
stencil[1,1,1] = -1
|
||||
stencil[p[0]+1,
|
||||
p[1]+1,
|
||||
p[2]+1] = 1
|
||||
diffToNeighbor[:,:,:,i] = ndimage.convolve(microstructure,stencil) # compare ID at each point...
|
||||
for i,p in enumerate(neighborhood):
|
||||
stencil = np.zeros((3,3,3),'i')
|
||||
stencil[1,1,1] = -1
|
||||
stencil[p[0]+1,
|
||||
p[1]+1,
|
||||
p[2]+1] = 1
|
||||
diffToNeighbor[:,:,:,i] = ndimage.convolve(microstructure,stencil) # compare ID at each point...
|
||||
# ...to every one in the specified neighborhood
|
||||
# for same IDs at both locations ==> 0
|
||||
|
||||
diffToNeighbor = np.sort(diffToNeighbor) # sort diff such that number of changes in diff (steps)...
|
||||
diffToNeighbor = np.sort(diffToNeighbor) # sort diff such that number of changes in diff (steps)...
|
||||
# ...reflects number of unique neighbors
|
||||
uniques = np.where(diffToNeighbor[1:-1,1:-1,1:-1,0] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
||||
uniques = np.where(diffToNeighbor[1:-1,1:-1,1:-1,0] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
||||
|
||||
for i in range(1,len(neighborhood)): # check remaining points in neighborhood
|
||||
uniques += np.where(np.logical_and(
|
||||
diffToNeighbor[1:-1,1:-1,1:-1,i] != 0, # not myself?
|
||||
diffToNeighbor[1:-1,1:-1,1:-1,i] != diffToNeighbor[1:-1,1:-1,1:-1,i-1],
|
||||
), # flip of ID difference detected?
|
||||
1,0) # count that flip
|
||||
for i in range(1,len(neighborhood)): # check remaining points in neighborhood
|
||||
uniques += np.where(np.logical_and(
|
||||
diffToNeighbor[1:-1,1:-1,1:-1,i] != 0, # not myself?
|
||||
diffToNeighbor[1:-1,1:-1,1:-1,i] != diffToNeighbor[1:-1,1:-1,1:-1,i-1],
|
||||
), # flip of ID difference detected?
|
||||
1,0) # count that flip
|
||||
|
||||
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
|
||||
distance = np.ones((len(feature_list),grid[0],grid[1],grid[2]),'d')
|
||||
|
||||
for i,feature_id in enumerate(feature_list):
|
||||
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||
for i,feature_id in enumerate(feature_list):
|
||||
distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||
|
||||
distance = distance.reshape([len(feature_list),grid.prod(),1],order='F')
|
||||
for i in range(len(feature_list)):
|
||||
stack.append(distance[i,:])
|
||||
distance = distance.reshape([len(feature_list),grid.prod(),1],order='F')
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
if len(stack) > 1: table.data = np.hstack(tuple(stack))
|
||||
table.data_writeArray('%.12g')
|
||||
for i,feature in enumerate(feature_list):
|
||||
table.add('ED_{}({})'.format(features[feature]['names'][0],options.id),
|
||||
distance[i,:],
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -30,7 +30,7 @@ parser.add_option('-p','--pos','--periodiccellcenter',
|
|||
type = 'string', metavar = 'string',
|
||||
help = 'label of coordinates [%default]')
|
||||
parser.add_option('-s','--scalar',
|
||||
dest = 'scalar',
|
||||
dest = 'labels',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'label(s) of scalar field values')
|
||||
parser.add_option('-o','--order',
|
||||
|
@ -56,78 +56,21 @@ parser.set_defaults(pos = 'pos',
|
|||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.scalar is None:
|
||||
parser.error('no data column specified.')
|
||||
|
||||
# --- loop over input files ------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
if options.labels is None: parser.error('no data column specified.')
|
||||
|
||||
for name in filenames:
|
||||
try: table = damask.ASCIItable(name = name,buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
damask.grid_filters.coord0_check(table.get(options.pos))
|
||||
|
||||
table.head_read()
|
||||
for label in options.labels:
|
||||
table.add('Gauss{}({})'.format(options.sigma,label),
|
||||
ndimage.filters.gaussian_filter(table.get(label).reshape((-1)),
|
||||
options.sigma,options.order,
|
||||
mode = 'wrap' if options.periodic else 'nearest'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
items = {
|
||||
'scalar': {'dim': 1, 'shape': [1], 'labels':options.scalar, 'active':[], 'column': []},
|
||||
}
|
||||
errors = []
|
||||
remarks = []
|
||||
column = {}
|
||||
|
||||
if table.label_dimension(options.pos) != 3: errors.append('coordinates {} are not a vector.'.format(options.pos))
|
||||
else: colCoord = table.label_index(options.pos)
|
||||
|
||||
for type, data in items.items():
|
||||
for what in (data['labels'] if data['labels'] is not None else []):
|
||||
dim = table.label_dimension(what)
|
||||
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
|
||||
else:
|
||||
items[type]['active'].append(what)
|
||||
items[type]['column'].append(table.label_index(what))
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for type, data in items.items():
|
||||
for label in data['active']:
|
||||
table.labels_append(['Gauss{}({})'.format(options.sigma,label)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
grid,size = damask.util.coordGridAndSize(table.data[:,table.label_indexrange(options.pos)])
|
||||
|
||||
# ------------------------------------------ process value field -----------------------------------
|
||||
|
||||
stack = [table.data]
|
||||
for type, data in items.items():
|
||||
for i,label in enumerate(data['active']):
|
||||
stack.append(ndimage.filters.gaussian_filter(table.data[:,data['column'][i]],
|
||||
options.sigma,options.order,
|
||||
mode = 'wrap' if options.periodic else 'nearest'
|
||||
).reshape([table.data.shape[0],1])
|
||||
)
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
if len(stack) > 1: table.data = np.hstack(tuple(stack))
|
||||
table.data_writeArray('%.12g')
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -217,6 +217,19 @@ def cell_coord0_2_DNA(coord0,ordered=True):
|
|||
|
||||
return (grid,size,origin)
|
||||
|
||||
def coord0_check(coord0):
|
||||
"""
|
||||
Check whether coordinates lie on a regular grid
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coord0 : numpy.ndarray
|
||||
array of undeformed cell coordinates.
|
||||
|
||||
"""
|
||||
cell_coord0_2_DNA(coord0,ordered=True)
|
||||
|
||||
|
||||
|
||||
def node_coord0(grid,size,origin=np.zeros(3)):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue