mechanics done
This commit is contained in:
parent
d365cc9e12
commit
694b7ec3c5
|
@ -8,16 +8,12 @@ def Cauchy(P,F):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
F : numpy.ndarray of shape (:,3,3) or (3,3)
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
P : numpy.ndarray of shape (:,3,3) or (3,3)
|
P : numpy.ndarray of shape (...,3,3)
|
||||||
First Piola-Kirchhoff stress.
|
First Piola-Kirchhoff stress.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if _np.shape(F) == _np.shape(P) == (3,3):
|
|
||||||
sigma = 1.0/_np.linalg.det(F) * _np.dot(P,F.T)
|
|
||||||
else:
|
|
||||||
#sigma = _np.einsum('i,ijk,ilk->ijl',1.0/_np.linalg.det(F),P,F)
|
|
||||||
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
|
sigma = _np.einsum('...,...ij,...kj->...ik',1.0/_np.linalg.det(F),P,F)
|
||||||
return symmetric(sigma)
|
return symmetric(sigma)
|
||||||
|
|
||||||
|
@ -44,7 +40,7 @@ def eigenvalues(T_sym):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the eigenvalues are computed.
|
Symmetric tensor of which the eigenvalues are computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -59,7 +55,7 @@ def eigenvectors(T_sym,RHS=False):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the eigenvectors are computed.
|
Symmetric tensor of which the eigenvectors are computed.
|
||||||
RHS: bool, optional
|
RHS: bool, optional
|
||||||
Enforce right-handed coordinate system. Default is False.
|
Enforce right-handed coordinate system. Default is False.
|
||||||
|
@ -68,9 +64,6 @@ def eigenvectors(T_sym,RHS=False):
|
||||||
(u,v) = _np.linalg.eigh(symmetric(T_sym))
|
(u,v) = _np.linalg.eigh(symmetric(T_sym))
|
||||||
|
|
||||||
if RHS:
|
if RHS:
|
||||||
if _np.shape(T_sym) == (3,3):
|
|
||||||
if _np.linalg.det(v) < 0.0: v[:,2] *= -1.0
|
|
||||||
else:
|
|
||||||
v[_np.linalg.det(v) < 0.0,:,2] *= -1.0
|
v[_np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||||
return v
|
return v
|
||||||
|
|
||||||
|
@ -81,7 +74,7 @@ def left_stretch(T):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the left stretch is computed.
|
Tensor of which the left stretch is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -94,13 +87,12 @@ def maximum_shear(T_sym):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the maximum shear is computed.
|
Symmetric tensor of which the maximum shear is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
w = eigenvalues(T_sym)
|
w = eigenvalues(T_sym)
|
||||||
return (w[0] - w[2])*0.5 if _np.shape(T_sym) == (3,3) else \
|
return (w[...,0] - w[...,2])*0.5
|
||||||
(w[...,0] - w[...,2])*0.5
|
|
||||||
|
|
||||||
|
|
||||||
def Mises_strain(epsilon):
|
def Mises_strain(epsilon):
|
||||||
|
@ -109,7 +101,7 @@ def Mises_strain(epsilon):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
epsilon : numpy.ndarray of shape (:,3,3) or (3,3)
|
epsilon : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -122,7 +114,7 @@ def Mises_stress(sigma):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
sigma : numpy.ndarray of shape (:,3,3) or (3,3)
|
sigma : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -135,15 +127,12 @@ def PK2(P,F):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
P : numpy.ndarray of shape (...,3,3) or (3,3)
|
P : numpy.ndarray of shape (...,3,3)
|
||||||
First Piola-Kirchhoff stress.
|
First Piola-Kirchhoff stress.
|
||||||
F : numpy.ndarray of shape (...,3,3) or (3,3)
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if _np.shape(F) == _np.shape(P) == (3,3):
|
|
||||||
S = _np.dot(_np.linalg.inv(F),P)
|
|
||||||
else:
|
|
||||||
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
|
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
|
||||||
return symmetric(S)
|
return symmetric(S)
|
||||||
|
|
||||||
|
@ -154,7 +143,7 @@ def right_stretch(T):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the right stretch is computed.
|
Tensor of which the right stretch is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -167,7 +156,7 @@ def rotational_part(T):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the rotational part is computed.
|
Tensor of which the rotational part is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -199,7 +188,7 @@ def strain_tensor(F,t,m):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
F : numpy.ndarray of shape (:,3,3) or (3,3)
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
t : {‘V’, ‘U’}
|
t : {‘V’, ‘U’}
|
||||||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||||
|
@ -207,12 +196,11 @@ def strain_tensor(F,t,m):
|
||||||
Order of the strain.
|
Order of the strain.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
F_ = F.reshape(1,3,3) if F.shape == (3,3) else F
|
|
||||||
if t == 'V':
|
if t == 'V':
|
||||||
B = _np.matmul(F_,transpose(F_))
|
B = _np.matmul(F,transpose(F))
|
||||||
w,n = _np.linalg.eigh(B)
|
w,n = _np.linalg.eigh(B)
|
||||||
elif t == 'U':
|
elif t == 'U':
|
||||||
C = _np.matmul(transpose(F_),F_)
|
C = _np.matmul(transpose(F),F)
|
||||||
w,n = _np.linalg.eigh(C)
|
w,n = _np.linalg.eigh(C)
|
||||||
|
|
||||||
if m > 0.0:
|
if m > 0.0:
|
||||||
|
@ -225,8 +213,7 @@ def strain_tensor(F,t,m):
|
||||||
else:
|
else:
|
||||||
eps = _np.matmul(n,_np.einsum('...j,...kj->...jk',0.5*_np.log(w),n))
|
eps = _np.matmul(n,_np.einsum('...j,...kj->...jk',0.5*_np.log(w),n))
|
||||||
|
|
||||||
return eps.reshape(3,3) if _np.shape(F) == (3,3) else \
|
return eps
|
||||||
eps
|
|
||||||
|
|
||||||
|
|
||||||
def symmetric(T):
|
def symmetric(T):
|
||||||
|
@ -235,7 +222,7 @@ def symmetric(T):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the symmetrized values are computed.
|
Tensor of which the symmetrized values are computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -248,12 +235,11 @@ def transpose(T):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (...,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the transpose is computed.
|
Tensor of which the transpose is computed.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return T.T if _np.shape(T) == (3,3) else \
|
return _np.swapaxes(T,axis2=-2,axis1=-1)
|
||||||
_np.swapaxes(T,axis2=-2,axis1=-1)
|
|
||||||
|
|
||||||
|
|
||||||
def _polar_decomposition(T,requested):
|
def _polar_decomposition(T,requested):
|
||||||
|
@ -262,7 +248,7 @@ def _polar_decomposition(T,requested):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the singular values are computed.
|
Tensor of which the singular values are computed.
|
||||||
requested : iterable of str
|
requested : iterable of str
|
||||||
Requested outputs: ‘R’ for the rotation tensor,
|
Requested outputs: ‘R’ for the rotation tensor,
|
||||||
|
@ -270,16 +256,15 @@ def _polar_decomposition(T,requested):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
u, s, vh = _np.linalg.svd(T)
|
u, s, vh = _np.linalg.svd(T)
|
||||||
R = _np.dot(u,vh) if _np.shape(T) == (3,3) else \
|
R = _np.einsum('...ij,...jk->...ik',u,vh)
|
||||||
_np.einsum('...ij,...jk->...ik',u,vh)
|
|
||||||
|
|
||||||
output = []
|
output = []
|
||||||
if 'R' in requested:
|
if 'R' in requested:
|
||||||
output.append(R)
|
output.append(R)
|
||||||
if 'V' in requested:
|
if 'V' in requested:
|
||||||
output.append(_np.dot(T,R.T) if _np.shape(T) == (3,3) else _np.einsum('...ij,...kj->...ik',T,R))
|
output.append(_np.einsum('...ij,...kj->...ik',T,R))
|
||||||
if 'U' in requested:
|
if 'U' in requested:
|
||||||
output.append(_np.dot(R.T,T) if _np.shape(T) == (3,3) else _np.einsum('...ji,...jk->...ik',R,T))
|
output.append(_np.einsum('...ji,...jk->...ik',R,T))
|
||||||
|
|
||||||
return tuple(output)
|
return tuple(output)
|
||||||
|
|
||||||
|
@ -290,12 +275,11 @@ def _Mises(T_sym,s):
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
T_sym : numpy.ndarray of shape (:,3,3) or (3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
Symmetric tensor of which the von Mises equivalent is computed.
|
Symmetric tensor of which the von Mises equivalent is computed.
|
||||||
s : float
|
s : float
|
||||||
Scaling factor (2/3 for strain, 3/2 for stress).
|
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||||
|
|
||||||
"""
|
"""
|
||||||
d = deviatoric_part(T_sym)
|
d = deviatoric_part(T_sym)
|
||||||
return _np.sqrt(s*(_np.sum(d**2.0))) if _np.shape(T_sym) == (3,3) else \
|
return _np.sqrt(s*_np.einsum('...jk->...',d**2.0))
|
||||||
_np.sqrt(s*_np.einsum('...jk->...',d**2.0))
|
|
||||||
|
|
Loading…
Reference in New Issue