using latex to improve documentation
This commit is contained in:
parent
4cd84ab8ce
commit
66b0b2e9dc
|
@ -50,7 +50,7 @@ def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
|
||||
def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate the Mises equivalent of a strain tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -63,12 +63,20 @@ def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
|||
epsilon_vM : numpy.ndarray, shape (...)
|
||||
Von Mises equivalent strain of epsilon.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The von Mises equivalent of a strain tensor is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon_{\mathrm{vM}} = \sqrt{2/3 \epsilon_{ij}' \epsilon_{ij}'}
|
||||
|
||||
"""
|
||||
return _equivalent_Mises(epsilon,2.0/3.0)
|
||||
|
||||
|
||||
def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate the Mises equivalent of a stress tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -81,6 +89,14 @@ def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
|||
sigma_vM : numpy.ndarray, shape (...)
|
||||
Von Mises equivalent stress of sigma.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The von Mises equivalent of a stress tensor is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\sigma_{\mathrm{vM}} = \sqrt{3/2 \sigma_{ij}' \sigma_{ij}'}
|
||||
|
||||
"""
|
||||
return _equivalent_Mises(sigma,3.0/2.0)
|
||||
|
||||
|
@ -105,7 +121,7 @@ def maximum_shear(T_sym: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
|
||||
def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
||||
"""
|
||||
r"""
|
||||
Calculate the rotational part of a tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -118,6 +134,17 @@ def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
|||
R : damask.Rotation, shape (...)
|
||||
Rotational part of the vector.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The rotational part is calculated from the polar decomposition:
|
||||
|
||||
.. math::
|
||||
|
||||
\mathbf{R} = \mathbf{T} \mathbf{U}^{-1} = \mathbf{V}^{-1} \mathbf{T}
|
||||
|
||||
where :math:`\mathbf{V}` and :math:`\mathbf{U}` are left
|
||||
and right stretch tensor, respectively.
|
||||
|
||||
"""
|
||||
return _rotation.Rotation.from_matrix(_polar_decomposition(T,'R')[0])
|
||||
|
||||
|
@ -212,7 +239,7 @@ def stress_second_Piola_Kirchhoff(P: _np.ndarray,
|
|||
|
||||
|
||||
def stretch_left(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate left stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -225,12 +252,23 @@ def stretch_left(T: _np.ndarray) -> _np.ndarray:
|
|||
V : numpy.ndarray, shape (...,3,3)
|
||||
Left stretch tensor from Polar decomposition of T.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The left stretch tensor is calculated from the
|
||||
polar decomposition:
|
||||
|
||||
.. math::
|
||||
|
||||
\mathbf{V} = \mathbf{T} \mathbf{R}^\mathrm{T}
|
||||
|
||||
where :math:`\mathbf{R}` is a rotation.
|
||||
|
||||
"""
|
||||
return _polar_decomposition(T,'V')[0]
|
||||
|
||||
|
||||
def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate right stretch of a tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -243,6 +281,17 @@ def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
|||
U : numpy.ndarray, shape (...,3,3)
|
||||
Left stretch tensor from Polar decomposition of T.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The right stretch tensor is calculated from the
|
||||
polar decomposition:
|
||||
|
||||
.. math::
|
||||
|
||||
\mathbf{U} = \mathbf{R}^\mathrm{T} \mathbf{T}
|
||||
|
||||
where :math:`\mathbf{R}` is a rotation.
|
||||
|
||||
"""
|
||||
return _polar_decomposition(T,'U')[0]
|
||||
|
||||
|
|
Loading…
Reference in New Issue