Merge remote-tracking branch 'origin/development' into internal-restructure
This commit is contained in:
commit
65cd945aea
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit 0289c1bbfec1a1aef77a8cbaeed134035549e738
|
||||
Subproject commit 13dfa0ee9d702782f0b7999f3f7fb2384f58d768
|
|
@ -1,4 +0,0 @@
|
|||
[DP_Steel]
|
||||
crystallite 1
|
||||
(constituent) phase 1 texture 1 fraction 0.82
|
||||
(constituent) phase 2 texture 2 fraction 0.18
|
|
@ -1,64 +0,0 @@
|
|||
[TWIP_Steel_FeMnC]
|
||||
|
||||
elasticity hooke
|
||||
plasticity dislotwin
|
||||
|
||||
(output) rho_mob
|
||||
(output) rho_dip
|
||||
(output) gamma_sl
|
||||
(output) lambda_sl
|
||||
(output) tau_pass
|
||||
(output) f_tw
|
||||
(output) lambda_tw
|
||||
(output) tau_hat_tw
|
||||
(output) f_tr
|
||||
|
||||
|
||||
### Material parameters ###
|
||||
lattice_structure fcc
|
||||
C11 175.0e9 # From Music et al. Applied Physics Letters 91, 191904 (2007)
|
||||
C12 115.0e9
|
||||
C44 135.0e9
|
||||
grainsize 2.0e-5 # Average grain size [m]
|
||||
SolidSolutionStrength 1.5e8 # Strength due to elements in solid solution
|
||||
|
||||
### Dislocation glide parameters ###
|
||||
Nslip 12
|
||||
slipburgers 2.56e-10 # Burgers vector of slip system [m]
|
||||
rhoedgedip0 1.0 # Initial dislocation density [m/m**3]
|
||||
rhoedge0 1.0e12 # Initial dislocation density [m/m**3]
|
||||
v0 1.0e-4 # Initial glide velocity [m/s]
|
||||
Qedge 3.7e-19 # Activation energy for dislocation glide [J]
|
||||
p_slip 1.0 # p-exponent in glide velocity
|
||||
q_slip 1.0 # q-exponent in glide velocity
|
||||
|
||||
# hardening of glide
|
||||
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
|
||||
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
|
||||
Qsd 4.5e-19 # Activation energy for climb [J]
|
||||
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b^3]
|
||||
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
|
||||
interactionSlipSlip 0.122 0.122 0.625 0.07 0.137 0.122 # Interaction coefficients (Kubin et al. 2008)
|
||||
|
||||
### Shearband parameters ###
|
||||
shearbandresistance 180e6
|
||||
shearbandvelocity 0e-4 # set to zero to turn shear banding of
|
||||
QedgePerSbSystem 3.7e-19 # Activation energy for shear banding [J]
|
||||
p_shearband 1.0 # p-exponent in glide velocity
|
||||
q_shearband 1.0 # q-exponent in glide velocity
|
||||
|
||||
### Twinning parameters ###
|
||||
Ntwin 12
|
||||
twinburgers 1.47e-10 # Burgers vector of twin system [m]
|
||||
twinsize 5.0e-8 # Twin stack mean thickness [m]
|
||||
L0_twin 442.0 # Length of twin nuclei in Burgers vectors
|
||||
maxtwinfraction 1.0 # Maximum admissible twin volume fraction
|
||||
xc_twin 1.0e-9 # critical distance for formation of twin nucleus
|
||||
VcrossSlip 1.67e-29 # cross slip volume
|
||||
r_twin 10.0 # r-exponent in twin formation probability
|
||||
Cmfptwin 1.0 # Adj. parameter controlling twin mean free path
|
||||
Cthresholdtwin 1.0 # Adj. parameter controlling twin threshold stress
|
||||
interactionSlipTwin 0.0 1.0 1.0 # Dislocation-Twin interaction coefficients
|
||||
interactionTwinTwin 0.0 1.0 # Twin-Twin interaction coefficients
|
||||
SFE_0K -0.0396 # stacking fault energy at zero K; TWIP steel: -0.0526; Cu: -0.0396
|
||||
dSFE_dT 0.0002 # temperature dependance of stacking fault energy
|
|
@ -0,0 +1,41 @@
|
|||
TWIP_Steel_FeMnC:
|
||||
lattice: cF
|
||||
mechanics:
|
||||
elasticity: {type: hooke, C_11: 175.0e9, C_12: 115.0e9, C_44: 135.0e9}
|
||||
plasticity:
|
||||
type: dislotwin
|
||||
output: [rho_mob, rho_dip, gamma_sl, Lambda_sl, tau_pass, f_tw, Lambda_tw, tau_hat_tw, f_tr]
|
||||
D: 2.0e-5
|
||||
N_sl: [12]
|
||||
b_sl: [2.56e-10]
|
||||
rho_mob_0: [1.0e12]
|
||||
rho_dip_0: [1.0]
|
||||
v_0: [1.0e4]
|
||||
Q_s: [3.7e-19]
|
||||
p_sl: [1.0]
|
||||
q_sl: [1.0]
|
||||
tau_0: [1.5e8]
|
||||
i_sl: [10.0] # Adj. parameter controlling dislocation mean free path
|
||||
D_0: 4.0e-5 # Vacancy diffusion prefactor / m^2/s
|
||||
D_a: 1.0 # minimum dipole distance / b
|
||||
Q_cl: 4.5e-19 # Activation energy for climb / J
|
||||
h_sl_sl: [0.122, 0.122, 0.625, 0.07, 0.137, 0.122] # Interaction coefficients (Kubin et al. 2008)
|
||||
# shear band parameters
|
||||
xi_sb: 180.0e6
|
||||
Q_sb: 3.7e-19
|
||||
p_sb: 1.0
|
||||
q_sb: 1.0
|
||||
v_sb: 0.0 # set to 0, to turn it off
|
||||
# twinning parameters
|
||||
N_tw: [12]
|
||||
b_tw: [1.47e-10] # Burgers vector length of twin system / b
|
||||
t_tw: [5.0e-8] # Twin stack mean thickness / m
|
||||
L_tw: 442.0 # Length of twin nuclei / b
|
||||
x_c_tw: 1.0e-9 # critical distance for formation of twin nucleus / m
|
||||
V_cs: 1.67e-29 # cross slip volume / m^3
|
||||
p_tw: [10.0] # r-exponent in twin formation probability
|
||||
i_tw: 1.0 # Adj. parameter controlling twin mean free path
|
||||
h_sl_tw: [0.0, 1.0, 1.0] # dislocation-twin interaction coefficients
|
||||
h_tw_tw: [0.0, 1.0] # twin-twin interaction coefficients
|
||||
Gamma_sf_0K: -0.0396 # stacking fault energy / J/m^2 at zero K; TWIP steel: -0.0526; Cu: -0.0396
|
||||
dGamma_sf_dT: 0.0002 # temperature dependence / J/(m^2 K) of stacking fault energy
|
|
@ -1,36 +0,0 @@
|
|||
[Tungsten]
|
||||
|
||||
elasticity hooke
|
||||
plasticity dislotwin
|
||||
|
||||
### Material parameters ###
|
||||
lattice_structure bcc
|
||||
C11 523.0e9 # From Marinica et al. Journal of Physics: Condensed Matter(2013)
|
||||
C12 202.0e9
|
||||
C44 161.0e9
|
||||
|
||||
grainsize 2.0e-5 # Average grain size [m]
|
||||
SolidSolutionStrength 1.5e8 # Strength due to elements in solid solution
|
||||
|
||||
### Dislocation glide parameters ###
|
||||
#per family
|
||||
Nslip 12
|
||||
slipburgers 2.72e-10 # Burgers vector of slip system [m]
|
||||
rhoedge0 1.0e12 # Initial edge dislocation density [m/m**3]
|
||||
rhoedgedip0 1.0 # Initial edged dipole dislocation density [m/m**3]
|
||||
v0 1.0e-4 # Initial glide velocity [m/s]
|
||||
Qedge 2.725e-19 # Activation energy for dislocation glide [J]
|
||||
p_slip 0.78 # p-exponent in glide velocity
|
||||
q_slip 1.58 # q-exponent in glide velocity
|
||||
tau_peierls 2.03e9 # peierls stress (for bcc)
|
||||
dipoleformationfactor 0 # to have hardening due to dipole formation off
|
||||
|
||||
#hardening
|
||||
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
|
||||
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
|
||||
Qsd 4.5e-19 # Activation energy for climb [J]
|
||||
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
|
||||
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
|
||||
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
|
||||
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
Tungsten:
|
||||
lattice: cI
|
||||
mechanics:
|
||||
elasticity: {type: hooke, C_11: 523.0e9, C_12: 202.0e9, C_44: 161.0e9} # Marinica et al. Journal of Physics: Condensed Matter(2013)
|
||||
plasticity:
|
||||
type: dislotwin
|
||||
D: 2.0e-5 # Average grain size / m
|
||||
N_sl: [12]
|
||||
b_sl: [2.72e-10] # Burgers vector length of slip families / m
|
||||
rho_mob_0: [1.0e12]
|
||||
rho_dip_0: [1.0]
|
||||
v_0: [1.0e4] # Initial glide velocity / m/s
|
||||
Q_s: [2.725e-19] # Activation energy for dislocation glide / J
|
||||
p_sl: [0.78] # p-exponent in glide velocity
|
||||
q_sl: [1.58] # q-exponent in glide velocity
|
||||
tau_0: [1.5e8] # solid solution strength / Pa
|
||||
i_sl: [10.0] # Adj. parameter controlling dislocation mean free path
|
||||
D_0: 4.0e-5 # Vacancy diffusion prefactor / m^2/s
|
||||
D_a: 1.0 # minimum dipole distance / b
|
||||
Q_cl: 4.5e-19 # Activation energy for climb / J
|
||||
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
|
|
@ -1,3 +0,0 @@
|
|||
hydrogenflux_diffusion11 1.0
|
||||
hydrogenflux_mobility11 1.0
|
||||
hydrogenVolume 1e-28
|
|
@ -1,13 +1,14 @@
|
|||
# M. Levy, Handbook of Elastic Properties of Solids, Liquids, and Gases (2001)
|
||||
# C. Zambaldi, "Orientation informed nanoindentation of a-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip", J. Mater. Res., Vol. 27, No. 1, Jan 14, 2012
|
||||
Ti-alpha:
|
||||
# Better use values from L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.-S. Park, J. Lind, R.M. Suter, T.R. Bieler, Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy, Acta Mater 2017
|
||||
cpTi:
|
||||
lattice: hP
|
||||
c/a: 1.587
|
||||
mechanics:
|
||||
output: [F, P, F_e, F_p, L_p, O]
|
||||
elasticity: {C_11: 160.0e9, C_12: 90.0e9, C_13: 66.0e9, C_33: 181.7e9, C_44: 46.5e9, type: hooke}
|
||||
plasticity:
|
||||
N_sl: [3, 3, 0, 0, 12]
|
||||
N_sl: [3, 3, 0, 6, 12]
|
||||
a_sl: 2.0
|
||||
dot_gamma_0_sl: 0.001
|
||||
h_0_sl_sl: 200e6
|
||||
|
@ -15,5 +16,5 @@ Ti-alpha:
|
|||
n_sl: 20
|
||||
output: [gamma_sl]
|
||||
type: phenopowerlaw
|
||||
xi_0_sl: [349e6, 150e6, 0, 0, 1107e6]
|
||||
xi_inf_sl: [568e6, 1502e6, 0, 0, 3420e6]
|
||||
xi_0_sl: [0.15e9, 0.09e9, 0, 0.20e9, 0.25e9]
|
||||
xi_inf_sl: [0.24e9, 0.5e9, 0, 0.6e9, 0.8e9]
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import copy
|
||||
from io import StringIO
|
||||
from collections.abc import Iterable
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
|
@ -44,6 +45,42 @@ class Config(dict):
|
|||
copy = __copy__
|
||||
|
||||
|
||||
def __or__(self,other):
|
||||
"""
|
||||
Update configuration with contents of other.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : damask.Config or dict
|
||||
Key-value pairs that update self.
|
||||
|
||||
"""
|
||||
duplicate = self.copy()
|
||||
duplicate.update(other)
|
||||
return duplicate
|
||||
|
||||
|
||||
def __ior__(self,other):
|
||||
"""Update configuration with contents of other."""
|
||||
return self.__or__(other)
|
||||
|
||||
|
||||
def delete(self,keys):
|
||||
"""
|
||||
Remove configuration keys.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
keys : iterable or scalar
|
||||
Label of the key(s) to remove.
|
||||
|
||||
"""
|
||||
duplicate = self.copy()
|
||||
for k in keys if isinstance(keys, Iterable) and not isinstance(keys, str) else [keys]:
|
||||
del duplicate[k]
|
||||
return duplicate
|
||||
|
||||
|
||||
@classmethod
|
||||
def load(cls,fname):
|
||||
"""
|
||||
|
@ -99,30 +136,6 @@ class Config(dict):
|
|||
fhandle.write(yaml.dump(self,Dumper=NiceDumper,**kwargs))
|
||||
|
||||
|
||||
def add(self,d):
|
||||
"""
|
||||
Add dictionary.
|
||||
|
||||
d : dict
|
||||
Dictionary to append.
|
||||
"""
|
||||
duplicate = self.copy()
|
||||
duplicate.update(d)
|
||||
return duplicate
|
||||
|
||||
|
||||
def delete(self,key):
|
||||
"""
|
||||
Delete item.
|
||||
|
||||
key : str or scalar
|
||||
Label of the key to remove.
|
||||
"""
|
||||
duplicate = self.copy()
|
||||
del duplicate[key]
|
||||
return duplicate
|
||||
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def is_complete(self):
|
||||
|
|
|
@ -371,7 +371,7 @@ class Result:
|
|||
with h5py.File(self.fname,'r') as f:
|
||||
for dataset in sets:
|
||||
for group in self.groups_with_datasets(dataset):
|
||||
path = os.path.join(group,dataset)
|
||||
path = '/'.join([group,dataset])
|
||||
inc,prop,name,cat,item = (path.split('/') + ['']*5)[:5]
|
||||
key = '/'.join([prop,name+tag])
|
||||
if key not in inGeom:
|
||||
|
@ -388,15 +388,15 @@ class Result:
|
|||
np.nan,
|
||||
dtype=np.dtype(f[path]))
|
||||
data[inGeom[key]] = (f[path] if len(shape)>1 else np.expand_dims(f[path],1))[inData[key]]
|
||||
path = (os.path.join(*([prop,name]+([cat] if cat else [])+([item] if item else []))) if split else path)+tag
|
||||
path = ('/'.join([prop,name]+([cat] if cat else [])+([item] if item else [])) if split else path)+tag
|
||||
if split:
|
||||
try:
|
||||
tbl[inc].add(path,data)
|
||||
tbl[inc] = tbl[inc].add(path,data)
|
||||
except KeyError:
|
||||
tbl[inc] = Table(data.reshape(self.N_materialpoints,-1),{path:data.shape[1:]})
|
||||
else:
|
||||
try:
|
||||
tbl.add(path,data)
|
||||
tbl = tbl.add(path,data)
|
||||
except AttributeError:
|
||||
tbl = Table(data.reshape(self.N_materialpoints,-1),{path:data.shape[1:]})
|
||||
|
||||
|
|
|
@ -475,15 +475,17 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
vector : bool, optional
|
||||
Return as actual Rodrigues-Frank vector, i.e. axis
|
||||
and angle argument are not separated.
|
||||
compact : bool, optional
|
||||
Return as actual Rodrigues-Frank vector,
|
||||
i.e. axis and angle argument are not separated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rho : numpy.ndarray of shape (...,4) unless vector == True:
|
||||
numpy.ndarray of shape (...,3)
|
||||
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω ∈ [0,π].
|
||||
rho : numpy.ndarray of shape (...,4) containing
|
||||
[n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω ∈ [0,π]
|
||||
unless compact == True:
|
||||
numpy.ndarray of shape (...,3) containing
|
||||
tan(ω/2) [n_1, n_2, n_3], ω ∈ [0,π].
|
||||
|
||||
"""
|
||||
ro = Rotation._qu2ro(self.quaternion)
|
||||
|
|
|
@ -189,6 +189,11 @@ class Table:
|
|||
label : str
|
||||
Column label.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : numpy.ndarray
|
||||
Array of column data.
|
||||
|
||||
"""
|
||||
if re.match(r'[0-9]*?_',label):
|
||||
idx,key = label.split('_',1)
|
||||
|
@ -212,6 +217,11 @@ class Table:
|
|||
info : str, optional
|
||||
Human-readable information about the new data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Updated table.
|
||||
|
||||
"""
|
||||
dup = self.copy()
|
||||
dup._add_comment(label,data.shape[1:],info)
|
||||
|
@ -238,6 +248,11 @@ class Table:
|
|||
info : str, optional
|
||||
Human-readable information about the modified data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Updated table.
|
||||
|
||||
"""
|
||||
dup = self.copy()
|
||||
dup._add_comment(label,data.shape[1:],info)
|
||||
|
@ -261,6 +276,11 @@ class Table:
|
|||
label : str
|
||||
Column label.
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Updated table.
|
||||
|
||||
"""
|
||||
dup = self.copy()
|
||||
dup.data.drop(columns=label,inplace=True)
|
||||
|
@ -279,6 +299,11 @@ class Table:
|
|||
label_new : str or iterable of str
|
||||
New column label(s).
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Updated table.
|
||||
|
||||
"""
|
||||
dup = self.copy()
|
||||
columns = dict(zip([old] if isinstance(old,str) else old,
|
||||
|
@ -300,6 +325,11 @@ class Table:
|
|||
ascending : bool or list, optional
|
||||
Set sort order.
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Updated table.
|
||||
|
||||
"""
|
||||
dup = self.copy()
|
||||
dup._label_discrete()
|
||||
|
@ -320,6 +350,11 @@ class Table:
|
|||
other : Table
|
||||
Table to append.
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Concatenated table.
|
||||
|
||||
"""
|
||||
if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns):
|
||||
raise KeyError('Labels or shapes or order do not match')
|
||||
|
@ -340,6 +375,11 @@ class Table:
|
|||
other : Table
|
||||
Table to join.
|
||||
|
||||
Returns
|
||||
-------
|
||||
table : Table
|
||||
Joined table.
|
||||
|
||||
"""
|
||||
if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]:
|
||||
raise KeyError('Dublicated keys or row count mismatch')
|
||||
|
|
|
@ -133,6 +133,8 @@ def execute(cmd,
|
|||
stdout = stdout.decode('utf-8').replace('\x08','')
|
||||
stderr = stderr.decode('utf-8').replace('\x08','')
|
||||
if process.returncode != 0:
|
||||
print(stdout)
|
||||
print(stderr)
|
||||
raise RuntimeError(f"'{cmd}' failed with returncode {process.returncode}")
|
||||
return stdout, stderr
|
||||
|
||||
|
@ -193,7 +195,7 @@ def scale_to_coprime(v):
|
|||
return m
|
||||
|
||||
|
||||
def project_stereographic(vector,normalize=False):
|
||||
def project_stereographic(vector,direction='z',normalize=True,keepdims=False):
|
||||
"""
|
||||
Apply stereographic projection to vector.
|
||||
|
||||
|
@ -201,18 +203,37 @@ def project_stereographic(vector,normalize=False):
|
|||
----------
|
||||
vector : numpy.ndarray of shape (...,3)
|
||||
Vector coordinates to be projected.
|
||||
direction : str
|
||||
Projection direction 'x', 'y', or 'z'.
|
||||
Defaults to 'z'.
|
||||
normalize : bool
|
||||
Ensure unit length for vector. Defaults to False.
|
||||
Ensure unit length of input vector. Defaults to True.
|
||||
keepdims : bool
|
||||
Maintain three-dimensional output coordinates.
|
||||
Default two-dimensional output uses right-handed frame spanned by
|
||||
the next and next-next axis relative to the projection direction,
|
||||
e.g. x-y when projecting along z and z-x when projecting along y.
|
||||
|
||||
Returns
|
||||
-------
|
||||
coordinates : numpy.ndarray of shape (...,2)
|
||||
coordinates : numpy.ndarray of shape (...,2 | 3)
|
||||
Projected coordinates.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> project_stereographic(np.ones(3))
|
||||
[0.3660254, 0.3660254]
|
||||
>>> project_stereographic(np.ones(3),direction='x',normalize=False,keepdims=True)
|
||||
[0, 0.5, 0.5]
|
||||
>>> project_stereographic([0,1,1],direction='y',normalize=True,keepdims=False)
|
||||
[0.41421356, 0]
|
||||
|
||||
"""
|
||||
v_ = vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector
|
||||
return np.block([v_[...,:2]/(1+np.abs(v_[...,2:3])),
|
||||
np.zeros_like(v_[...,2:3])])
|
||||
shift = 'zyx'.index(direction)
|
||||
v_ = np.roll(vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
|
||||
shift,axis=-1)
|
||||
return np.roll(np.block([v_[...,:2]/(1+np.abs(v_[...,2:3])),np.zeros_like(v_[...,2:3])]),
|
||||
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
|
||||
|
||||
|
||||
def execution_stamp(class_name,function_name=None):
|
||||
|
|
|
@ -23,8 +23,17 @@ class TestConfig:
|
|||
assert Config.load(f) == config
|
||||
|
||||
def test_add_remove(self):
|
||||
dummy = {'hello':'world','foo':'bar'}
|
||||
config = Config()
|
||||
assert config.add({'hello':'world'}).delete('hello') == config
|
||||
config |= dummy
|
||||
assert config == Config() | dummy
|
||||
config = config.delete(dummy)
|
||||
assert config == Config()
|
||||
assert (config | dummy ).delete( 'hello' ) == config | {'foo':'bar'}
|
||||
assert (config | dummy ).delete([ 'hello', 'foo' ]) == config
|
||||
assert (config | Config(dummy)).delete({ 'hello':1,'foo':2 }) == config
|
||||
assert (config | Config(dummy)).delete(Config({'hello':1 })) == config | {'foo':'bar'}
|
||||
|
||||
|
||||
def test_repr(self,tmp_path):
|
||||
config = Config()
|
||||
|
|
|
@ -49,17 +49,18 @@ class TestUtil:
|
|||
dist_sampled = np.histogram(centers[selected],bins)[0]/N_samples*np.sum(dist)
|
||||
assert np.sqrt(((dist - dist_sampled) ** 2).mean()) < .025 and selected.shape[0]==N_samples
|
||||
|
||||
@pytest.mark.parametrize('point,normalize,answer',
|
||||
@pytest.mark.parametrize('point,direction,normalize,keepdims,answer',
|
||||
[
|
||||
([1,0,0],False,[1,0,0]),
|
||||
([1,0,0],True, [1,0,0]),
|
||||
([0,1,1],False,[0,0.5,0]),
|
||||
([0,1,1],True, [0,0.41421356,0]),
|
||||
([1,1,1],False,[0.5,0.5,0]),
|
||||
([1,1,1],True, [0.3660254, 0.3660254, 0]),
|
||||
([1,0,0],'z',False,True, [1,0,0]),
|
||||
([1,0,0],'z',True, False,[1,0]),
|
||||
([0,1,1],'z',False,True, [0,0.5,0]),
|
||||
([0,1,1],'y',True, False,[0.41421356,0]),
|
||||
([1,1,0],'x',False,False,[0.5,0]),
|
||||
([1,1,1],'y',True, True, [0.3660254, 0,0.3660254]),
|
||||
])
|
||||
def test_project_stereographic(self,point,normalize,answer):
|
||||
assert np.allclose(util.project_stereographic(np.array(point),normalize=normalize),answer)
|
||||
def test_project_stereographic(self,point,direction,normalize,keepdims,answer):
|
||||
assert np.allclose(util.project_stereographic(np.array(point),direction=direction,
|
||||
normalize=normalize,keepdims=keepdims),answer)
|
||||
|
||||
@pytest.mark.parametrize('fro,to,mode,answer',
|
||||
[
|
||||
|
|
|
@ -178,11 +178,11 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
|
|||
|
||||
if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) call CPFEM_forward
|
||||
|
||||
chosenThermal1: select case (thermal_type(material_homogenizationAt(elCP)))
|
||||
!chosenThermal1: select case (thermal_type(material_homogenizationAt(elCP)))
|
||||
! case (THERMAL_conduction_ID) chosenThermal1
|
||||
! temperature(material_homogenizationAt(elCP))%p(material_homogenizationMemberAt(ip,elCP)) = &
|
||||
! temperature_inp
|
||||
end select chosenThermal1
|
||||
!end select chosenThermal1
|
||||
homogenization_F0(1:3,1:3,ma) = ffn
|
||||
homogenization_F(1:3,1:3,ma) = ffn1
|
||||
|
||||
|
|
|
@ -37,9 +37,10 @@ program DAMASK_grid
|
|||
f_out, & !< frequency of result writes
|
||||
f_restart !< frequency of restart writes
|
||||
logical :: estimate_rate !< follow trajectory of former loadcase
|
||||
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
|
||||
end type tLoadCase
|
||||
|
||||
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables related to information from load case and geom file
|
||||
real(pReal), dimension(9) :: temp_valueVector !< temporarily from loadcase file when reading in tensors (initialize to 0.0)
|
||||
|
@ -53,6 +54,7 @@ program DAMASK_grid
|
|||
integer, parameter :: &
|
||||
subStepFactor = 2 !< for each substep, divide the last time increment by 2.0
|
||||
real(pReal) :: &
|
||||
T_0 = 300.0_pReal, &
|
||||
time = 0.0_pReal, & !< elapsed time
|
||||
time0 = 0.0_pReal, & !< begin of interval
|
||||
timeinc = 1.0_pReal, & !< current time interval
|
||||
|
@ -78,8 +80,7 @@ program DAMASK_grid
|
|||
maxCutBack, & !< max number of cut backs
|
||||
stagItMax !< max number of field level staggered iterations
|
||||
character(len=pStringLen) :: &
|
||||
incInfo, &
|
||||
loadcase_string
|
||||
incInfo
|
||||
|
||||
type(tLoadCase), allocatable, dimension(:) :: loadCases !< array of all load cases
|
||||
type(tSolutionState), allocatable, dimension(:) :: solres
|
||||
|
@ -98,10 +99,13 @@ program DAMASK_grid
|
|||
quit
|
||||
class (tNode), pointer :: &
|
||||
num_grid, &
|
||||
debug_grid, & ! pointer to grid debug options
|
||||
config_load, &
|
||||
load_steps, &
|
||||
load_step, &
|
||||
solver, &
|
||||
initial_conditions, &
|
||||
ic_thermal, &
|
||||
thermal, &
|
||||
step_bc, &
|
||||
step_mech, &
|
||||
step_discretization, &
|
||||
|
@ -112,17 +116,11 @@ program DAMASK_grid
|
|||
! init DAMASK (all modules)
|
||||
|
||||
call CPFEM_initAll
|
||||
print'(/,a)', ' <<<+- DAMASK_spectral init -+>>>'; flush(IO_STDOUT)
|
||||
print'(/,a)', ' <<<+- DAMASK_grid init -+>>>'; flush(IO_STDOUT)
|
||||
|
||||
print*, 'Shanthraj et al., Handbook of Mechanics of Materials, 2019'
|
||||
print*, 'https://doi.org/10.1007/978-981-10-6855-3_80'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! initialize field solver information
|
||||
nActiveFields = 1
|
||||
if (any(thermal_type == THERMAL_conduction_ID )) nActiveFields = nActiveFields + 1
|
||||
if (any(damage_type == DAMAGE_nonlocal_ID )) nActiveFields = nActiveFields + 1
|
||||
allocate(solres(nActiveFields))
|
||||
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
! reading field paramters from numerics file and do sanity checks
|
||||
|
@ -133,19 +131,22 @@ program DAMASK_grid
|
|||
if (stagItMax < 0) call IO_error(301,ext_msg='maxStaggeredIter')
|
||||
if (maxCutBack < 0) call IO_error(301,ext_msg='maxCutBack')
|
||||
|
||||
config_load => YAML_parse_file(trim(interface_loadFile))
|
||||
solver => config_load%get('solver')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! assign mechanics solver depending on selected type
|
||||
|
||||
debug_grid => config_debug%get('grid',defaultVal=emptyList)
|
||||
select case (trim(num_grid%get_asString('solver', defaultVal = 'Basic')))
|
||||
case ('Basic')
|
||||
nActiveFields = 1
|
||||
select case (solver%get_asString('mechanical'))
|
||||
case ('spectral_basic')
|
||||
mechanical_init => grid_mechanical_spectral_basic_init
|
||||
mechanical_forward => grid_mechanical_spectral_basic_forward
|
||||
mechanical_solution => grid_mechanical_spectral_basic_solution
|
||||
mechanical_updateCoords => grid_mechanical_spectral_basic_updateCoords
|
||||
mechanical_restartWrite => grid_mechanical_spectral_basic_restartWrite
|
||||
|
||||
case ('Polarisation')
|
||||
case ('spectral_polarization')
|
||||
mechanical_init => grid_mechanical_spectral_polarisation_init
|
||||
mechanical_forward => grid_mechanical_spectral_polarisation_forward
|
||||
mechanical_solution => grid_mechanical_spectral_polarisation_solution
|
||||
|
@ -160,32 +161,36 @@ program DAMASK_grid
|
|||
mechanical_restartWrite => grid_mechanical_FEM_restartWrite
|
||||
|
||||
case default
|
||||
call IO_error(error_ID = 891, ext_msg = trim(num_grid%get_asString('solver')))
|
||||
call IO_error(error_ID = 891, ext_msg = trim(solver%get_asString('mechanical')))
|
||||
|
||||
end select
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! initialize field solver information
|
||||
if (solver%get_asString('thermal',defaultVal = 'n/a') == 'spectral') nActiveFields = nActiveFields + 1
|
||||
if (solver%get_asString('damage', defaultVal = 'n/a') == 'spectral') nActiveFields = nActiveFields + 1
|
||||
|
||||
allocate(solres(nActiveFields))
|
||||
allocate( ID(nActiveFields))
|
||||
|
||||
field = 1
|
||||
ID(field) = FIELD_MECH_ID ! mechanical active by default
|
||||
thermalActive: if (solver%get_asString('thermal',defaultVal = 'n/a') == 'spectral') then
|
||||
field = field + 1
|
||||
ID(field) = FIELD_THERMAL_ID
|
||||
endif thermalActive
|
||||
damageActive: if (solver%get_asString('damage',defaultVal = 'n/a') == 'spectral') then
|
||||
field = field + 1
|
||||
ID(field) = FIELD_DAMAGE_ID
|
||||
endif damageActive
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! reading information from load case file and to sanity checks
|
||||
config_load => YAML_parse_file(trim(interface_loadFile))
|
||||
|
||||
load_steps => config_load%get('loadstep')
|
||||
allocate(loadCases(load_steps%length)) ! array of load cases
|
||||
|
||||
do l = 1, load_steps%length
|
||||
|
||||
allocate(loadCases(l)%ID(nActiveFields))
|
||||
field = 1
|
||||
loadCases(l)%ID(field) = FIELD_MECH_ID ! mechanical active by default
|
||||
thermalActive: if (any(thermal_type == THERMAL_conduction_ID)) then
|
||||
field = field + 1
|
||||
loadCases(l)%ID(field) = FIELD_THERMAL_ID
|
||||
endif thermalActive
|
||||
damageActive: if (any(damage_type == DAMAGE_nonlocal_ID)) then
|
||||
field = field + 1
|
||||
loadCases(l)%ID(field) = FIELD_DAMAGE_ID
|
||||
endif damageActive
|
||||
|
||||
load_step => load_steps%get(l)
|
||||
step_bc => load_step%get('boundary_conditions')
|
||||
step_mech => step_bc%get('mechanical')
|
||||
|
@ -228,11 +233,9 @@ program DAMASK_grid
|
|||
|
||||
loadCases(l)%f_restart = load_step%get_asInt('f_restart', defaultVal=huge(0))
|
||||
loadCases(l)%f_out = load_step%get_asInt('f_out', defaultVal=1)
|
||||
loadCases(l)%estimate_rate = (load_step%get_asBool('estimate_rate',defaultVal=.true.) .and. &
|
||||
merge(.true.,.false.,l > 1))
|
||||
loadCases(l)%estimate_rate = (load_step%get_asBool('estimate_rate',defaultVal=.true.) .and. l>1)
|
||||
|
||||
reportAndCheck: if (worldrank == 0) then
|
||||
write (loadcase_string, '(i0)' ) l
|
||||
print'(/,a,i0)', ' load case: ', l
|
||||
print*, ' estimate_rate:', loadCases(l)%estimate_rate
|
||||
if (loadCases(l)%deformation%myType == 'L') then
|
||||
|
@ -292,7 +295,7 @@ program DAMASK_grid
|
|||
if (loadCases(l)%f_restart < huge(0)) &
|
||||
print'(a,i0)', ' f_restart: ', loadCases(l)%f_restart
|
||||
|
||||
if (errorID > 0) call IO_error(error_ID = errorID, ext_msg = loadcase_string) ! exit with error message
|
||||
if (errorID > 0) call IO_error(error_ID = errorID, el = l)
|
||||
|
||||
endif reportAndCheck
|
||||
enddo
|
||||
|
@ -301,12 +304,14 @@ program DAMASK_grid
|
|||
! doing initialization depending on active solvers
|
||||
call spectral_Utilities_init
|
||||
do field = 1, nActiveFields
|
||||
select case (loadCases(1)%ID(field))
|
||||
select case (ID(field))
|
||||
case(FIELD_MECH_ID)
|
||||
call mechanical_init
|
||||
|
||||
case(FIELD_THERMAL_ID)
|
||||
call grid_thermal_spectral_init
|
||||
initial_conditions => config_load%get('initial_conditions',defaultVal=emptyDict)
|
||||
thermal => initial_conditions%get('thermal',defaultVal=emptyDict)
|
||||
call grid_thermal_spectral_init(thermal%get_asFloat('T',defaultVal = T_0))
|
||||
|
||||
case(FIELD_DAMAGE_ID)
|
||||
call grid_damage_spectral_init
|
||||
|
@ -377,7 +382,7 @@ program DAMASK_grid
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! forward fields
|
||||
do field = 1, nActiveFields
|
||||
select case(loadCases(l)%ID(field))
|
||||
select case(ID(field))
|
||||
case(FIELD_MECH_ID)
|
||||
call mechanical_forward (&
|
||||
cutBack,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
|
||||
|
@ -397,7 +402,7 @@ program DAMASK_grid
|
|||
stagIterate = .true.
|
||||
do while (stagIterate)
|
||||
do field = 1, nActiveFields
|
||||
select case(loadCases(l)%ID(field))
|
||||
select case(ID(field))
|
||||
case(FIELD_MECH_ID)
|
||||
solres(field) = mechanical_solution(incInfo)
|
||||
case(FIELD_THERMAL_ID)
|
||||
|
|
|
@ -116,7 +116,7 @@ subroutine grid_mechanical_spectral_polarisation_init
|
|||
num_grid, &
|
||||
debug_grid
|
||||
|
||||
print'(/,a)', ' <<<+- grid_mechanical_spectral_polarisation init -+>>>'; flush(IO_STDOUT)
|
||||
print'(/,a)', ' <<<+- grid_mechanical_spectral_polarization init -+>>>'; flush(IO_STDOUT)
|
||||
|
||||
print*, 'Shanthraj et al., International Journal of Plasticity 66:31–45, 2015'
|
||||
print*, 'https://doi.org/10.1016/j.ijplas.2014.02.006'
|
||||
|
|
|
@ -61,7 +61,9 @@ contains
|
|||
!> @brief allocates all neccessary fields and fills them with data
|
||||
! ToDo: Restart not implemented
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine grid_thermal_spectral_init
|
||||
subroutine grid_thermal_spectral_init(T_0)
|
||||
|
||||
real(pReal), intent(in) :: T_0
|
||||
|
||||
PetscInt, dimension(0:worldsize-1) :: localK
|
||||
integer :: i, j, k, ce
|
||||
|
@ -131,9 +133,10 @@ subroutine grid_thermal_spectral_init
|
|||
ce = 0
|
||||
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
|
||||
ce = ce + 1
|
||||
T_current(i,j,k) = homogenization_thermal_T(ce)
|
||||
T_current(i,j,k) = T_0
|
||||
T_lastInc(i,j,k) = T_current(i,j,k)
|
||||
T_stagInc(i,j,k) = T_current(i,j,k)
|
||||
call homogenization_thermal_setField(T_0,0.0_pReal,ce)
|
||||
enddo; enddo; enddo
|
||||
call DMDAVecGetArrayF90(thermal_grid,solution_vec,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
|
||||
x_scal(xstart:xend,ystart:yend,zstart:zend) = T_current
|
||||
|
|
|
@ -35,15 +35,11 @@ module homogenization
|
|||
homogState, &
|
||||
damageState_h
|
||||
|
||||
|
||||
real(pReal), dimension(:), allocatable, public, protected :: &
|
||||
thermal_initialT
|
||||
|
||||
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable, public, protected :: &
|
||||
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable :: &
|
||||
thermal_type !< thermal transport model
|
||||
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable, public, protected :: &
|
||||
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable :: &
|
||||
damage_type !< nonlocal damage model
|
||||
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable, public, protected :: &
|
||||
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable :: &
|
||||
homogenization_type !< type of each homogenization
|
||||
|
||||
type, private :: tNumerics_damage
|
||||
|
@ -133,10 +129,8 @@ module homogenization
|
|||
|
||||
|
||||
module function thermal_conduction_getConductivity(ce) result(K)
|
||||
|
||||
integer, intent(in) :: ce
|
||||
real(pReal), dimension(3,3) :: K
|
||||
|
||||
end function thermal_conduction_getConductivity
|
||||
|
||||
module function thermal_conduction_getSpecificHeat(ce) result(c_P)
|
||||
|
@ -177,7 +171,6 @@ module homogenization
|
|||
end function damage_nonlocal_getMobility
|
||||
|
||||
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ce)
|
||||
|
||||
integer, intent(in) :: ce
|
||||
real(pReal), intent(in) :: &
|
||||
phi
|
||||
|
@ -185,21 +178,17 @@ module homogenization
|
|||
phiDot, dPhiDot_dPhi
|
||||
end subroutine damage_nonlocal_getSourceAndItsTangent
|
||||
|
||||
|
||||
module subroutine damage_nonlocal_putNonLocalDamage(phi,ce)
|
||||
|
||||
integer, intent(in) :: ce
|
||||
real(pReal), intent(in) :: &
|
||||
phi
|
||||
|
||||
end subroutine damage_nonlocal_putNonLocalDamage
|
||||
|
||||
module subroutine damage_nonlocal_results(ho,group)
|
||||
|
||||
integer, intent(in) :: ho
|
||||
character(len=*), intent(in) :: group
|
||||
|
||||
end subroutine damage_nonlocal_results
|
||||
|
||||
end interface
|
||||
|
||||
public :: &
|
||||
|
@ -242,8 +231,7 @@ subroutine homogenization_init()
|
|||
|
||||
allocate(homogState (size(material_name_homogenization)))
|
||||
allocate(damageState_h (size(material_name_homogenization)))
|
||||
call material_parseHomogenization
|
||||
|
||||
call material_parseHomogenization()
|
||||
|
||||
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
|
||||
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
|
||||
|
@ -251,12 +239,10 @@ subroutine homogenization_init()
|
|||
num%nMPstate = num_homogGeneric%get_asInt('nMPstate',defaultVal=10)
|
||||
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
|
||||
|
||||
|
||||
call mechanical_init(num_homog)
|
||||
call thermal_init()
|
||||
call damage_init()
|
||||
|
||||
call damage_nonlocal_init
|
||||
call damage_nonlocal_init()
|
||||
|
||||
|
||||
end subroutine homogenization_init
|
||||
|
@ -341,8 +327,8 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
|
|||
print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
|
||||
terminallyIll = .true. ! ...and kills all others
|
||||
endif
|
||||
call thermal_homogenize(ip,el)
|
||||
enddo
|
||||
call thermal_homogenize(ip,el)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
@ -556,7 +542,6 @@ subroutine material_parseHomogenization
|
|||
allocate(homogenization_type(size(material_name_homogenization)), source=HOMOGENIZATION_undefined_ID)
|
||||
allocate(thermal_type(size(material_name_homogenization)), source=THERMAL_isothermal_ID)
|
||||
allocate(damage_type (size(material_name_homogenization)), source=DAMAGE_none_ID)
|
||||
allocate(thermal_initialT(size(material_name_homogenization)), source=300.0_pReal)
|
||||
|
||||
do h=1, size(material_name_homogenization)
|
||||
homog => material_homogenization%get(h)
|
||||
|
@ -572,15 +557,10 @@ subroutine material_parseHomogenization
|
|||
call IO_error(500,ext_msg=homogMech%get_asString('type'))
|
||||
end select
|
||||
|
||||
|
||||
if (homog%contains('thermal')) then
|
||||
homogThermal => homog%get('thermal')
|
||||
thermal_initialT(h) = homogThermal%get_asFloat('T_0',defaultVal=300.0_pReal)
|
||||
|
||||
select case (homogThermal%get_asString('type'))
|
||||
case('isothermal')
|
||||
thermal_type(h) = THERMAL_isothermal_ID
|
||||
case('conduction')
|
||||
case('pass')
|
||||
thermal_type(h) = THERMAL_conduction_ID
|
||||
case default
|
||||
call IO_error(500,ext_msg=homogThermal%get_asString('type'))
|
||||
|
@ -590,9 +570,7 @@ subroutine material_parseHomogenization
|
|||
if (homog%contains('damage')) then
|
||||
homogDamage => homog%get('damage')
|
||||
select case (homogDamage%get_asString('type'))
|
||||
case('none')
|
||||
damage_type(h) = DAMAGE_none_ID
|
||||
case('nonlocal')
|
||||
case('pass')
|
||||
damage_type(h) = DAMAGE_nonlocal_ID
|
||||
case default
|
||||
call IO_error(500,ext_msg=homogDamage%get_asString('type'))
|
||||
|
@ -600,7 +578,6 @@ subroutine material_parseHomogenization
|
|||
endif
|
||||
enddo
|
||||
|
||||
|
||||
end subroutine material_parseHomogenization
|
||||
|
||||
|
||||
|
|
|
@ -44,7 +44,7 @@ module subroutine thermal_init()
|
|||
allocate(current(configHomogenizations%length))
|
||||
|
||||
do ho = 1, configHomogenizations%length
|
||||
allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=thermal_initialT(ho))
|
||||
allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=300.0_pReal)
|
||||
allocate(current(ho)%dot_T(count(material_homogenizationAt2==ho)), source=0.0_pReal)
|
||||
configHomogenization => configHomogenizations%get(ho)
|
||||
associate(prm => param(ho))
|
||||
|
|
|
@ -30,7 +30,7 @@ module material
|
|||
material_homogenizationAt, & !< homogenization ID of each element
|
||||
material_homogenizationAt2, & !< per cell
|
||||
material_homogenizationMemberAt2 !< cell
|
||||
integer, dimension(:,:), allocatable, public, protected :: & ! (ip,elem)
|
||||
integer, dimension(:,:), allocatable :: & ! (ip,elem)
|
||||
material_homogenizationMemberAt !< position of the element within its homogenization instance
|
||||
integer, dimension(:,:), allocatable, public, protected :: & ! (constituent,elem)
|
||||
material_phaseAt, & !< phase ID of each element
|
||||
|
|
|
@ -1133,6 +1133,7 @@ real(pReal) pure function math_areaTriangle(v1,v2,v3)
|
|||
|
||||
real(pReal), dimension (3), intent(in) :: v1,v2,v3
|
||||
|
||||
|
||||
math_areaTriangle = 0.5_pReal * norm2(math_cross(v1-v2,v1-v3))
|
||||
|
||||
end function math_areaTriangle
|
||||
|
@ -1147,11 +1148,13 @@ real(pReal) pure elemental function math_clip(a, left, right)
|
|||
real(pReal), intent(in) :: a
|
||||
real(pReal), intent(in), optional :: left, right
|
||||
|
||||
|
||||
math_clip = a
|
||||
if (present(left)) math_clip = max(left,math_clip)
|
||||
if (present(right)) math_clip = min(right,math_clip)
|
||||
if (present(left) .and. present(right)) &
|
||||
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
|
||||
if (present(left) .and. present(right)) then
|
||||
if(left>right) error stop 'left > right'
|
||||
endif
|
||||
|
||||
end function math_clip
|
||||
|
||||
|
@ -1182,6 +1185,7 @@ subroutine selfTest
|
|||
integer :: d
|
||||
logical :: e
|
||||
|
||||
|
||||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - &
|
||||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2,3,0])) > tol_math_check)) &
|
||||
error stop 'math_expand [1,2,3] by [1,2,3,0] => [1,2,2,3,3,3]'
|
||||
|
|
|
@ -133,7 +133,7 @@ module subroutine damage_init
|
|||
|
||||
integer :: &
|
||||
ph, & !< counter in phase loop
|
||||
Nconstituents
|
||||
Nmembers
|
||||
class(tNode), pointer :: &
|
||||
phases, &
|
||||
phase, &
|
||||
|
@ -151,10 +151,10 @@ module subroutine damage_init
|
|||
|
||||
do ph = 1,phases%length
|
||||
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
|
||||
allocate(current(ph)%phi(Nconstituents),source=1.0_pReal)
|
||||
allocate(current(ph)%d_phi_d_dot_phi(Nconstituents),source=0.0_pReal)
|
||||
allocate(current(ph)%phi(Nmembers),source=1.0_pReal)
|
||||
allocate(current(ph)%d_phi_d_dot_phi(Nmembers),source=0.0_pReal)
|
||||
|
||||
phase => phases%get(ph)
|
||||
sources => phase%get('damage',defaultVal=emptyList)
|
||||
|
|
|
@ -40,7 +40,7 @@ module function anisobrittle_init() result(mySources)
|
|||
phase, &
|
||||
sources, &
|
||||
src
|
||||
integer :: Nconstituents,p
|
||||
integer :: Nmembers,p
|
||||
integer, dimension(:), allocatable :: N_cl
|
||||
character(len=pStringLen) :: extmsg = ''
|
||||
|
||||
|
@ -92,8 +92,8 @@ module function anisobrittle_init() result(mySources)
|
|||
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
|
||||
if (any(prm%s_crit < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit'
|
||||
|
||||
Nconstituents = count(material_phaseAt==p) * discretization_nIPs
|
||||
call phase_allocateState(damageState(p),Nconstituents,1,1,0)
|
||||
Nmembers = count(material_phaseAt==p) * discretization_nIPs
|
||||
call phase_allocateState(damageState(p),Nmembers,1,1,0)
|
||||
damageState(p)%atol = src%get_asFloat('anisobrittle_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisobrittle_atol'
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ module function anisoductile_init() result(mySources)
|
|||
pl, &
|
||||
sources, &
|
||||
src
|
||||
integer :: Ninstances,Nconstituents,p
|
||||
integer :: Ninstances,Nmembers,p
|
||||
integer, dimension(:), allocatable :: N_sl
|
||||
character(len=pStringLen) :: extmsg = ''
|
||||
|
||||
|
@ -78,8 +78,8 @@ module function anisoductile_init() result(mySources)
|
|||
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
|
||||
if (any(prm%gamma_crit < 0.0_pReal)) extmsg = trim(extmsg)//' gamma_crit'
|
||||
|
||||
Nconstituents=count(material_phaseAt2==p)
|
||||
call phase_allocateState(damageState(p),Nconstituents,1,1,0)
|
||||
Nmembers=count(material_phaseAt2==p)
|
||||
call phase_allocateState(damageState(p),Nmembers,1,1,0)
|
||||
damageState(p)%atol = src%get_asFloat('anisoDuctile_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisoductile_atol'
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ module function isobrittle_init() result(mySources)
|
|||
phase, &
|
||||
sources, &
|
||||
src
|
||||
integer :: Nconstituents,p
|
||||
integer :: Nmembers,p
|
||||
character(len=pStringLen) :: extmsg = ''
|
||||
|
||||
|
||||
|
@ -64,8 +64,8 @@ module function isobrittle_init() result(mySources)
|
|||
! sanity checks
|
||||
if (prm%W_crit <= 0.0_pReal) extmsg = trim(extmsg)//' W_crit'
|
||||
|
||||
Nconstituents = count(material_phaseAt2==p)
|
||||
call phase_allocateState(damageState(p),Nconstituents,1,1,1)
|
||||
Nmembers = count(material_phaseAt2==p)
|
||||
call phase_allocateState(damageState(p),Nmembers,1,1,1)
|
||||
damageState(p)%atol = src%get_asFloat('isoBrittle_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isobrittle_atol'
|
||||
|
||||
|
|
|
@ -33,7 +33,7 @@ module function isoductile_init() result(mySources)
|
|||
phase, &
|
||||
sources, &
|
||||
src
|
||||
integer :: Ninstances,Nconstituents,p
|
||||
integer :: Ninstances,Nmembers,p
|
||||
character(len=pStringLen) :: extmsg = ''
|
||||
|
||||
|
||||
|
@ -68,8 +68,8 @@ module function isoductile_init() result(mySources)
|
|||
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
|
||||
if (prm%gamma_crit <= 0.0_pReal) extmsg = trim(extmsg)//' gamma_crit'
|
||||
|
||||
Nconstituents=count(material_phaseAt2==p)
|
||||
call phase_allocateState(damageState(p),Nconstituents,1,1,0)
|
||||
Nmembers=count(material_phaseAt2==p)
|
||||
call phase_allocateState(damageState(p),Nmembers,1,1,0)
|
||||
damageState(p)%atol = src%get_asFloat('isoDuctile_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(damageState(p)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isoductile_atol'
|
||||
|
||||
|
|
|
@ -191,7 +191,7 @@ module subroutine mechanical_init(materials,phases)
|
|||
ph, &
|
||||
me, &
|
||||
stiffDegradationCtr, &
|
||||
Nconstituents
|
||||
Nmembers
|
||||
class(tNode), pointer :: &
|
||||
num_crystallite, &
|
||||
material, &
|
||||
|
@ -229,22 +229,22 @@ module subroutine mechanical_init(materials,phases)
|
|||
allocate(material_orientation0(homogenization_maxNconstituents,phases%length,maxVal(material_phaseMemberAt)))
|
||||
|
||||
do ph = 1, phases%length
|
||||
Nconstituents = count(material_phaseAt == ph) * discretization_nIPs
|
||||
Nmembers = count(material_phaseAt == ph) * discretization_nIPs
|
||||
|
||||
allocate(phase_mechanical_Fi(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Fe(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Fi0(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Fp(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Fp0(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Li(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Li0(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Lp0(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Lp(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_S(ph)%data(3,3,Nconstituents),source=0.0_pReal)
|
||||
allocate(phase_mechanical_P(ph)%data(3,3,Nconstituents),source=0.0_pReal)
|
||||
allocate(phase_mechanical_S0(ph)%data(3,3,Nconstituents),source=0.0_pReal)
|
||||
allocate(phase_mechanical_F(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_F0(ph)%data(3,3,Nconstituents))
|
||||
allocate(phase_mechanical_Fi(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Fe(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Fi0(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Fp(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Fp0(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Li(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Li0(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Lp0(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_Lp(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_S(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
||||
allocate(phase_mechanical_P(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
||||
allocate(phase_mechanical_S0(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
||||
allocate(phase_mechanical_F(ph)%data(3,3,Nmembers))
|
||||
allocate(phase_mechanical_F0(ph)%data(3,3,Nmembers))
|
||||
|
||||
phase => phases%get(ph)
|
||||
mech => phase%get('mechanics')
|
||||
|
@ -279,7 +279,6 @@ module subroutine mechanical_init(materials,phases)
|
|||
endif
|
||||
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(ph,me,material,constituents,constituent)
|
||||
do el = 1, size(material_phaseMemberAt,3); do ip = 1, size(material_phaseMemberAt,2)
|
||||
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
|
||||
material => materials%get(discretization_materialAt(el))
|
||||
|
@ -305,7 +304,6 @@ module subroutine mechanical_init(materials,phases)
|
|||
|
||||
enddo
|
||||
enddo; enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
! initialize plasticity
|
||||
|
|
|
@ -79,7 +79,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
logical, dimension(:), allocatable :: myPlasticity
|
||||
integer :: &
|
||||
ph, i, &
|
||||
Nconstituents, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDotState, &
|
||||
startIndex, endIndex
|
||||
integer, dimension(:), allocatable :: &
|
||||
|
@ -220,18 +220,18 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl
|
||||
sizeState = sizeDotState
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
startIndex = 1
|
||||
endIndex = prm%sum_N_sl
|
||||
stt%rho_mob => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%rho_mob = spread(rho_mob_0,2,Nconstituents)
|
||||
stt%rho_mob = spread(rho_mob_0,2,Nmembers)
|
||||
dot%rho_mob => plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
||||
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_rho'
|
||||
|
@ -239,7 +239,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_sl
|
||||
stt%rho_dip => plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%rho_dip = spread(rho_dip_0,2,Nconstituents)
|
||||
stt%rho_dip = spread(rho_dip_0,2,Nmembers)
|
||||
dot%rho_dip => plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
||||
|
||||
|
@ -251,8 +251,8 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
! global alias
|
||||
plasticState(ph)%slipRate => plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
|
||||
allocate(dst%Lambda_sl(prm%sum_N_sl,Nconstituents), source=0.0_pReal)
|
||||
allocate(dst%threshold_stress(prm%sum_N_sl,Nconstituents), source=0.0_pReal)
|
||||
allocate(dst%Lambda_sl(prm%sum_N_sl,Nmembers), source=0.0_pReal)
|
||||
allocate(dst%threshold_stress(prm%sum_N_sl,Nmembers), source=0.0_pReal)
|
||||
|
||||
plasticState(ph)%state0 = plasticState(ph)%state ! ToDo: this could be done centrally
|
||||
|
||||
|
|
|
@ -24,7 +24,6 @@ submodule(phase:plastic) dislotwin
|
|||
q_sb = 1.0_pReal, & !< q-exponent in shear band velocity
|
||||
D_a = 1.0_pReal, & !< adjustment parameter to calculate minimum dipole distance
|
||||
i_tw = 1.0_pReal, & !< adjustment parameter to calculate MFP for twinning
|
||||
tau_0 = 1.0_pReal, & !< strength due to elements in solid solution
|
||||
L_tw = 1.0_pReal, & !< Length of twin nuclei in Burgers vectors
|
||||
L_tr = 1.0_pReal, & !< Length of trans nuclei in Burgers vectors
|
||||
x_c_tw = 1.0_pReal, & !< critical distance for formation of twin nucleus
|
||||
|
@ -53,6 +52,7 @@ submodule(phase:plastic) dislotwin
|
|||
q, & !< q-exponent in glide velocity
|
||||
r, & !< r-exponent in twin nucleation rate
|
||||
s, & !< s-exponent in trans nucleation rate
|
||||
tau_0, & !< strength due to elements in solid solution
|
||||
gamma_char, & !< characteristic shear for twins
|
||||
B !< drag coefficient
|
||||
real(pReal), allocatable, dimension(:,:) :: &
|
||||
|
@ -81,7 +81,7 @@ submodule(phase:plastic) dislotwin
|
|||
logical :: &
|
||||
ExtendedDislocations, & !< consider split into partials for climb calculation
|
||||
fccTwinTransNucleation, & !< twinning and transformation models are for fcc
|
||||
dipoleFormation !< flag indicating consideration of dipole formation
|
||||
omitDipoles !< flag controlling consideration of dipole formation
|
||||
end type !< container type for internal constitutive parameters
|
||||
|
||||
type :: tDislotwinState
|
||||
|
@ -127,7 +127,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
logical, dimension(:), allocatable :: myPlasticity
|
||||
integer :: &
|
||||
ph, i, &
|
||||
Nconstituents, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDotState, &
|
||||
startIndex, endIndex
|
||||
integer, dimension(:), allocatable :: &
|
||||
|
@ -213,10 +213,10 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
prm%i_sl = pl%get_asFloats('i_sl', requiredSize=size(N_sl))
|
||||
prm%p = pl%get_asFloats('p_sl', requiredSize=size(N_sl))
|
||||
prm%q = pl%get_asFloats('q_sl', requiredSize=size(N_sl))
|
||||
prm%tau_0 = pl%get_asFloats('tau_0', requiredSize=size(N_sl))
|
||||
prm%B = pl%get_asFloats('B', requiredSize=size(N_sl), &
|
||||
defaultVal=[(0.0_pReal, i=1,size(N_sl))])
|
||||
|
||||
prm%tau_0 = pl%get_asFloat('tau_0')
|
||||
prm%D_a = pl%get_asFloat('D_a')
|
||||
prm%D_0 = pl%get_asFloat('D_0')
|
||||
prm%Q_cl = pl%get_asFloat('Q_cl')
|
||||
|
@ -226,7 +226,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
prm%dGamma_sf_dT = pl%get_asFloat('dGamma_sf_dT')
|
||||
endif
|
||||
|
||||
prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation',defaultVal = .false.)
|
||||
prm%omitDipoles = pl%get_asBool('omit_dipoles',defaultVal = .false.)
|
||||
|
||||
! multiplication factor according to crystal structure (nearest neighbors bcc vs fcc/hex)
|
||||
! details: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
|
||||
|
@ -242,6 +242,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
prm%i_sl = math_expand(prm%i_sl, N_sl)
|
||||
prm%p = math_expand(prm%p, N_sl)
|
||||
prm%q = math_expand(prm%q, N_sl)
|
||||
prm%tau_0 = math_expand(prm%tau_0, N_sl)
|
||||
prm%B = math_expand(prm%B, N_sl)
|
||||
|
||||
! sanity checks
|
||||
|
@ -405,21 +406,21 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl &
|
||||
+ size(['f_tw']) * prm%sum_N_tw &
|
||||
+ size(['f_tr']) * prm%sum_N_tr
|
||||
sizeState = sizeDotState
|
||||
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! locally defined state aliases and initialization of state0 and atol
|
||||
startIndex = 1
|
||||
endIndex = prm%sum_N_sl
|
||||
stt%rho_mob=>plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%rho_mob= spread(rho_mob_0,2,Nconstituents)
|
||||
stt%rho_mob= spread(rho_mob_0,2,Nmembers)
|
||||
dot%rho_mob=>plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
||||
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_rho'
|
||||
|
@ -427,7 +428,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_sl
|
||||
stt%rho_dip=>plasticState(ph)%state(startIndex:endIndex,:)
|
||||
stt%rho_dip= spread(rho_dip_0,2,Nconstituents)
|
||||
stt%rho_dip= spread(rho_dip_0,2,Nmembers)
|
||||
dot%rho_dip=>plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
||||
|
||||
|
@ -443,28 +444,28 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
endIndex = endIndex + prm%sum_N_tw
|
||||
stt%f_tw=>plasticState(ph)%state(startIndex:endIndex,:)
|
||||
dot%f_tw=>plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('f_twin',defaultVal=1.0e-7_pReal)
|
||||
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' f_twin'
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_f_tw',defaultVal=1.0e-7_pReal)
|
||||
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_f_tw'
|
||||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_tr
|
||||
stt%f_tr=>plasticState(ph)%state(startIndex:endIndex,:)
|
||||
dot%f_tr=>plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('f_trans',defaultVal=1.0e-6_pReal)
|
||||
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' f_trans'
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_f_tr',defaultVal=1.0e-6_pReal)
|
||||
if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_f_tr'
|
||||
|
||||
allocate(dst%Lambda_sl (prm%sum_N_sl,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_pass (prm%sum_N_sl,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%Lambda_sl (prm%sum_N_sl,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%tau_pass (prm%sum_N_sl,Nmembers),source=0.0_pReal)
|
||||
|
||||
allocate(dst%Lambda_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_hat_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_r_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%V_tw (prm%sum_N_tw,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%Lambda_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%tau_hat_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%tau_r_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%V_tw (prm%sum_N_tw,Nmembers),source=0.0_pReal)
|
||||
|
||||
allocate(dst%Lambda_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_hat_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_r_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%V_tr (prm%sum_N_tr,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%Lambda_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%tau_hat_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%tau_r_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%V_tr (prm%sum_N_tr,Nmembers),source=0.0_pReal)
|
||||
|
||||
plasticState(ph)%state0 = plasticState(ph)%state ! ToDo: this could be done centrally
|
||||
|
||||
|
@ -535,9 +536,9 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,me)
|
|||
real(pReal), dimension(param(ph)%sum_N_sl) :: &
|
||||
dot_gamma_sl,ddot_gamma_dtau_slip
|
||||
real(pReal), dimension(param(ph)%sum_N_tw) :: &
|
||||
dot_gamma_twin,ddot_gamma_dtau_twin
|
||||
dot_gamma_tw,ddot_gamma_dtau_tw
|
||||
real(pReal), dimension(param(ph)%sum_N_tr) :: &
|
||||
dot_gamma_tr,ddot_gamma_dtau_trans
|
||||
dot_gamma_tr,ddot_gamma_dtau_tr
|
||||
real(pReal):: dot_gamma_sb
|
||||
real(pReal), dimension(3,3) :: eigVectors, P_sb
|
||||
real(pReal), dimension(3) :: eigValues
|
||||
|
@ -578,20 +579,20 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,me)
|
|||
+ ddot_gamma_dtau_slip(i) * prm%P_sl(k,l,i) * prm%P_sl(m,n,i)
|
||||
enddo slipContribution
|
||||
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_twin,ddot_gamma_dtau_twin)
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tw,ddot_gamma_dtau_tw)
|
||||
twinContibution: do i = 1, prm%sum_N_tw
|
||||
Lp = Lp + dot_gamma_twin(i)*prm%P_tw(1:3,1:3,i)
|
||||
Lp = Lp + dot_gamma_tw(i)*prm%P_tw(1:3,1:3,i)
|
||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||||
+ ddot_gamma_dtau_twin(i)* prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
|
||||
+ ddot_gamma_dtau_tw(i)* prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
|
||||
enddo twinContibution
|
||||
|
||||
call kinetics_trans(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tr,ddot_gamma_dtau_trans)
|
||||
call kinetics_trans(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tr,ddot_gamma_dtau_tr)
|
||||
transContibution: do i = 1, prm%sum_N_tr
|
||||
Lp = Lp + dot_gamma_tr(i)*prm%P_tr(1:3,1:3,i)
|
||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||||
+ ddot_gamma_dtau_trans(i)* prm%P_tr(k,l,i)*prm%P_tr(m,n,i)
|
||||
+ ddot_gamma_dtau_tr(i)* prm%P_tr(k,l,i)*prm%P_tr(m,n,i)
|
||||
enddo transContibution
|
||||
|
||||
Lp = Lp * f_unrotated
|
||||
|
@ -646,7 +647,6 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
|
|||
f_unrotated, &
|
||||
rho_dip_distance, &
|
||||
v_cl, & !< climb velocity
|
||||
Gamma, & !< stacking fault energy
|
||||
tau, &
|
||||
sigma_cl, & !< climb stress
|
||||
b_d !< ratio of Burgers vector to stacking fault width
|
||||
|
@ -656,7 +656,7 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
|
|||
rho_dip_distance_min, &
|
||||
dot_gamma_sl
|
||||
real(pReal), dimension(param(ph)%sum_N_tw) :: &
|
||||
dot_gamma_twin
|
||||
dot_gamma_tw
|
||||
real(pReal), dimension(param(ph)%sum_N_tr) :: &
|
||||
dot_gamma_tr
|
||||
|
||||
|
@ -675,7 +675,7 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
|
|||
slipState: do i = 1, prm%sum_N_sl
|
||||
tau = math_tensordot(Mp,prm%P_sl(1:3,1:3,i))
|
||||
|
||||
significantSlipStress: if (dEq0(tau)) then
|
||||
significantSlipStress: if (dEq0(tau) .or. prm%omitDipoles) then
|
||||
dot_rho_dip_formation(i) = 0.0_pReal
|
||||
dot_rho_dip_climb(i) = 0.0_pReal
|
||||
else significantSlipStress
|
||||
|
@ -683,24 +683,18 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
|
|||
rho_dip_distance = math_clip(rho_dip_distance, right = dst%Lambda_sl(i,me))
|
||||
rho_dip_distance = math_clip(rho_dip_distance, left = rho_dip_distance_min(i))
|
||||
|
||||
if (prm%dipoleFormation) then
|
||||
dot_rho_dip_formation(i) = 2.0_pReal*(rho_dip_distance-rho_dip_distance_min(i))/prm%b_sl(i) &
|
||||
* stt%rho_mob(i,me)*abs(dot_gamma_sl(i))
|
||||
else
|
||||
dot_rho_dip_formation(i) = 0.0_pReal
|
||||
endif
|
||||
|
||||
if (dEq(rho_dip_distance,rho_dip_distance_min(i))) then
|
||||
dot_rho_dip_climb(i) = 0.0_pReal
|
||||
else
|
||||
!@details: Refer: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
|
||||
! Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
|
||||
sigma_cl = dot_product(prm%n0_sl(1:3,i),matmul(Mp,prm%n0_sl(1:3,i)))
|
||||
if (prm%ExtendedDislocations) then
|
||||
Gamma = prm%Gamma_sf_0K + prm%dGamma_sf_dT * T
|
||||
b_d = 24.0_pReal*PI*(1.0_pReal - prm%nu)/(2.0_pReal + prm%nu)* Gamma/(prm%mu*prm%b_sl(i))
|
||||
else
|
||||
b_d = 1.0_pReal
|
||||
endif
|
||||
b_d = merge(24.0_pReal*PI*(1.0_pReal - prm%nu)/(2.0_pReal + prm%nu) &
|
||||
* (prm%Gamma_sf_0K + prm%dGamma_sf_dT * T) / (prm%mu*prm%b_sl(i)), &
|
||||
1.0_pReal, &
|
||||
prm%ExtendedDislocations)
|
||||
v_cl = 2.0_pReal*prm%omega*b_d**2.0_pReal*exp(-prm%Q_cl/(kB*T)) &
|
||||
* (exp(abs(sigma_cl)*prm%b_sl(i)**3.0_pReal/(kB*T)) - 1.0_pReal)
|
||||
|
||||
|
@ -718,8 +712,8 @@ module subroutine dislotwin_dotState(Mp,T,ph,me)
|
|||
- 2.0_pReal*rho_dip_distance_min/prm%b_sl * stt%rho_dip(:,me)*abs(dot_gamma_sl) &
|
||||
- dot_rho_dip_climb
|
||||
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_twin)
|
||||
dot%f_tw(:,me) = f_unrotated*dot_gamma_twin/prm%gamma_char
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tw)
|
||||
dot%f_tw(:,me) = f_unrotated*dot_gamma_tw/prm%gamma_char
|
||||
|
||||
call kinetics_trans(Mp,T,dot_gamma_sl,ph,me,dot_gamma_tr)
|
||||
dot%f_tr(:,me) = f_unrotated*dot_gamma_tr
|
||||
|
@ -741,11 +735,9 @@ module subroutine dislotwin_dependentState(T,ph,me)
|
|||
T
|
||||
|
||||
real(pReal) :: &
|
||||
sumf_twin,Gamma,sumf_trans
|
||||
sumf_tw,Gamma,sumf_tr
|
||||
real(pReal), dimension(param(ph)%sum_N_sl) :: &
|
||||
inv_lambda_sl_sl, & !< 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
inv_lambda_sl_tw, & !< 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
inv_lambda_sl_tr !< 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||||
inv_lambda_sl
|
||||
real(pReal), dimension(param(ph)%sum_N_tw) :: &
|
||||
inv_lambda_tw_tw, & !< 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
f_over_t_tw
|
||||
|
@ -760,38 +752,27 @@ module subroutine dislotwin_dependentState(T,ph,me)
|
|||
stt => state(ph),&
|
||||
dst => dependentState(ph))
|
||||
|
||||
sumf_twin = sum(stt%f_tw(1:prm%sum_N_tw,me))
|
||||
sumf_trans = sum(stt%f_tr(1:prm%sum_N_tr,me))
|
||||
sumf_tw = sum(stt%f_tw(1:prm%sum_N_tw,me))
|
||||
sumf_tr = sum(stt%f_tr(1:prm%sum_N_tr,me))
|
||||
|
||||
Gamma = prm%Gamma_sf_0K + prm%dGamma_sf_dT * T
|
||||
|
||||
!* rescaled volume fraction for topology
|
||||
f_over_t_tw = stt%f_tw(1:prm%sum_N_tw,me)/prm%t_tw ! this is per system ...
|
||||
f_over_t_tr = sumf_trans/prm%t_tr ! but this not
|
||||
f_over_t_tr = sumf_tr/prm%t_tr ! but this not
|
||||
! ToDo ...Physically correct, but naming could be adjusted
|
||||
|
||||
inv_lambda_sl_sl = sqrt(matmul(prm%forestProjection, &
|
||||
stt%rho_mob(:,me)+stt%rho_dip(:,me)))/prm%i_sl
|
||||
|
||||
inv_lambda_sl = sqrt(matmul(prm%forestProjection,stt%rho_mob(:,me)+stt%rho_dip(:,me)))/prm%i_sl
|
||||
if (prm%sum_N_tw > 0 .and. prm%sum_N_sl > 0) &
|
||||
inv_lambda_sl_tw = matmul(prm%h_sl_tw,f_over_t_tw)/(1.0_pReal-sumf_twin)
|
||||
|
||||
inv_lambda_tw_tw = matmul(prm%h_tw_tw,f_over_t_tw)/(1.0_pReal-sumf_twin)
|
||||
|
||||
inv_lambda_sl = inv_lambda_sl + matmul(prm%h_sl_tw,f_over_t_tw)/(1.0_pReal-sumf_tw)
|
||||
if (prm%sum_N_tr > 0 .and. prm%sum_N_sl > 0) &
|
||||
inv_lambda_sl_tr = matmul(prm%h_sl_tr,f_over_t_tr)/(1.0_pReal-sumf_trans)
|
||||
|
||||
inv_lambda_tr_tr = matmul(prm%h_tr_tr,f_over_t_tr)/(1.0_pReal-sumf_trans)
|
||||
|
||||
if ((prm%sum_N_tw > 0) .or. (prm%sum_N_tr > 0)) then ! ToDo: better logic needed here
|
||||
dst%Lambda_sl(:,me) = prm%D &
|
||||
/ (1.0_pReal+prm%D*(inv_lambda_sl_sl + inv_lambda_sl_tw + inv_lambda_sl_tr))
|
||||
else
|
||||
dst%Lambda_sl(:,me) = prm%D &
|
||||
/ (1.0_pReal+prm%D*inv_lambda_sl_sl) !!!!!! correct?
|
||||
endif
|
||||
inv_lambda_sl = inv_lambda_sl + matmul(prm%h_sl_tr,f_over_t_tr)/(1.0_pReal-sumf_tr)
|
||||
dst%Lambda_sl(:,me) = prm%D / (1.0_pReal+prm%D*inv_lambda_sl)
|
||||
|
||||
inv_lambda_tw_tw = matmul(prm%h_tw_tw,f_over_t_tw)/(1.0_pReal-sumf_tw)
|
||||
dst%Lambda_tw(:,me) = prm%i_tw*prm%D/(1.0_pReal+prm%D*inv_lambda_tw_tw)
|
||||
|
||||
inv_lambda_tr_tr = matmul(prm%h_tr_tr,f_over_t_tr)/(1.0_pReal-sumf_tr)
|
||||
dst%Lambda_tr(:,me) = prm%i_tr*prm%D/(1.0_pReal+prm%D*inv_lambda_tr_tr)
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
|
@ -957,7 +938,7 @@ end subroutine kinetics_slip
|
|||
! have the optional arguments at the end.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,ph,me,&
|
||||
dot_gamma_twin,ddot_gamma_dtau_twin)
|
||||
dot_gamma_tw,ddot_gamma_dtau_tw)
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
|
@ -970,9 +951,9 @@ pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,ph,me,&
|
|||
dot_gamma_sl
|
||||
|
||||
real(pReal), dimension(param(ph)%sum_N_tw), intent(out) :: &
|
||||
dot_gamma_twin
|
||||
dot_gamma_tw
|
||||
real(pReal), dimension(param(ph)%sum_N_tw), optional, intent(out) :: &
|
||||
ddot_gamma_dtau_twin
|
||||
ddot_gamma_dtau_tw
|
||||
|
||||
real, dimension(param(ph)%sum_N_tw) :: &
|
||||
tau, &
|
||||
|
@ -1004,16 +985,16 @@ pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,ph,me,&
|
|||
|
||||
significantStress: where(tau > tol_math_check)
|
||||
StressRatio_r = (dst%tau_hat_tw(:,me)/tau)**prm%r
|
||||
dot_gamma_twin = prm%gamma_char * dst%V_tw(:,me) * Ndot0*exp(-StressRatio_r)
|
||||
ddot_gamma_dtau = (dot_gamma_twin*prm%r/tau)*StressRatio_r
|
||||
dot_gamma_tw = prm%gamma_char * dst%V_tw(:,me) * Ndot0*exp(-StressRatio_r)
|
||||
ddot_gamma_dtau = (dot_gamma_tw*prm%r/tau)*StressRatio_r
|
||||
else where significantStress
|
||||
dot_gamma_twin = 0.0_pReal
|
||||
dot_gamma_tw = 0.0_pReal
|
||||
ddot_gamma_dtau = 0.0_pReal
|
||||
end where significantStress
|
||||
|
||||
end associate
|
||||
|
||||
if(present(ddot_gamma_dtau_twin)) ddot_gamma_dtau_twin = ddot_gamma_dtau
|
||||
if(present(ddot_gamma_dtau_tw)) ddot_gamma_dtau_tw = ddot_gamma_dtau
|
||||
|
||||
end subroutine kinetics_twin
|
||||
|
||||
|
@ -1026,7 +1007,7 @@ end subroutine kinetics_twin
|
|||
! have the optional arguments at the end.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,ph,me,&
|
||||
dot_gamma_tr,ddot_gamma_dtau_trans)
|
||||
dot_gamma_tr,ddot_gamma_dtau_tr)
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
|
@ -1041,7 +1022,7 @@ pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,ph,me,&
|
|||
real(pReal), dimension(param(ph)%sum_N_tr), intent(out) :: &
|
||||
dot_gamma_tr
|
||||
real(pReal), dimension(param(ph)%sum_N_tr), optional, intent(out) :: &
|
||||
ddot_gamma_dtau_trans
|
||||
ddot_gamma_dtau_tr
|
||||
|
||||
real, dimension(param(ph)%sum_N_tr) :: &
|
||||
tau, &
|
||||
|
@ -1081,7 +1062,7 @@ pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,ph,me,&
|
|||
|
||||
end associate
|
||||
|
||||
if(present(ddot_gamma_dtau_trans)) ddot_gamma_dtau_trans = ddot_gamma_dtau
|
||||
if(present(ddot_gamma_dtau_tr)) ddot_gamma_dtau_tr = ddot_gamma_dtau
|
||||
|
||||
end subroutine kinetics_trans
|
||||
|
||||
|
|
|
@ -52,7 +52,7 @@ module function plastic_isotropic_init() result(myPlasticity)
|
|||
logical, dimension(:), allocatable :: myPlasticity
|
||||
integer :: &
|
||||
ph, &
|
||||
Nconstituents, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDotState
|
||||
real(pReal) :: &
|
||||
xi_0 !< initial critical stress
|
||||
|
@ -119,11 +119,11 @@ module function plastic_isotropic_init() result(myPlasticity)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
sizeDotState = size(['xi ','gamma'])
|
||||
sizeState = sizeDotState
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
|
|
|
@ -62,7 +62,7 @@ module function plastic_kinehardening_init() result(myPlasticity)
|
|||
logical, dimension(:), allocatable :: myPlasticity
|
||||
integer :: &
|
||||
ph, o, &
|
||||
Nconstituents, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDeltaState, sizeDotState, &
|
||||
startIndex, endIndex
|
||||
integer, dimension(:), allocatable :: &
|
||||
|
@ -165,19 +165,19 @@ module function plastic_kinehardening_init() result(myPlasticity)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
sizeDotState = size(['crss ','crss_back', 'accshear ']) * prm%sum_N_sl !ToDo: adjust names like in material.yaml
|
||||
sizeDeltaState = size(['sense ', 'chi0 ', 'gamma0' ]) * prm%sum_N_sl !ToDo: adjust names like in material.yaml
|
||||
sizeState = sizeDotState + sizeDeltaState
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,sizeDeltaState)
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,sizeDeltaState)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
startIndex = 1
|
||||
endIndex = prm%sum_N_sl
|
||||
stt%crss => plasticState(ph)%state (startIndex:endIndex,:)
|
||||
stt%crss = spread(xi_0, 2, Nconstituents)
|
||||
stt%crss = spread(xi_0, 2, Nmembers)
|
||||
dot%crss => plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||||
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
|
||||
|
|
|
@ -177,7 +177,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
|||
integer :: &
|
||||
Ninstances, &
|
||||
ph, &
|
||||
Nconstituents, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDotState, sizeDependentState, sizeDeltaState, &
|
||||
s1, s2, &
|
||||
s, t, l
|
||||
|
@ -398,7 +398,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
sizeDotState = size([ 'rhoSglEdgePosMobile ','rhoSglEdgeNegMobile ', &
|
||||
'rhoSglScrewPosMobile ','rhoSglScrewNegMobile ', &
|
||||
'rhoSglEdgePosImmobile ','rhoSglEdgeNegImmobile ', &
|
||||
|
@ -412,9 +412,9 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
|||
'maxDipoleHeightEdge ','maxDipoleHeightScrew' ]) * prm%sum_N_sl !< other dependent state variables that are not updated by microstructure
|
||||
sizeDeltaState = sizeDotState
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,sizeDeltaState)
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,sizeDeltaState)
|
||||
|
||||
allocate(geom(ph)%V_0(Nconstituents))
|
||||
allocate(geom(ph)%V_0(Nmembers))
|
||||
call storeGeometry(ph)
|
||||
|
||||
plasticState(ph)%nonlocal = pl%get_asBool('nonlocal')
|
||||
|
@ -486,26 +486,26 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
|||
dot%rho_dip_scr => plasticState(ph)%dotState (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
|
||||
del%rho_dip_scr => plasticState(ph)%deltaState (9*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
|
||||
|
||||
stt%gamma => plasticState(ph)%state (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
|
||||
dot%gamma => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
|
||||
del%gamma => plasticState(ph)%deltaState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%gamma => plasticState(ph)%state (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
|
||||
dot%gamma => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
|
||||
del%gamma => plasticState(ph)%deltaState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
|
||||
plasticState(ph)%atol(10*prm%sum_N_sl+1:11*prm%sum_N_sl ) = pl%get_asFloat('atol_gamma', defaultVal = 1.0e-2_pReal)
|
||||
if(any(plasticState(ph)%atol(10*prm%sum_N_sl+1:11*prm%sum_N_sl) < 0.0_pReal)) &
|
||||
extmsg = trim(extmsg)//' atol_gamma'
|
||||
plasticState(ph)%slipRate => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nconstituents)
|
||||
plasticState(ph)%slipRate => plasticState(ph)%dotState (10*prm%sum_N_sl + 1:11*prm%sum_N_sl,1:Nmembers)
|
||||
|
||||
stt%rho_forest => plasticState(ph)%state (11*prm%sum_N_sl + 1:12*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%v => plasticState(ph)%state (12*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%v_edg_pos => plasticState(ph)%state (12*prm%sum_N_sl + 1:13*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%v_edg_neg => plasticState(ph)%state (13*prm%sum_N_sl + 1:14*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%v_scr_pos => plasticState(ph)%state (14*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%v_scr_neg => plasticState(ph)%state (15*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nconstituents)
|
||||
stt%rho_forest => plasticState(ph)%state (11*prm%sum_N_sl + 1:12*prm%sum_N_sl,1:Nmembers)
|
||||
stt%v => plasticState(ph)%state (12*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nmembers)
|
||||
stt%v_edg_pos => plasticState(ph)%state (12*prm%sum_N_sl + 1:13*prm%sum_N_sl,1:Nmembers)
|
||||
stt%v_edg_neg => plasticState(ph)%state (13*prm%sum_N_sl + 1:14*prm%sum_N_sl,1:Nmembers)
|
||||
stt%v_scr_pos => plasticState(ph)%state (14*prm%sum_N_sl + 1:15*prm%sum_N_sl,1:Nmembers)
|
||||
stt%v_scr_neg => plasticState(ph)%state (15*prm%sum_N_sl + 1:16*prm%sum_N_sl,1:Nmembers)
|
||||
|
||||
allocate(dst%tau_pass(prm%sum_N_sl,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_back(prm%sum_N_sl,Nconstituents),source=0.0_pReal)
|
||||
allocate(dst%tau_pass(prm%sum_N_sl,Nmembers),source=0.0_pReal)
|
||||
allocate(dst%tau_back(prm%sum_N_sl,Nmembers),source=0.0_pReal)
|
||||
end associate
|
||||
|
||||
if (Nconstituents > 0) call stateInit(ini,ph,Nconstituents)
|
||||
if (Nmembers > 0) call stateInit(ini,ph,Nmembers)
|
||||
plasticState(ph)%state0 = plasticState(ph)%state
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -527,7 +527,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
|||
if(.not. myPlasticity(ph)) cycle
|
||||
|
||||
phase => phases%get(ph)
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
l = 0
|
||||
do t = 1,4
|
||||
do s = 1,param(ph)%sum_N_sl
|
||||
|
@ -1579,13 +1579,13 @@ end subroutine plastic_nonlocal_results
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief populates the initial dislocation density
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine stateInit(ini,phase,Nconstituents)
|
||||
subroutine stateInit(ini,phase,Nmembers)
|
||||
|
||||
type(tInitialParameters) :: &
|
||||
ini
|
||||
integer,intent(in) :: &
|
||||
phase, &
|
||||
Nconstituents
|
||||
Nmembers
|
||||
integer :: &
|
||||
i, &
|
||||
e, &
|
||||
|
@ -1602,7 +1602,7 @@ subroutine stateInit(ini,phase,Nconstituents)
|
|||
totalVolume, &
|
||||
densityBinning, &
|
||||
minimumIpVolume
|
||||
real(pReal), dimension(Nconstituents) :: &
|
||||
real(pReal), dimension(Nmembers) :: &
|
||||
volume
|
||||
|
||||
|
||||
|
@ -1622,13 +1622,13 @@ subroutine stateInit(ini,phase,Nconstituents)
|
|||
meanDensity = 0.0_pReal
|
||||
do while(meanDensity < ini%random_rho_u)
|
||||
call random_number(rnd)
|
||||
phasemember = nint(rnd(1)*real(Nconstituents,pReal) + 0.5_pReal)
|
||||
phasemember = nint(rnd(1)*real(Nmembers,pReal) + 0.5_pReal)
|
||||
s = nint(rnd(2)*real(sum(ini%N_sl),pReal)*4.0_pReal + 0.5_pReal)
|
||||
meanDensity = meanDensity + densityBinning * volume(phasemember) / totalVolume
|
||||
stt%rhoSglMobile(s,phasemember) = densityBinning
|
||||
enddo
|
||||
else ! homogeneous distribution with noise
|
||||
do e = 1, Nconstituents
|
||||
do e = 1, Nmembers
|
||||
do f = 1,size(ini%N_sl,1)
|
||||
from = 1 + sum(ini%N_sl(1:f-1))
|
||||
upto = sum(ini%N_sl(1:f))
|
||||
|
@ -1822,16 +1822,13 @@ subroutine storeGeometry(ph)
|
|||
integer, intent(in) :: ph
|
||||
|
||||
integer :: ip, el, ce, co
|
||||
real(pReal), dimension(:), allocatable :: V
|
||||
|
||||
ce = 0
|
||||
do el = 1, size(material_homogenizationMemberAt,2)
|
||||
do ip = 1, size(material_homogenizationMemberAt,1)
|
||||
ce = ce + 1
|
||||
|
||||
V = reshape(IPvolume,[product(shape(IPvolume))])
|
||||
do ce = 1, size(material_homogenizationMemberAt2,1)
|
||||
do co = 1, homogenization_maxNconstituents
|
||||
if(material_phaseAt2(co,ce) == ph) then
|
||||
geom(ph)%V_0(material_phaseMemberAt2(co,ce)) = IPvolume(ip,el)
|
||||
endif
|
||||
enddo
|
||||
if (material_phaseAt2(co,ce) == ph) geom(ph)%V_0(material_phaseMemberAt2(co,ce)) = V(ce)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
|
|
@ -71,7 +71,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
logical, dimension(:), allocatable :: myPlasticity
|
||||
integer :: &
|
||||
ph, i, &
|
||||
Nconstituents, &
|
||||
Nmembers, &
|
||||
sizeState, sizeDotState, &
|
||||
startIndex, endIndex
|
||||
integer, dimension(:), allocatable :: &
|
||||
|
@ -223,20 +223,20 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
|
||||
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
|
||||
sizeState = sizeDotState
|
||||
|
||||
|
||||
call phase_allocateState(plasticState(ph),Nconstituents,sizeState,sizeDotState,0)
|
||||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
startIndex = 1
|
||||
endIndex = prm%sum_N_sl
|
||||
stt%xi_slip => plasticState(ph)%state (startIndex:endIndex,:)
|
||||
stt%xi_slip = spread(xi_0_sl, 2, Nconstituents)
|
||||
stt%xi_slip = spread(xi_0_sl, 2, Nmembers)
|
||||
dot%xi_slip => plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||||
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
|
||||
|
@ -244,7 +244,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_tw
|
||||
stt%xi_twin => plasticState(ph)%state (startIndex:endIndex,:)
|
||||
stt%xi_twin = spread(xi_0_tw, 2, Nconstituents)
|
||||
stt%xi_twin = spread(xi_0_tw, 2, Nmembers)
|
||||
dot%xi_twin => plasticState(ph)%dotState(startIndex:endIndex,:)
|
||||
plasticState(ph)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||||
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
|
||||
|
|
|
@ -15,13 +15,13 @@ submodule(phase) thermal
|
|||
THERMAL_EXTERNALHEAT_ID
|
||||
end enum
|
||||
|
||||
type :: tDataContainer
|
||||
type :: tDataContainer ! ?? not very telling name. Better: "fieldQuantities" ??
|
||||
real(pReal), dimension(:), allocatable :: T, dot_T
|
||||
end type tDataContainer
|
||||
integer(kind(THERMAL_UNDEFINED_ID)), dimension(:,:), allocatable :: &
|
||||
thermal_source
|
||||
|
||||
type(tDataContainer), dimension(:), allocatable :: current
|
||||
type(tDataContainer), dimension(:), allocatable :: current ! ?? not very telling name. Better: "field" ??
|
||||
|
||||
integer :: thermal_source_maxSizeDotState
|
||||
|
||||
|
@ -78,7 +78,7 @@ module subroutine thermal_init(phases)
|
|||
|
||||
integer :: &
|
||||
ph, so, &
|
||||
Nconstituents
|
||||
Nmembers
|
||||
|
||||
|
||||
print'(/,a)', ' <<<+- phase:thermal init -+>>>'
|
||||
|
@ -89,18 +89,13 @@ module subroutine thermal_init(phases)
|
|||
allocate(thermal_Nsources(phases%length),source = 0)
|
||||
|
||||
do ph = 1, phases%length
|
||||
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
|
||||
allocate(current(ph)%T(Nconstituents),source=300.0_pReal)
|
||||
allocate(current(ph)%dot_T(Nconstituents),source=0.0_pReal)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
allocate(current(ph)%T(Nmembers),source=300.0_pReal)
|
||||
allocate(current(ph)%dot_T(Nmembers),source=0.0_pReal)
|
||||
phase => phases%get(ph)
|
||||
if(phase%contains('thermal')) then
|
||||
thermal => phase%get('thermal')
|
||||
thermal => phase%get('thermal',defaultVal=emptyDict)
|
||||
sources => thermal%get('source',defaultVal=emptyList)
|
||||
|
||||
thermal_Nsources(ph) = sources%length
|
||||
endif
|
||||
allocate(thermalstate(ph)%p(thermal_Nsources(ph)))
|
||||
enddo
|
||||
|
||||
|
@ -112,7 +107,7 @@ module subroutine thermal_init(phases)
|
|||
endif
|
||||
|
||||
thermal_source_maxSizeDotState = 0
|
||||
PhaseLoop2:do ph = 1,phases%length
|
||||
do ph = 1,phases%length
|
||||
|
||||
do so = 1,thermal_Nsources(ph)
|
||||
thermalState(ph)%p(so)%state = thermalState(ph)%p(so)%state0
|
||||
|
@ -120,7 +115,7 @@ module subroutine thermal_init(phases)
|
|||
|
||||
thermal_source_maxSizeDotState = max(thermal_source_maxSizeDotState, &
|
||||
maxval(thermalState(ph)%p%sizeDotState))
|
||||
enddo PhaseLoop2
|
||||
enddo
|
||||
|
||||
end subroutine thermal_init
|
||||
|
||||
|
@ -156,7 +151,6 @@ module subroutine phase_thermal_getRate(TDot, ph,me)
|
|||
Tdot = Tdot + my_Tdot
|
||||
enddo
|
||||
|
||||
|
||||
end subroutine phase_thermal_getRate
|
||||
|
||||
|
||||
|
@ -185,7 +179,7 @@ function phase_thermal_collectDotState(ph,me) result(broken)
|
|||
end function phase_thermal_collectDotState
|
||||
|
||||
|
||||
module function thermal_stress(Delta_t,ph,me) result(converged_)
|
||||
module function thermal_stress(Delta_t,ph,me) result(converged_) ! ?? why is this called "stress" when it seems closer to "updateState" ??
|
||||
|
||||
real(pReal), intent(in) :: Delta_t
|
||||
integer, intent(in) :: ph, me
|
||||
|
@ -301,14 +295,12 @@ function thermal_active(source_label,src_length) result(active_source)
|
|||
allocate(active_source(src_length,phases%length), source = .false. )
|
||||
do p = 1, phases%length
|
||||
phase => phases%get(p)
|
||||
if (phase%contains('thermal')) then
|
||||
thermal => phase%get('thermal',defaultVal=emptyList)
|
||||
thermal => phase%get('thermal',defaultVal=emptyDict)
|
||||
sources => thermal%get('source',defaultVal=emptyList)
|
||||
do s = 1, sources%length
|
||||
src => sources%get(s)
|
||||
if(src%get_asString('type') == source_label) active_source(s,p) = .true.
|
||||
active_source(s,p) = src%get_asString('type') == source_label
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ module function dissipation_init(source_length) result(mySources)
|
|||
phase, &
|
||||
sources, thermal, &
|
||||
src
|
||||
integer :: so,Nconstituents,ph
|
||||
integer :: so,Nmembers,ph
|
||||
|
||||
|
||||
mySources = thermal_active('dissipation',source_length)
|
||||
|
@ -54,8 +54,8 @@ module function dissipation_init(source_length) result(mySources)
|
|||
src => sources%get(so)
|
||||
|
||||
prm%kappa = src%get_asFloat('kappa')
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
call phase_allocateState(thermalState(ph)%p(so),Nconstituents,0,0,0)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
call phase_allocateState(thermalState(ph)%p(so),Nmembers,0,0,0)
|
||||
|
||||
end associate
|
||||
endif
|
||||
|
|
|
@ -38,7 +38,7 @@ module function externalheat_init(source_length) result(mySources)
|
|||
phase, &
|
||||
sources, thermal, &
|
||||
src
|
||||
integer :: so,Nconstituents,ph
|
||||
integer :: so,Nmembers,ph
|
||||
|
||||
|
||||
mySources = thermal_active('externalheat',source_length)
|
||||
|
@ -67,8 +67,8 @@ module function externalheat_init(source_length) result(mySources)
|
|||
|
||||
prm%f_T = src%get_asFloats('f_T',requiredSize = size(prm%t_n))
|
||||
|
||||
Nconstituents = count(material_phaseAt2 == ph)
|
||||
call phase_allocateState(thermalState(ph)%p(so),Nconstituents,1,1,0)
|
||||
Nmembers = count(material_phaseAt2 == ph)
|
||||
call phase_allocateState(thermalState(ph)%p(so),Nmembers,1,1,0)
|
||||
end associate
|
||||
endif
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue