diff --git a/processing/post/addGrainID.py b/processing/post/addGrainID.py new file mode 100755 index 000000000..e2c7c99fc --- /dev/null +++ b/processing/post/addGrainID.py @@ -0,0 +1,363 @@ +#!/usr/bin/env python + +import os,sys,string,itertools,re,time,copy,operator,threading +import numpy as np +import damask +from scipy import spatial +from collections import defaultdict +from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP + +scriptID = string.replace('$Id: addGrainID.py 2549 2013-07-10 09:13:21Z MPIE\p.eisenlohr $','\n','\\n') +scriptName = os.path.splitext(scriptID.split()[1])[0] + +#-------------------------------------------------------------------------------------------------- +class extendedOption(Option): +#-------------------------------------------------------------------------------------------------- +# used for definition of new option parser action 'extend', which enables to take multiple option arguments +# taken from online tutorial http://docs.python.org/library/optparse.html + + ACTIONS = Option.ACTIONS + ("extend",) + STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",) + TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",) + ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",) + + def take_action(self, action, dest, opt, value, values, parser): + if action == "extend": + lvalue = value.split(",") + values.ensure_value(dest, []).extend(lvalue) + else: + Option.take_action(self, action, dest, opt, value, values, parser) + + +# ----------------------------- +class backgroundMessage(threading.Thread): +# ----------------------------- + + def __init__(self): + threading.Thread.__init__(self) + self.message = '' + self.new_message = '' + self.counter = 0 + self.symbols = ['- ', '\ ', '| ', '/ ',] + self.waittime = 0.5 + + def __quit__(self): + length = len(self.message) + len(self.symbols[self.counter]) + sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length) + sys.stderr.write('') + + def run(self): + while not threading.enumerate()[0]._Thread__stopped: + time.sleep(self.waittime) + self.update_message() + self.__quit__() + + def set_message(self, new_message): + self.new_message = new_message + self.print_message() + + def print_message(self): + length = len(self.message) + len(self.symbols[self.counter]) + sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length) # delete former message + sys.stderr.write(self.symbols[self.counter] + self.new_message) # print new message + self.message = self.new_message + + def update_message(self): + self.counter = (self.counter + 1)%len(self.symbols) + self.print_message() + + +parser = OptionParser(option_class=extendedOption, usage='%prog options [file[s]]', description = """ +Add grain index based on similiarity of crystal lattice orientation. +""" + string.replace(scriptID,'\n','\\n') +) + +parser.add_option('-r', '--radius', dest='radius', type='float', + help = 'search radius') +parser.add_option('-d', '--disorientation', dest='disorientation', type='float', metavar='ANGLE', + help = 'disorientation threshold per grain [%default] (degrees)') +parser.add_option('-s', '--symmetry', dest='symmetry', type='string', + help = 'crystal symmetry [%default]') +parser.add_option('-e', '--eulers', dest='eulers', type='string', metavar='LABEL', + help = 'Euler angles') +parser.add_option( '--degrees', dest='degrees', action='store_true', + help = 'Euler angles are given in degrees [%default]') +parser.add_option('-m', '--matrix', dest='matrix', type='string', metavar='LABEL', + help = 'orientation matrix') +parser.add_option('-a', dest='a', type='string', metavar='LABEL', + help = 'crystal frame a vector') +parser.add_option('-b', dest='b', type='string', metavar='LABEL', + help = 'crystal frame b vector') +parser.add_option('-c', dest='c', type='string', metavar='LABEL', + help = 'crystal frame c vector') +parser.add_option('-q', '--quaternion', dest='quaternion', type='string', metavar='LABEL', + help = 'quaternion') +parser.add_option('-p', '--position', dest='position', type='string', metavar='LABEL', + help = 'spatial position of voxel [%default]') + +parser.set_defaults(symmetry = 'cubic') +parser.set_defaults(position = 'pos') +parser.set_defaults(degrees = False) + +(options, filenames) = parser.parse_args() + +if options.radius == None: + parser.error('no radius specified.') + +datainfo = { # list of requested labels per datatype + 'tensor': {'len':9, + 'label':[]}, + 'vector': {'len':3, + 'label':[]}, + 'quaternion': {'len':4, + 'label':[]}, + } + +if options.eulers != None: datainfo['vector']['label'] += [options.eulers]; input = 'eulers' +if options.a != None and \ + options.b != None and \ + options.c != None: datainfo['vector']['label'] += [options.a,options.b,options.c]; input = 'frame' +if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix' +if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion' + +datainfo['vector']['label'] += [options.position] + +toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians +cos_disorientation = np.cos(options.disorientation/2.0*toRadians) + +# ------------------------------------------ setup file handles --------------------------------------- + +files = [] +if filenames == []: + files.append({'name':'STDIN', + 'input':sys.stdin, + 'output':sys.stdout, + 'croak':sys.stderr}) +else: + for name in filenames: + if os.path.exists(name): + files.append({'name':name, + 'input':open(name), + 'output':open(name+'_tmp','w'), + 'croak':sys.stderr}) + +#--- loop over input files ------------------------------------------------------------------------ + +for file in files: + if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') + else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n') + + table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table + table.head_read() # read ASCII header info + +# --------------- figure out columns to process + + column = {} + missingColumns = False + + for datatype,info in datainfo.items(): + for label in info['label']: + key = list(set([label, '1_'+label]) & set(table.labels)) # check for intersection with table labels + if key == []: + file['croak'].write('column %s not found...\n'%label) + missingColumns = True # break if label not found + else: + column[label] = table.labels.index(key[0]) # remember columns of requested data + + if missingColumns: + continue + + table.labels_append('grainID_%g'%options.disorientation) + +# ------------------------------------------ assemble header --------------------------------------- + + table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:])) + table.head_write() + +# ------------------------------------------ process data --------------------------------------- + +# ------------------------------------------ build KD tree --------------------------------------- + + +# --- start background messaging + + bg = backgroundMessage() + bg.start() + + bg.set_message('reading positions...') + + backup_readSize = table.__IO__['validReadSize'] # bad hack to circumvent overwriting by readArray... + backup_labels = table.labels # bad hack... + table.data_rewind() + table.data_readArray(range(column[options.position], + column[options.position]+datainfo['vector']['len'])) # read position vectors +# file['croak'].write('%i\n'%(len(table.data))) + grainID = -np.ones(len(table.data),dtype=int) + + start = tick = time.clock() + bg.set_message('building KD tree...') + kdtree = spatial.KDTree(copy.deepcopy(table.data)) +# neighborhood = kdtree.query_ball_tree(kdtree,options.radius) +# file['croak'].write('%.2f seconds\n'%(time.clock()-tick)) +# file['croak'].write('%i points\n'%(len(neighborhood))) + + +# ------------------------------------------ assign grain IDs --------------------------------------- + + orientations = [] # quaternions found for grain + memberCounts = [] # number of voxels in grain + + table.data_rewind() + table.__IO__['validReadSize'] = backup_readSize # bad hack to circumvent overwriting by readArray... + table.labels = backup_labels # bad hack... + p = 0 # point counter + g = 0 # grain counter + matchedID = -1 + lastDistance = np.dot(kdtree.data[-1]-kdtree.data[0],kdtree.data[-1]-kdtree.data[0]) # (arbitrarily) use diagonal of cloud + + tick = time.clock() + while table.data_read(): # read next data line of ASCII table + + if p > 0 and p % 1000 == 0: + + time_delta = (time.clock()-tick) * (len(grainID) - p) / p + bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations))) + + if input == 'eulers': + o = damask.Orientation(Eulers=toRadians*\ + np.array(map(float,table.data[column[options.eulers]:\ + column[options.eulers]+datainfo['vector']['len']])), + symmetry=options.symmetry).reduced() + elif input == 'matrix': + o = damask.Orientation(matrix=\ + np.array([map(float,table.data[column[options.matrix]:\ + column[options.matrix]+datainfo['tensor']['len']])]).reshape(np.sqrt(datainfo['tensor']['len']), + np.sqrt(datainfo['tensor']['len'])).transpose(), + symmetry=options.symmetry).reduced() + elif input == 'frame': + o = damask.Orientation(matrix=\ + np.array([map(float,table.data[column[options.a]:\ + column[options.a]+datainfo['vector']['len']] + \ + table.data[column[options.b]:\ + column[options.b]+datainfo['vector']['len']] + \ + table.data[column[options.c]:\ + column[options.c]+datainfo['vector']['len']] + )]).reshape(3,3), + symmetry=options.symmetry).reduced() + elif input == 'quaternion': + o = damask.Orientation(quaternion=\ + np.array(map(float,table.data[column[options.quaternion]:\ + column[options.quaternion]+datainfo['quaternion']['len']])), + symmetry=options.symmetry).reduced() + + matched = False + +# check against last matched needs to be really picky. best would be to exclude jumps across the poke (checking distance between last and me?) +# when walking through neighborhood first check whether grainID of that point has already been tested, if yes, skip! + + if matchedID != -1: # has matched before? + matched = (o.quaternion.conjugated() * orientations[matchedID].quaternion).w > cos_disorientation +# if matchedID > 0: # has matched before? +# thisDistance = np.dot(kdtree.data[p]-kdtree.data[p-1],kdtree.data[p]-kdtree.data[p-1],) +# if thisDistance < 4.*lastDistance: # about as close as last point pair? +# disorientation = o.disorientation(orientations[matchedID-1]).quaternion.w # check whether former grainID matches now again +# matched = disorientation > cos_disorientation +# lastDistance = thisDistance +# + + if not matched: + alreadyChecked = {} + bestDisorientation = damask.Orientation(quaternion=np.array([0,0,0,1]),symmetry = options.symmetry) # initialize to 180 deg rotation as worst case + for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points + gID = grainID[i] + if gID != -1 and gID not in alreadyChecked: # an already indexed point belonging to a grain not yet tested? + alreadyChecked[gID] = True # remember not to check again + disorientation = o.disorientation(orientations[gID]) # compare against that grain's orientation + if disorientation.quaternion.w > cos_disorientation and \ + disorientation.quaternion.w >= bestDisorientation.quaternion.w: # within disorientation threshold and better than current best? + matched = True + matchedID = gID # remember that grain +# file['croak'].write('%i %f '%(matchedID,disorientation.quaternion.w)) + + bestDisorientation = disorientation + + if not matched: # no match -> new grain found + memberCounts += [1] # start new membership counter + orientations += [o] # initialize with current orientation + matchedID = g + g += 1 # increment grain counter +# file['croak'].write('+') + + else: # did match existing grain + memberCounts[matchedID] += 1 +# file['croak'].write('got back %s is close by %f to %s\n'%(np.degrees(bestQ.asEulers()),np.degrees(2*np.arccos(bestDisorientation.quaternion.w)),np.degrees(bestFormerQ.asEulers()))) +# file['croak'].write('.%i %s'%(matchedID, orientations[matchedID-1].quaternion)) +# M = (1. - 1./memberCounts[matchedID-1]) * bestFormerQ.asM() + 1./memberCounts[matchedID-1] * bestQ.asM() # 4x4 matrix holding weighted quaternion outer products per grain +# w,v = np.linalg.eigh(M) +# avgQ = damask.Orientation(quaternion=v[:,w.argmax()],symmetry=options.symmetry) +# file['croak'].write('new avg has misori of %f\n'%np.degrees(2*np.arccos(orientations[matchedID-1].disorientation(avgQ)[0].quaternion.w))) +# orientations[matchedID-1].quaternion = damask.Quaternion(v[:,w.argmax()]) +# orientations[matchedID-1] = damask.Orientation(quaternion = bestDisorientation.quaternion**(1./memberCounts[matchedID-1]) \ +# * orientations[matchedID-1].quaternion, +# symmetry = options.symmetry) # adjust average orientation taking newest member into account +# file['croak'].write(' stored --> %s\n'%(np.degrees(orientations[matchedID-1].quaternion.asEulers()))) +# file['croak'].write('.') + + grainID[p] = matchedID # remember grain index assigned to point + p += 1 # increment point + + bg.set_message('identifying similar orientations among %i grains...'%(len(orientations))) + + memberCounts = np.array(memberCounts) + similarOrientations = [[] for i in xrange(len(orientations))] + + for i,orientation in enumerate(orientations): # compare each identified orientation... + for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards + if orientation.disorientation(orientations[j]).quaternion.w > cos_disorientation: # similar orientations in both grainIDs? + similarOrientations[i].append(j) # remember in upper triangle... + similarOrientations[j].append(i) # ...and lower triangle of matrix + + if similarOrientations[i] != []: + bg.set_message('grainID %i is as: %s'%(i,' '.join(map(lambda x:str(x),similarOrientations[i])))) + + stillShifting = True + while stillShifting: + stillShifting = False + tick = time.clock() + + for p,gID in enumerate(grainID): # walk through all points + if p > 0 and p % 1000 == 0: + + time_delta = (time.clock()-tick) * (len(grainID) - p) / p + bg.set_message('(%02i:%02i:%02i) shifting ID of point %i out of %i (grain count %i)...'%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations))) + if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else? + similarNeighbors = defaultdict(int) # dict holding frequency of neighboring grainIDs that share my orientation (freq info not used...) + for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points + if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation? + similarNeighbors[grainID[i]] += 1 # remember its grainID + if similarNeighbors != {}: # found similar orientation(s) in neighborhood + candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me + grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset + memberCounts[gID] -= 1 # my former ID loses one fellow + memberCounts[grainID[p]] += 1 # my new ID gains one fellow + bg.set_message('%i:%i --> %i'%(p,gID,grainID[p])) # report switch of grainID + stillShifting = True + + table.data_rewind() + p = 0 + while table.data_read(): # read next data line of ASCII table + table.data_append(1+grainID[p]) # add grain ID + table.data_write() # output processed line + p += 1 + + bg.set_message('done after %i seconds'%(time.clock()-start)) + +# for i,o in enumerate(orientations): # croak about average grain orientations +# file['croak'].write('%i: %s\n'%(i,' '.join(map(str,o.quaternion.asEulers())))) + +# ------------------------------------------ output result --------------------------------------- + + table.output_flush() # just in case of buffered ASCII table + table.close() # close ASCII tables + if file['name'] != 'STDIN': + os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new